含硅聚酰亚胺及其复合薄膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香族聚酰亚胺是一类具有耐高温﹑耐低温﹑耐辐射﹑优异的化学稳定性﹑极佳的电性能和良好力学强度的高分子材料,已在航天航空﹑电气电子等高技术领域得到广泛应用。目前,含硅聚酰亚胺的合成、特性及应用研究是聚酰亚胺研究领域的热点之一。将含硅基团或聚硅氧烷链段引入到聚酰亚胺主链结构中可使聚酰亚胺的加工性大为改善,并被赋予良好的溶解性﹑透气性﹑抗冲击性﹑耐紫外光性及在富氧环境中的抗降解性。在聚酰亚胺骨架结构中引入硅氧烷链段或含硅基团还可增强聚酰亚胺与无机材料,包括金属材料等基材的粘接性。利用其优异的粘接性能可制备多种聚酰亚胺纳米杂化材料。本论文制备了一系列含硅聚酰亚胺和含硅聚酰亚胺/钛酸钡纳米复合薄膜,并对其结构和性能进行了研究。另外,还对含硅聚酰亚胺/介孔二氧化硅复合薄膜的制备、结构和性能进行了研究。
     本文首先合成了双(3,4-苯二甲酸酐)二甲基硅烷(SIDA)单体,利用其部分取代均苯四甲酸酐(PMDA)与4,4′-二氨基二苯醚(4,4′-ODA)共聚得到共聚型含硅聚酰亚胺。共聚型含硅聚酰亚胺的规整性、玻璃化转变温度低于不含硅的PMDA/4,4′-ODA聚酰亚胺;含硅聚酰亚胺的热稳定性随SIDA与PMDA摩尔比的增加而下降。但随着SIDA/PMDA/4,4′-ODA聚酰亚胺中含硅单体用量的增加,聚酰亚胺薄膜在紫外-可见光区的透光范围增加。
     由SIDA分别与4,4′-ODA和3,4′-二氨基二苯醚(3,4′-ODA)反应制备了SIDA/4,4′-ODA和SIDA/3,4′-ODA两种聚酰亚胺薄膜。对两种聚酰亚胺进行比较研究的结果表明,由SIDA与3,4′-ODA制备的聚酰亚胺呈现较高的柔韧性和在紫外-可见光区的透光性;而SIDA与4,4′-ODA制备的聚酰亚胺的分子链具有较高的玻璃化转变温度、热稳定性和刚性。SIDA/3,4′-ODA聚酰亚胺的线性热膨胀系数随温度变化的幅度大于SIDA/4,4′-ODA聚酰亚胺。
     其次,由3,3′-二甲基-4,4′-二氨基二苯基甲烷(MMDA)分别与PMDA、SIDA反应制备了PMDA/MMDA、SIDA/MMDA和SIDA/PMDA/MMDA三种可溶性聚酰亚胺。研究结果表明,三种聚酰亚胺的特征粘度在0.41 ~ 0.73 dL/g范围内。在聚酰亚胺主链中引入二甲基硅基团可以有效地改善聚酰亚胺的溶解性能和在紫外-可见光区的透光性,但玻璃化转变温度下降。SIDA/MMDA聚酰亚胺在空气中呈现最高的热分解温度,而SIDA/PMDA/MMDA聚酰亚胺在氮气中呈现最高的热分解温度。
     由SIDA分别与4,4′-双(3-氨基苯氧基)二苯砜(mBAPS)和4,4′-双(4-氨基苯氧基)二苯砜(pBAPS)反应制备了两种主链含硅-醚-砜基团的可溶性聚酰亚胺薄膜。由SIDA与pBAPS反应制备的聚酰亚胺为半晶聚合物,由SIDA与mBAPS制备的聚酰亚胺为无定型聚合物。无论在空气中还是在氮气中两种聚酰亚胺薄膜都具有很高的热稳定性和抗热氧化性能。聚酰亚胺分子链中基团位置的变化对热稳定性及抗热氧化性能的影响较小。由SIDA与mBAPS反应制备的聚酰亚胺具有比由SIDA与pBAPS反应制备的聚酰亚胺好的柔性、低温抗冲击性能、在紫外-可见光区的透光性和在有机溶剂中的溶解性能。
     再次,制备了SIDA?3,4′-ODA聚酰亚胺/BaTiO3、SIDA?4,4′-ODA聚酰亚胺/BaTiO3、SIDA?pBAPS聚酰亚胺/BaTiO3和SIDA?mBAPS聚酰亚胺/偶联剂/BaTiO3纳米复合薄膜。研究结果表明,钛酸钡纳米粒子在聚酰亚胺基体中的分散并不是很均匀的,粒子趋向于形成团聚体。较低钛酸钡含量的复合薄膜与较高钛酸钡含量的复合薄膜相比,在较高纳米钛酸钡含量的复合薄膜中纳米钛酸钡粒子及团聚体分散的相对较均匀。硅烷偶联剂加入到聚酰亚胺和纳米钛酸钡粒子复合体系中并没有明显地改善钛酸钡纳米粒子在聚酰亚胺中的分散。纳米钛酸钡粒子加入到含硅聚酰亚胺基体中可以明显地改善含硅聚酰亚胺/钛酸钡纳米复合薄膜的抗热氧化性能,在热氧化分解的初期没有观察到钛酸钡的催化氧化作用。聚酰亚胺/钛酸钡纳米复合薄膜的玻璃化转变温度(Tg)高于相应的本体聚酰亚胺的玻璃化转变温度,在Tg处的力学内耗值随复合薄膜中钛酸钡含量的增加而减小。
     介电性能的测定表明,聚酰亚胺/钛酸钡纳米复合薄膜的相对介电常数随着频率的增加而呈缓慢下降的趋势;在1MHz频率下,聚酰亚胺/钛酸钡纳米复合薄膜的介质损耗低于相应的本体聚酰亚胺的介质损耗。复合薄膜的相对介电常数随温度的增加呈现先下降后上升的变化趋势。
     红外发射光谱的测定表明,在由SIDA分别与3,4′-ODA、4,4′-ODA反应制备的聚酰亚胺基体中加入适量的纳米钛酸钡粒子可使聚酰亚胺/钛酸钡纳米复合薄膜的红外发射率降低;在由SIDA和pBAPS反应制备的聚酰亚胺基体中加入纳米钛酸钡粉体则使复合薄膜的红外发射率增加。
     最后,以正硅酸四乙酯为原料,采用溶胶-凝胶法制备了介孔二氧化硅,介孔二氧化硅经硅烷化处理得硅烷化介孔二氧化硅。并通过直接共混或共聚的方法将硅烷化介孔二氧化硅混入到由SIDA和pBAPS反应合成的聚酰胺酸中,经热酰亚胺化反应制备了两组含硅聚酰亚胺/硅烷化介孔二氧化硅复合薄膜。在薄膜制备过程中硅烷化介孔二氧化硅与聚酰亚胺基体产生相分离,形成具有条带状的聚集体。复合薄膜的玻璃化转变温度比本体聚酰亚胺的玻璃化转变温度要高,但热稳定性随制备方法的不同而呈现不同的规律性。复合薄膜在Tg处的力学内耗峰值随硅烷化介孔二氧化硅含量的增加而下降。含硅聚酰亚胺/硅烷化介孔二氧化硅复合薄膜与本体聚酰亚胺相比具有低的红外发射率;在介孔二氧化硅含量相同的情况下由共聚方法制备的复合薄膜具有更低的红外发射率,并且其红外发射率随硅烷化介孔二氧化硅含量的增加呈下降的趋势。
     总之,含硅聚酰亚胺及其复合薄膜有着不同于其它传统聚酰亚胺的优良性能,因而在航天航空﹑电气电子,气体分离,吸波材料制备等高技术领域有着广阔的应用前景。
Aromatic polyimides possess excellent thermostability, mechanical property, electrical property and solvent resistance, and have been used in such applications as automobile and aircraft parts and packaging in printed electronic circuitry. Recently, syntheses of silicon-containing polyimides and their application are one of focuses in polyimides studies, since introduction of silicon-containing groups or polysiloxane segment into backbone of polyimides can make great improvement in their processability, solubility, impact resistance, anti-degradation in rich-oxygen environments and anti-ultraviolet. Moreover, these silicon-modified polyimides can also improve their adhesion with inorganic materials, including metal materials. By using their remarkable adhesive capacity, many sorts of polyimide nanocomposites can be prepared. In this thesis, a series of silicon-containing polyimide/barium titanate, or mesoporous silica nanocomposite films were prepared and characterized.
     Firstly, bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride (SIDA) monomer was synthesized through Wurtz coupling reaction, oxidization and cyclization reaction. The silicon-containing copoly(amic acid)s were synthesized from SIDA, pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4′-ODA) in N,N-dimethylacetamide (DMAc). The copolyamic acid films were obtained by solution-cast method from DMAc solutions and thermally converted into transparent, flexible and tough copolyimide films. All copolyimides possessed amorphous character, and the regulation of those copolyimides decreased with the increase of the molar ratio of SIDA to PMDA. Introduction of silicon-containing group to polyimide backbone would make glass transition temperature shift to lower temperature. The decomposition temperature of the silicon-containing copolyimides decreased with the increase of the molar ratio of SIDA to PMDA. However, the optical transparency of the silicon-containing copolyimide thin films was superior to that of PMDA/4,4′-ODA polyimide thin films.
     Two silicon-containing polyimides were synthesized by solution polycondensation of SIDA with 3,4′-oxydianiline (3,4′-ODA) and 4,4′-ODA respectively. Physical properties of thin films of those polyimides were determined with the help of DSC, TGA, UV-visible spectroscopy and dynamic mechanical analysis. The polyimide from SIDA and 3,4′-ODA exhibited excellent energy-damping characteristic, mechanics properties and optical transparency, while that from SIDA and 4,4′-ODA possessed higher glass transition temperature and thermostability. Owing to the unsymmetric structure of the polyimide from SIDA and 3,4′-ODA, its increasing rate of linear coefficient of thermal expansion with temperature was quicker than that of the polyimide from SIDA and 4,4′-ODA.
     Secondly, SIDA, PMDA and 4,4′-diamino-3,3′-dimethyldiphenylmethane (MMDA) were used to prepare polyimides with good organo-solubility and light color. Intrinsic viscosities of polyimides in N,N-dimethylformamide (DMF) were ranged from 0.41 to 0.73 dL/g. These polyimides exhibited excellent solubility in the aprotonic polar organic solvents such as N,N-dimethylformamide (DMF), DMAc and low boiling point solvents like tetrahydrofuran. Introduction of dimethylsilylene group to the polyimide backbone would make the glass transition temperature shift to lower temperature, but optical transparency of the polyimides could be improved. The SIDA/MMDA polyimide had the highest thermal decomposition temperature in air. However, the copolyimide prepared from SIDA, PMDA and MMDA had the highest thermal decomposition temperature under nitrogen.
     Two polyimides containing silicon-ether-sulphone groups were synthesized by solution polycondensation of SIDA with bis[4-(3-aminophenoxy)-phenyl]sulfone (mBAPS) and bis[4-(4-aminophenoxy)-phenyl]sulfone (pBAPS), respectively. SIDA/pBAPS polyimide was semicrystalline polymer, whereas SIDA/mBAPS polyimide was amorphous polymer. Whether in air or in nitrogen, the two polyimides possessed higher thermal stability and antioxidation property. The variety of group position in polyimide molecular chains had little influence on the thermal stability and antioxidation property. The flexility, impact resistance at lower temperature, transparency in ultraviolet-visible area and solubility in organic solvents of polyimide prepared by SIDA and mBAPS were better than those of polyimide prepared by SIDA and pBAPS.
     Thirdly, SIDA?3,4′-ODA polyimide/BaTiO3, SIDA?4,4′-ODA polyimide/BaTiO3, SIDA?pBAPS polyimide/BaTiO3 and SIDA?mBAPS polyimide/coupling agent/BaTiO3 nanocomposite films were prepared by adding directly BaTiO3 nanoparticles or BaTiO3 nanoparticles treated with coupling agent into the poly(amic acid)s, followed by thermal imidization. The results showed BaTiO3 nanoparticles could not be dispersed uniformly in polyimides, the particles trended to form clusters. The clusters coalesced into more uniform structure at higher BaTiO3 filling than at lower BaTiO3 filling. That the coupling agent was added into the polyimide/BaTiO3 nanoparticles composites could not improve disperse of BaTiO3 nanoparticles in the polyimide. All polyimide/BaTiO3 nanocomposite films had higher thermal stability in air and glass transition temperature than those of the corresponding polyimides.
     The measurement of dielectric properties indicated that the relative dielectric constant of SIDA?3,4′-ODA polyimide/BaTiO3, SIDA?4,4′-ODA polyimide/BaTiO3, SIDA?pBAPS polyimide/BaTiO3 nanocomposite films decreased slowly with the increase of frequency. At 1MHz, the dielectric loss tangent value of these polyimide/BaTiO3 nanocomposite films was lower than the corresponding polyimides. And the relative dielectric constant of these polyimide/BaTiO3 nanocomposite films firstly descended then ascended with the increase of temperature.
     The measurement of infrared emission spectrum indicated, the addition of proper amounts of BaTiO3 nanoparticles into polyimides prepared by SIDA and 3,4′-ODA or SIDA and 4,4′-ODA could decrease the infrared emissivity of polyimide/BaTiO3 nanocomposite films, however the addition of BaTiO3 nanoparticles into polyimide prepared by SIDA and pBAPS made the infrared emissivity of polyimide/BaTiO3 nanocomposite film increase.
     Finally, Polyimide/mesoporous silica composite films were prepared by direct mixing of polyamic acid solution and silylated mesoporous silica particles, or by condensation polymerization of dianhydride and diamine with silylated mesoporous silica particles in DMAc, followed with thermal imidization. The results showed that the silylated mesoporous silica particles in the composites tended to form the aggregation with a strip shape due to phase separation. The composite films exhibited higher glass transition temperature as comparing with that of pure polyimide. It was found that the composite films presented lower infrared emissivity value than the pure polyimide and the magnitude of infrared emissivity value was related to the content of silylated mesoporous silica in the composite films. Inhibiting actions of silylated mesoporous silica on infrared emission of the composite films may be owing to presence of nanometer-scale pores in silylated mesoporous silica.
     In summary, silicon-containing polyimides and its nanocomposite films have outstandingly different properties from the other traditional polyimides. Hence, it has extensive application foreground in aviation, electric/electron, gas separation, preparation of wave-absorption materialsand other high-tech fields.
引文
[1] Mittal K L(ed). Polyimides: Synthesis, Characterization, Application [M], Vols.1 and Vols. 2. New York: Plenum Press, 1984.
    [2] Bessonv M I, Kotton M M, Kudryavtsev V V, Laius L A. Polyimides: Thermal Stable Polymers [M]. New York: Consulants Bureau, 1987.
    [3] Wilson D, Stenzenberger H D, Hergenrother P M. Polyimides [M]. Glasgow: Blackie, 1990.
    [4] Arnold C A, Summers J D, McGrath J E. Synthesis and physical behavior of siloxane modified polyimides[J]. SAMPE Symp, 1987, 32: 586 – 596.
    [5] Furukawa N, Furukawa M, Yuasa M, et al . Properties and applications of silicon containing polyimides[J] . J Adhesion Soc Jpn , 1997 , 33(2) : 17 – 27.
    [6] Furukawa N, Yuasa M, Kimura Y. Characterization of polysiloxane - block – polyimides with silicate group in the polysiloxane segments[J]. Polymer , 1999 , 40 : 1853 – 1862.
    [7] 张立德, 牟季美. 纳米材料学 [M]. 辽宁科学技术出版社, 1994.
    [8] Imai Y. Synthesis of new functional silicon – based condensation polymers[J]. J Macromol Sci Chem, 1991, A28: 1115-1135.
    [9] Mark J E, Ceramic – reinforced polymer and polymer modified ceramics[J]. Polym Eng Sci, 1996,36: 2905 - 2920.
    [10] 童跃进, 李秀茹, 陈守正,等. 聚酰亚胺/无机物纳米杂化材料的研究 Ⅰ. 聚酰亚胺(HQDPA/DMMDA) – TiO2 纳米杂化物的合成与表征[J]. 福建师范大学学报 (自然科学版), 1999, 15(3): 42 - 45.
    [11] Bershtein V A, Egorova L M, Yakushev P N, et al. Molocular dynamics in nanostructured polyimide – silica hybrid materials and their stability[J]. Macromol Symp, 1999, 44: 1 – 5.
    [12] 李传峰, 钟顺和. 聚酰亚胺-二氧化硅杂化的制备与表征[J]. 催化学报, 2001, 22(5): 449 – 452.
    [13] Zhu Z K, Yin J, Cao F, et al. Photosensive polyimide/silica hybrids[J]. Adv Mater, 2000, 11(3): 1055 – 1057.
    [14] Chang T C, Yang C W, Wu K H, et al. Organic-inorganic hybrid materials part 3: Characterization and degradation of polyimide-silica hybrids doped with LiCF3SO3[J]. Polym Degrad Stab, 2000, 68(1): 103 – 109.
    [15] Ha C S, Cho W J. Microstructure and interface in organic/inorganic hybrid composites[J].Polym Adv Technol, 2000, 11(3): 145 – 150.
    [16] 尚修勇, 朱子康, 印杰, 等. 偶联剂对PI/SiO2 纳米复合材料形态结构及性能的影响 -Ⅰ[J]. 复合材料学报, 2000, 17(4): 15 – 19.
    [17] Huang T C, Zhu Z K, Yin J, et al. Poly(etherimide)/montmorillonite nanocomposites preparedby melt intercalation: morphology solvent resistance properties and thermal properties[J].Polymer, 2001, 42(3): 873 – 877.
    [18] Furukawa N, Furukawa M, Yuasa M, et al. Properties and Applications of Silicon ContainingPolyimides[J]. J Adhesion Soc Jpn, 1997, 33(2): 17 – 27.
    [19] 山田 保治, 古川 信之, 木村 良晴. シリコン含有ポリイミドの特性と応用[J]. 高分子加工, 1997, 46(2): 2 – 7.
    [20] Inoue S, Morita K, Asai K. Preparation and properties of elastic polyimide-silica compositesusing silanol sol from water glass[J]. J Appl Polym Sci, 2004, 92(4): 2211 – 2219.
    [21] Mascia L, Kioul A. Influence of siloxane composition and morphology on properties ofpolyimide-silica hybrids[J]. Polymer, 1995, 36(19): 3649 – 3659.
    [22] Zhu P K, Li Z B, Feng W, et al. Preparation and characterization of negative photosensitivepolysiloxaneimide[J]. J Appl Polym Sci, 1995, 55: 1111 – 1116.
    [23] 朱普坤, 李佐邦, 李加深, 等. 主链含有机硅结构单元的光敏聚酰亚胺的研究[J]. 功能高分子学报, 1998, 11(1): 9 – 15.
    [24] Pratt J R, Thames S F. Organosilicon compounds[J]. J Org Chem, 1973,38(25): 4271 – 4273.
    [25] 黄文华, 潘光明. 两种含硅芳香二酐的改进法合成[J]. 化学试剂, 1998, 20(1): 54 – 55.
    [26] Sasaki A, Kikuchi N, Fujita T. Manufacture of bis(3,4-dimethylphenyl)dimethylsilane[P]. JpnKokai Tokkyo Koho, 1991, JP H03-109389.
    [27] Pratt J R, Massey W D, Pinkerton F H. Organosilicon compounds XX. Synthesis of aromaticdiamines via trimethylsilyl-protecting aniline intermediates[J]. J Org Chem, 1975, 40(8):1090 - 1094.
    [28] Johnston N J, Jewell R A. Polyimides from silicon-containing dianhydrides and diamines[J].Am Chem Soc, Div Org Coat Plast Chem, Pap, 1973, 33(1): 169 – 176.
    [29] Koton M M, Zhukova T I, Florinskii F S, et al. Aromatic polyimides based onbis(3,4-dicarboxyphenyl)dimethylsilane dianhydride[J]. Vysokomol Soedin Ser B, 1980,22(1): 43 – 45.(Russ)
    [30] Kumar D, Crupta A D. A new optically transparent silicon-containing polyimide film[J].Polym Prepr, 1995, 36(5): 49 – 50.
    [31] Hamciuc E, Schulz B, Kopnick T, et al. New silicon-containing phenylquinoxaline-imidepolymers[J]. High Performance Polymers, 2002, 14: 63 – 65.
    [32] 虞鑫海. 聚酰亚胺硅氧烷共聚物的合成[J]. 化工新型材料, 2002, 30(9): 1 - 5.
    [33] 陈蓓, 眭秀楣, 王东等, 含硅芳香二胺的合成及其聚酰亚胺硅氧烷的热性能[J]. 高分子学报, 1994, 6: 717 – 724.
    [34] 虞鑫海. 含硅聚酰亚胺及其单体[J]. 化工新型材料, 1999, 27(11): 31 – 36.
    [35] 虞鑫海. 聚酰亚胺硅氧烷共聚物[J]. 绝缘材料通讯, 1999, (3): 10 - 13.
    [36] 吕洪舫, 吴波, 杨瑞青, 等. 含硅芳香二酐的合成[J]. 山东大学学报, 1999, 34(1): 74 –77.
    [37] Rich J D. Silylation method and organic silanes made therfrom[P]. 1987, US 4709054.
    [38] Rich J D, Krafft T E, McDermott P J. Silylation method[P]. 1990, US 4918197.
    [39] Maurice P. Organosilicon compounds containing nitrile radicals[P]. 1965, US3185719.
    [40] Milano J C, Mekkid S, Vernet J L. Synthesis of bismaleimides and polybismaleimides Containing a siloxane bridge-reactivity and thermostability[J]. Eur Polym J, 1997, 33(8): 1333 – 1340.
    [41] Kuckertz V H. Siloxanmodifizierte polypyromellitimide[J]. Macromol Chem Phys, 1966, 98: 101 – 108.
    [42] Holub F F, Polysiloxaneimides and their production[P]. 1967, US 3325450.
    [43] Furukawa N, Yamada Y, Furukawa M, et al. Surface and Morphological characterization of polysiloxane-block-polyimides[J]. J Polym Sci A: Polym Chem, 1997, 35: 2239 – 2251.
    [44] Chang T C, Wu K H. Characterization and degradation of some silicon-containing polyimides[J]. Polymer Degradation and Stability, 1998, 60: 161 – 168.
    [45] Inukai T, Uno K, Nishino H, et al. Polyester-siloxane-modified polyamide-imide resin compositions[P]. Jpn Kokai Tokkyo Koho, 1995, JP H07-300527.
    [46] Yaouno H, Matsubara T, Matsui J, et al. Polyimide-siloxane compositions with good compa- tibility with epoxy resins and forming protective layers with excellent heat and curling resistance and adhesion[P]. Jpn Kokai Tokkyo Koho, 1995, JP H07-304950.
    [47] Inukai T, Kurita T, Yamaguchi H, Uno K. Polyamide-polymide compositions and their varnishes and preparation of the varnishes[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-113647.
    [48] Nomura H, Kimura K. Curable compositions containing reaction products of amino group- containing siloxane and acid anhydrides[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-311347.
    [49] Kimata Y, Nishioka R, Kanai H, et al. Manufacture of polyester and siloxane-modified polyimide blend-coated metal plate with good antisoiling properties[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-299899.
    [50] Hanamura K. Semiconductor device having electrically insulating low temperature- curable siloxane-modified polyimide containing uracil derivative[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-288277.
    [51] Okawa J, Tamai M, Yamaguchi T. Polyimide composition containing polysiloxanes with improved mechanical properties and heat-resistance, and films thereof[P]. Jpn Kokai Tokkyo Koho, 1997, JP H09-12882.
    [52] Nakanishi T. Heat- and moisture-resistant electrically insulating block polyimide-siloxanes, their varnishes and their uses of the varnishes[P]. 1997, JP H09-40777.
    [53] Nakashima H. Siloxanediamine-based polyimides having excellent storage stability[P]. 1996, EP719818.
    [54] Venkataramani V S, Shaw J P. Flame retardant inorganic materials/siloxane binder for polymer compositions[P]. 1997, EP757073.
    [55] Shaw J P. Flame-retardant polyamide-polyphenylene ether compositions[P]. 1996, EP714951.
    [56] Harada T, Itoh H, Ubukata M, et al. Alignment layer material for liquid crystal display devices[P]. 1996, EP708149.
    [57] Asakuma S, Eguchi T. Ion beam-radiated liquid crystal orientation film[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-313912.
    [58] Ishikawa S, Yasuno H. Electrically conductive paste compositions with excellent heat resistance[P]. Jpn Kokai Tokkyo Koho, 1996, JP H08-120200.
    [59] Akiyama E, Takamura Y, Nagase Y. Synthesis of soluble polyimide/polydimethylsiloxanegraft copolymer and application to separation membrane[J]. Makromol Chem, 1992, 193: 1509 – 1519.
    [60] Akiyama E, Takamura Y, Nagase Y. Synthesis and preparation of branching copolyimides with fluoroalkyl and polydimethylsiloxane side chain[J]. Makromol Chem, 1992, 193: 2038 - 2046.
    [61] 于善普, 乔利捷, 孟治忠, 等. 含聚二甲基硅氧烷短支链的聚酰亚胺的合成及其透氧性的研究[J]. 功能高分子学报, 1995, 8(3): 299 – 307.
    [62] 范浩军, 黄毅, 顾宜. 聚酰亚胺的侧链功能化[J]. 高分子材料科学与工程, 2000, 16(1): 24 – 31.
    [63] 沈志刚, 陈建峰, 刘方涛, 等. 纳米钛酸钡电子陶瓷粉体的制备技术[J]. 化工进展, 21(1): 34 – 65.
    [64] 李汶军, 施尔畏, 郑燕青, 等. 水热法制备 BaTiO3 粉体[J]. 硅酸盐学报, 1999, 27(6): 714 – 719.
    [65] 栾伟玲, 高濂, 郭景坤. PH 值对 BaTiO3 纳米粉体性能的影响[J]. 无机材料学报, 1999, 14(2): 287 – 290.
    [66] 李青莲, 陈维, 陈寿田, 等. 纳米钛酸钡及其烧结物的制备[J]. 应用化学, 2000, 17(1): 84 – 86.
    [67] Wang K Y, Liao B, Liu Y X, et al. Preparation of high purity and nanometer-scale barium titanate powders[J]. Trans Nonferrous Met Soc China, 1998, 8(1): 123 – 125.
    [68] 汪国忠, 张立德. 化学沉淀法制备纳米 BaTiO3 粉体[J]. 化学研究与应用, 1999, 11(2): 180 – 182.
    [69] Schultz J W, Colton J S, Berkowitz C K. High dielectric, filled polymers for microwave applications[C]. 45th international SAMPE symposium and Exhibition, 2000, 45(II): 1863 – 1873.
    [70] Rao Y, Ogitani S, Kohl P, et al. High dielectric constant polymer-ceramic composite for embedded capacitor application[C]. International symposium and exibition on materials processes, properties and interfaces, 2000, 32 – 37.
    [71] Khastgir D, Adachi K. Piezoelectric and dielectric properties of siloxane elastomers filled with barium titanate[J]. J Polym Sci, Part: B, 1999, 37(21): 3065 – 3070.
    [72] Chiang C K, Popielarz R, Sung L P. Dielectric properties and morphology of ferroelectric ceramic-polymer composite films[C]. Mat Res Soc Symp Proc, 2001, 682E: N6.9.1 – N6.9.6.
    [73] Chiang C K, Sung L P, Popielarz R. Investigation of morphology and interface in polymer composite thin films[C]. Mat Res Soc Symp Proc, 2001, 665: C5.27.1 – C5.27.5.
    [74] Chiang C K, Popielarz R. Polymer composites with high dielectric constant[J]. Ferroelectrics, 2002, 275: 1 – 9.
    [75] Windlass H, Raj P M, Balaraman D, et al. Colloidal processing of polymer ceramic nanocomposite integral capacitors[J]. IEEE Transactions On Electronics Packaging Manufacturing, 2003, 26(2): 100 – 105.
    [76] Ramesh S, Shutzberg B A, Huang C, et al. Dielectric nanocomposites for integral thin film capacitors: Materials design, fabrication, and integration issues[J]. IEEE Transactions On Advanced Packaging, 2003, 26(1): 17 – 24.
    [77] 童跃进, 李小晶, 陈守正,等. 聚酰亚胺/无机物纳米杂化材料的研究 Ⅱ. 聚酰亚胺(TDPA/ODA) – BaTiO3 纳米杂化物的合成与表征[J]. 福建师范大学学报 (自然科学版), 1999, 15(4): 45 - 48.
    [78] Li Y, Tong Y, Jiang K, et al. Preparation of polyimide- BaTiO3 hybrid films by a dispersion process and their microstructure[J]. Chin J Polym Sci, 2001,19: 13 - 17.
    [79] Tong Y J, Li Y S, Liu J P, et al. Preparation and properties of polyimide films codoped with barium and titanium oxides[J]. J Appl Polym Sci, 2002, 83: 1810 – 1816.
    [80] Hirano S, Yogo T, Sakamoto W, et al. In situ processing of electroceramic fine particles/polymer hybrids[J]. J Eur Ceram Soc, 2001, 21: 1479 – 1483.
    [81] 赵丽, 余家国, 赵修建, et al. 介孔纳米结构材料的研究与发展[J]. 稀有金属材料与工程, 2004, 3(1): 5 – 10.
    [82] Beck S J, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid-crystal templates[J]. Am Chem Soc, 1992, 114: 10834 – 10843.
    [83] Kresge C T, Leonowicz M E, Roth W, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710 – 712.
    [84] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865 – 867.
    [85] Yang P D, Zhao D Y, Chmelka B F, et al. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers[J]. Chem Mater, 1998, 10: 2033 – 2036.
    [86] Gallis K W, Araujo J T, Duff K J, et al. The use of mesoporous silica in liquid chromatography[J]. Adv Mater, 1999, 11(17): 1452 – 1455.
    [87] Kim M J, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1[J]. Chem Mater, 1999, 11: 487 – 491.
    [88] Yang S M, Sokolov I, Coombs N, et al. Formation of hollow helicoids in mesoporous silica: supramolecular origami[J]. Adv Mater, 1999, 11(17): 1427 – 1430.
    [89] 张兆荣, 索继栓, 张小明, 等. 介孔硅基分子筛研究新进展[J]. 化学进展, 1999, 11(1): 11 – 20.
    [90] Huo Q S, Margolese D I, Clesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368: 317 – 321.
    [91] Yang H, Coombs N, Sokolov I, et al. Free-standing and oriented mesoporous silica films grown at the air- water interface[J]. Nature, 1996, 381: 589 – 592.
    [92] Ogawa M, Kikuchi T. Preparation of self-standing transparent films of silica-surfactant mesostructured materials and the conversion to porous silica films[J]. Adv Mater, 1998, 10: 1077 – 1080.
    [93] Zhao D Y, Yang P D, Melosh N, et al. Continuous mesoporous silica films with highly ordered large pore structures[J]. Adv Mater, 1998, 10:1380 – 1385.
    [94] Lu Y F, Yang Y, Sellinger A, et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites[J]. Nature, 2001, 410: 913 – 917.
    [1] Mittal K L(ed). Polyimides: Synthesis, Characterization, Application [M], Vols.1 and Vols. 2. New York: Plenum Press, 1984.
    [2] Bessonv M I, Kotton M M, Kudryavtsev V V, Laius L A. Polyimides: Thermal Stable Polymers [M]. New York: Consulants Bureau, 1987.
    [3] Wilson D, Stenzenberger H D, Hergenrother P M. Polyimides [M]. Glasgow: Blackie, 1990.
    [4] 李生柱. 透明聚酰亚胺[J]. 化学世界, 1995, (8): 397 – 402.
    [5] Lu Q H, Yin J, Xu H J, et al. Preparation and properties of organic-soluble polyimides based on 4,4'-diamine-3,3-dimethyldiphenylmethane and conventional dianhydrides[J]. J Appl Polym Sci, 1999, 72: 1299 – 1304.
    [6] 张思规. 精细有机化学品技术手册[M]. 北京: 科学出版社,1993,317.
    [7] 吕洪舫, 吴波, 杨瑞青, 等. 含硅芳香二酐的合成[J]. 山东大学学报, 1999, 34(1): 74 – 77.
    [8] Pratt J R, Thames S F. Organosilicon compounds[J]. J Org Chem, 1973,38(25): 4271 – 4273.
    [9] 陈蓓, 眭秀楣, 王东等, 含硅芳香二胺的合成及其聚酰亚胺硅氧烷的热性能[J]. 高分子学报, 1994, 6: 717 – 724.
    [10] 虞鑫海. 含硅聚酰亚胺及其单体[J]. 化工新型材料, 1999, 27(11): 31 – 36.
    [11] Johnston N J, Jewell R A. Polyimides from silicon-containing dianhydrides and diamines[J]. Am Chem Soc, Div Org Coat Plast Chem, Pap, 1973, 33(1): 169 – 176.
    [12] Mauritz K A, Warren M. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction 1. Infrared spectroscopic studies[J]. Macromolecules, 1989, 22: 1730 – 1734.
    [13] Matos M C, Ilharco L M, Almeida R M. Evolution of TEOS to silica gel and glass by vibrational spectroscopy[J]. J Non-Cryst Solids, 1992, 147-148: 232 – 237.
    [14] 过梅丽.高聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002, 45.
    [1] Mittal K L(ed). Polyimides: Synthesis, Characterization, Application [M], Vols.1 and Vols. 2. New York: Plenum Press, 1984.
    [2] Bessonv M I, Kotton M M, Kudryavtsev V V, Laius L A. Polyimides: Thermal Stable Polymers [M]. New York: Consulants Bureau, 1987.
    [3] Wilson D, Stenzenberger H D, Hergenrother P M. Polyimides[M]. Glasgow: Blackie, 1990.
    [4] Tsujito S, Feld W. Polyimides derived from 1,2-bis(4-aminophenoxy)propane[J]. J Polym Sci Polym Chem Ed, 1989, 27: 963 – 970.
    [5] Liaw D J, Liaw B Y, Li L J. Synthesis and characterization of new soluble polyimides from 3,3',4,4'-benzhydrol tetracarboxylic dianhydride and various diamines[J]. Chem Mater 1998, 10: 734 - 739
    [6] Barikani M, Yeganeh H, Ataei S M. Synthesis and characterization of new soluble and thermostable polyimides via novel diisocyanates[J]. Polym Int, 1999, 48: 1264 – 1268.
    [7] Lu Q H, Yin J, Xu H J, et al. Preparation and properties of organic-soluble polyimides based on 4,4'-diamine-3,3-dimethyldiphenylmethane and conventional dianhydrides[J]. J Appl Polym Sci, 1999, 72: 1299 – 1304.
    [8] Li B Z, He T B, Ding M X. A comparative study of insoluble and soluble polyimide thinfilms[J]. Polymer, 1999, 40: 789 – 794.
    [9] Yamada M, Kusama M, Matsumoto T. Soluble polyimides with polyalicyclic structure 2. Polyimides from bicyclo[2.2.1]heptane-2-exo-3-exo-5-exo-6-exo-tetracarboxylic-2,3:5,6- dianhydride[J]. Macromolecules, 1993, 26: 4961 – 4963.
    [10] Matsumoto T, Kurosaki T. Soluble and colorless polyimides with polyalicyclic structures[J]. React Funct Polym, 1996, 30: 55 – 59.
    [11] Volksen W, Cha HJ, Sanchez M I. Polyimides derived from nonaromatic monomers: synthesis, characterization and potential applications[J]. React Funct Polym, 1996, 30: 61 – 69.
    [12] Yin J, Zhang W, Xu H J. A study on the preparation and properties of alicyclic polyimides based on 3-carboxylmethylcyclopentane-1,2,4-tricarboxylic acid dianhydride[J]. J Appl Polym Sci, 1998, 67: 2105 – 2109.
    [13] Matsumoto T, Kurosaki T. Soluble and Colorless Polyimides from Bicyclo[2.2.2]octane- 2,3,5,6-tetracarboxylic-2,3:5,6-Dianhydrides[J]. Macromolecules, 1997, 30: 993 – 1000.
    [14] Ichino T, Sasaki S, Matsuura T. Synthesis and properties of new polyimides containing flourinated alkoxy side chains[J]. J Polym Sci Polym Chem Ed, 1990, 28: 323 – 331.
    [15] Matsuura T, Hasuda Y, Nishi S. Polyimide derived from 2,2'-bis(trifluoromethyl)-4,4' -diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2'- bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride[J]. Macromolecules, 1991, 24: 5001 – 5005.
    [16] Matsuura T, Ishizawa M, Hasuda Y. Polyimides derived from 2,2'-bis(trifluoromethyl)- 4,4'-diaminobiphenyl. 2. Synthesis and characterization of polyimides prepared from fluorinated benzenetetracarboxylic dianhydrides[J]. Macromolecules, 1992, 25: 3540 – 3545.
    [17] Ho B C, Lin Y S, Lee Y D. Synthesis and characteristics of organic soluble photoactive polyimides[J]. J Appl Polym Sci, 1994, 53: 1513 – 1524.
    [18] Ando S, Matsuura T, Sasaki S. Coloration of aromatic polyimides and electronic properties of their source materials[J]. Polym J, 1997, 29: 69 – 76.
    [19] 陈蓓, 睢秀楣, 王东等. 含硅芳香二胺的合成及其聚酰亚胺硅氧烷的热性能[J]. 高分子学报, 1994, 6: 717 – 724.
    [1] Liaw D J, Liaw B Y. Synthesis and properties of polyimides derived from 3,3′,5,5′-tetramethyl-bis[4-(4-aminophenoxy)phenyl]sulfone[J]. Eur Polym J, 1997, 33(9): 1423 – 1431.
    [2] Furukawa N, Yuasa M, Yamada Y, et al. Synthesis and properties of novel thermosetting polysiloxane-block-polyimides with vinyl functionality[J]. Polymer, 1998, 39(13): 2941 – 2949.
    [3] Kuntman A, Yilmaz T, Gungor A, et al. New polyimide film for VLSI and its electrical characterization[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(2): 296 – 300.
    [4] Furukawa N, Omori F, Yuasa M, et al. Effects of introduction of siloxane segments on single lap shear strength of thermoplastic polyimides[J]. Nippon Kagaku Kaishi, 1998, (5): 310 – 319.
    [5] Kim IC, Tak TM. Synthesis and characterization of soluble random copolyimides[J]. J Appl Polym Sci, 1999, 74(2): 272 – 277.
    [6] Yang CP, Chen RS, Huang CC. Preparation and characterization of colorless alternate poly(amide-imide)s based on trimellitic anhydride and 2,2-bis [4-(3-aminophenoxy) phenyl]sulfone[J]. J Polym Sci, Part A, 1999, 37(14): 2421 – 2428.
    [7] Kim IC, Park KW, Tak TM. Synthesis and characterization of soluble polyimides and its ultrafiltration membrane performances[J]. J Appl Polym Sci, 1999, 73 (6): 907 – 918.
    [8] Furukawa N, Yuasa M, Kimura Y. Characterization of polysiloxane-block-polyimides with silicate group in the polysiloxane segments[J]. Polymer, 1999, 40(7): 1853 – 1862.
    [9] Kim IC, Kim JH, Lee KH, et al. Preparation of soluble polyimides and ultrafiltration membrane performances[J]. J Appl Polym Sci, 2000, 75(1): 1 – 9.
    [10] Kuntman A, Kuntman H. A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications[J]. Microelectronics Journal, 2000, 31(8): 629 – 634.
    [11] Fukushima T, Hosokawa K, Oyama T, et al. Synthesis and positive-imaging photosensitivity of soluble polyimides having pendant carboxyl groups[J]. J Polym Sci, Part A, 2001, 39(6): 934 – 946.
    [12] Kim IC, Kim JH, Lee KH, et al. Phospholipids separation (degumming) from crude vegetable oil by polyimide ultrafiltration membrane[J]. Journal of Membrane Science, 2002, 205(1-2): 113 – 123.
    [13] Kim IC, Kim JH, Lee KH, et al. Preparation and properties of soluble copolysulfoneimideand performance of solvent-resistant ultrafiltration membrane[J]. J Appl Polym Sci, 2002, 85(5): 1024 – 1030.
    [14] Yuasa M, Furukawa N, Wada Y, et al. Synthesis and properties of poly (imide-siloxane) with reactive functionalities in siloxane segment[J]. Journal of Photopolymer Science and Technology, 2003, 16(2): 227 – 232.
    [15] 金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 1990, 226.
    [1] 张立德, 牟季美. 纳米材料学 [M]. 辽宁: 辽宁科学技术出版社, 1994.
    [2] 尚修勇, 朱子康, 印杰, 等. 偶联剂对 PI/SiO2纳米复合材料形态结构及性能的影响-Ⅰ[J]. 复合材料学报, 2000, 17(4): 15 – 19.
    [3] Imai Y. Synthesis of new functional silicon–based condensation polymers[J]. J Macromol Sci Chem, 1991, A28: 1115 – 1135.
    [4] Mark J E, Ceramic–reinforced polymer and polymer modified ceramics[J]. Polym Eng Sci, 1996,36: 2905 – 2920.
    [5] 童跃进, 李秀茹, 陈守正,等. 聚酰亚胺/无机物纳米杂化材料的研究 Ⅰ. 聚酰亚胺(HQDPA/DMMDA) – TiO2 纳米杂化物的合成与表征[J]. 福建师范大学学报 (自然科学版), 1999, 15(3): 42 – 45.
    [6] Bershtein V A, Egorova L M, Yakushev P N, et al. Molocular dynamics in nanostructured polyimide – silica hybrid materials and their stability[J]. Macromol Symp, 1999, 44: 1 – 5.
    [7] 李传峰, 钟顺和. 聚酰亚胺-二氧化硅杂化的制备与表征[J]. 催化学报, 2001, 22(5): 449 – 452.
    [8] Zhu Z K, Yin J, Cao F, et al. Photosensive polyimide/silica hybrids[J]. Adv Mater, 2000, 11(3): 1055 – 1057.
    [9] Chang T C, Yang C W, Wu K H, et al. Organic-inorganic hybrid materials part 3: Characterization and degradation of polyimide-silica hybrids doped with LiCF3SO3[J]. Polym Degrad Stab, 2000, 68(1): 103 – 109.
    [10] Ha C S, Cho W J. Microstructure and interface in organic/inorganic hybrid composites[J]. Polym Adv Technol, 2000, 11(3): 145 – 150.
    [11] Huang T C, Zhu Z K, Yin J, et al. Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology solvent resistance properties and thermal properties[J]. Polymer, 2001, 42(3): 873 – 877.
    [12] Furukawa N, Furukawa M, Yuasa M, et al . Properties and applications of silicon containing polyimides[J] . J Adhesion Soc Jpn , 1997, 33(2): 17 – 27.
    [13] Furukawa N, Yuasa M, Kimura Y. Characterization of polysiloxane - block – polyimides with silicate group in the polysiloxane segments[J]. Polymer , 1999, 40: 1853 – 1862.
    [14] 童跃进, 李小晶, 陈守正, 等. 聚酰亚胺/无机物纳米杂化材料的研究 Ⅱ. 聚酰亚胺(TDPA/ODA) – BaTiO3 纳米杂化物的合成与表征[J]. 福建师范大学学报 (自然科学版), 1999, 15(4): 45 – 48.
    [15] Li Y, Tong Y, Jiang K, et al. Preparation of polyimide- BaTiO3 hybrid films by a dispersion process and their microstructure[J]. Chin J Polym Sci, 2001,19: 13 – 17.
    [16] Tong Y J, Li Y S, Liu J P, et al. Preparation and properties of polyimide films codoped with barium and titanium oxides[J]. J Appl Polym Sci, 2002, 83: 1810 – 1816.
    [17] Tahara H, Yoshikawa T. Ion sheath structure and material degradation due to ion bombardm- ent around high voltage solar arrays – ground simulation[C]. 6th Spacecraft Charging Tech- nology Conference, AFRL-VS-TR-20001578, 2000, 61 – 66.
    [18] 徐庆玉, 范和平, 井强山, 等. 聚酰亚胺纳米杂化材料的制备、结构和性能[J]. 功能高分子学报, 2002, 15(2): 207 – 218.
    [19] Leftherioties G, Yianoulis P. Characterisation and stability of low-emittance multiple coatings for glazing applications[J]. Solar Energy Materials and Solar Cells. 1999, 58: 185 – 197.
    [20] Xu Q, Chen W, Yuan R Z. Microstructure and infrared emissivity at normal temperature in transitional metal oxides system ceramics[J]. J Wuhan University of Tecnology – Mater Sci Ed, 2000, 15: 15 – 20.
    [21] Biswas P K, De A, Pramanik N C, et al. Effects of tin on IR reflectivity, thermal emissivity, hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass[J]. Materials Letters, 2003, 57: 2326 – 2332.
    [22] Y. Shan, Y. M. Zhou, Y. Cao, et al. Preparation and infrared emissivity study of collagen-g-PMMA/In2O3 nanocompossite[J]. Materials Letters, 2004, 58: 1655 – 1660.
    [23] Gu A J, Kuo S W, Chang F C. Synthesis and properties of PI/clay hybrids[J]. J Appl Polym Sci, 2001, 79: 1902 – 1910.
    [24] 王秀金. 变温介电参数测量系统研制[J]. 红外技术, 1996, 18(5): 25 – 27.
    [25] Muruganand S, Narayandass Sa K, Mangalaraj D, et al. Dielectric and conduction properties of pure polyimide films[J]. Polym Int, 2001, 50: 1089 – 1094.
    [26] 蔡立瑜. 聚酰亚胺与钛酸钡纳米复合薄膜之制备及其介电性能之研究[D]: [硕士学位论文]. 台湾: 中原大学, 2003.
    [27] Tripathi A K, Roy A, Goel T C, et al. Optically transparent and non-linear LiNbO3: polyimide composite: Preparation and characterization[J]. J Mater Sci Lett, 1997, 16(12): 1045 – 1047.
    [28] Vrejoiu I, Pedarnig J D, Dinescu, et al. Flexible ceramic-polymer composite films with temperature-insensitive and tunable dielectric permittivity[J]. Appl Phys A, 2002, 74: 407 – 409.
    [1] Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: A land of multidisciplinarity[J]. J Mater Chem, 1996, 6: 511 – 525.
    [2] Carrado K A. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications[J]. Appl Clay Sci, 2000, 17: 1 – 23.
    [3] Lu Y F, Yi Y, Alan A, et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites[J]. Nature, 2001, 410: 913 – 917.
    [4] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865 – 867.
    [5] Vankelecom I F J, Broeck S V D, Merckx E, et al. Sylilation to improve incorporation of zeolites in polyimidefilms[J]. J Phys Chem, 1996, 100: 3753 – 3758.
    [6] Tanev P T, Pinnavaia J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies[J]. Science, 1996, 271: 1267 – 1320.
    [7] Mascia L, Kioul A. Influence of siloxane composition and morphology on properties of polyimide-silica hybrids[J]. Polymer, 1995, 36: 3649 – 3659. .