大豆小麦混合粉的贮藏稳定性及流变学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦面粉在我国拥有广泛的消费群体,然而,赖氨酸等营养物质在小麦面粉中含量较低。针对此问题,有效的手段就是添加氨基酸互补型的食品特别是大豆粉。本论文以开发大豆小麦混合粉为目标,考察全脂大豆粉、灭酶全脂大豆粉、脱脂大豆粉、灭酶脱脂大豆粉、大豆浓缩蛋白粉和大豆分离蛋白粉的分别添加对大豆小麦混合粉贮藏稳定性的影响,系统研究了大豆小麦混合粉的面团流变学性质的变化,并进一步揭示造成大豆小麦混合粉的面团流变学性质差异的影响机制,在此基础上,以制作面条为例,对大豆小麦混合粉的应用进行探讨。主要研究结果如下:
     (1)通过贮藏稳定性实验,确立大豆小麦混合粉的贮藏期。添加全脂大豆粉的大豆小麦混合粉当添加量由5%提高到35%时,其贮藏期分别从50 d缩短到30 d,而对于添加灭酶全脂大豆粉的大豆小麦混合粉,其贮藏期由55 d降为45 d。添加灭酶脱脂大豆粉的大豆小麦混合粉,当添加量为35%时,其贮藏期低于55 d,但降低添加量,贮藏期皆可超过60 d。添加脱脂大豆粉、大豆浓缩蛋白粉或大豆分离蛋白粉的大豆小麦混合粉,当添加量不超过35%时,皆可贮藏60 d以上。
     (2)大豆小麦混合粉的颜色亮度值L、颜色红绿值a、颜色黄蓝值b及完全白度值H与大豆小麦混合粉中每个组份的颜色值及每个组份在大豆小麦混合粉中的质量分数有关。当大豆粉和小麦面粉的颜色值L、a、b及H为常数时,大豆小麦混合粉的颜色值仅与每个组份所占的质量分数有关,呈一阶线性关系。
     (3)大豆小麦混合粉面团的储能模量G'和耗能模量G"随着大豆粉的添加量增加而降低,但Tanδ则升高。大豆粉的添加不仅能降低大豆小麦混合粉的面团的弹性,亦能导致面团的流动性下降;大豆小麦混合粉的面团的弹性下降速率要快于粘性,且随着粘性所占的比例增大,面团有向“类液体”方向变化的趋势。
     (4)添加全脂大豆粉、脱脂大豆粉、大豆浓缩蛋白粉或大豆分离蛋白粉的大豆小麦混合粉面团的硬度、弹性、G'、G"、ε_H、σ_(max)随添加量的增加而呈现不同的变化。当脱脂大豆粉、大豆分离蛋白粉或大豆浓缩蛋白的添加量低于4%,而全脂大豆粉低于3%时,这些参数值皆高于对照样;但当继续提高添加量时,这些参数值却迅速下降;当添加量超过9%之后,下降过程却开始趋于变缓。添加灭酶脱脂大豆粉或灭酶全脂大豆粉的大豆小麦混合粉的硬度、弹性、G'、G"、ε_H、σ_(max),当添加量在0~20%时皆低于对照样。
     (5)当脱脂大豆粉、大豆分离蛋白粉或大豆浓缩蛋白粉的添加量不超过4%,全脂大豆粉不超过3%时,促使大豆小麦混合粉面团流变学性质强化的主要原因是脂肪氧化酶氧化脂肪生成氢过氧化物将面团中面筋蛋白质的-SH氧化成-S-S-,从而增强了面筋蛋白的三维结构。
     (6)当脱脂大豆粉、大豆浓缩蛋白粉或大豆分离蛋白粉的添加量由4%提高到9%,全脂大豆粉由5%提高到9%时,造成大豆小麦混合粉的面团流变学性质弱化的主要原因是大豆蛋白质对面筋蛋白的稀释作用;而当大豆粉的添加量超过9%时,大豆蛋白质和小麦面筋蛋白相互作用形成的蛋白聚集体破坏面筋网络的形成是导致面团流变学性质弱化的主要原因。
     (7)通过面条感官评价实验,确立添加4%的脱脂大豆粉对面条品质改善效果最佳。与对照样相比,其咀嚼性和硬度分别提高了16.1%和15.5%,抗拉断力增强了8.5%,感官评价提高了5.8%,达到91分。
     (8)当脱脂大豆粉添入小麦面粉后,在低初始和面水分条件下,大豆蛋白利用自身较高的吸水能力,与面筋蛋白大分子复合物在微小区域争夺水分,使其束缚水含量低于最高值,造成面筋结构难以完全形成,面条内部网状结构的连续性变差,均匀的网络结构被打断,出现一些大小不一的块状物,且在烹煮面条中出现空洞(隙),导致面条烹煮损失率未得以改善。
In our country, wheat flour has a wide range of consumer group. In fact, the content of nutrient lysine is very low in wheat flour. Therefore, a kind of efficient strategy of adding soybean protein powder has been developed to compensate the shortage or lack of nutrients in wheat flour. In this dissertation, using six kinds of soybean powders including whole soybean powder, inactive whole soybean powder, defatted soybean powder, inactive defatted soybean powder, soybean protein concentrate powder or soybean protein isolate powder as one of components to form the soybean-wheat mixed powder, the tests were firstly performed to analyze the storage stability of mixed powder, and dough rheology properties of the six kinds of mixed powders was also investigated, and then the impact mechanism was revealed. Based on the results of the study on dough rheology properties and the storage stability, noodles were used as an example to investigate the application of the mixed powder. The main findings were as follows:
     (1) Through the experiment of storage stability, it could establish the safe storage period of soybean-wheat mixed powder. When the percentage of whole soybean powder increased from 5% to 35%, the safe storage period of soybean-wheat mixed powder was shortened from 50 d to 30 d; but for adding inactive whole soybean powder, the storage period decreased from 55 d to 45 d. As for adding inactive defatted soybean powder, when its percentage in the mixed soybean-wheat powder was 35%, the safe storage period was not more than 55 d; but if reducing its percentage, the storage period could be more than 60 d. If adding defatted soybean powder, soybean protein concentrate powder or soybean protein isolate powder into wheat flour, when their percentage did not exceed 35%, they could all be safely stored over 60 d.
     (2) The brightness value L, red-green value a, yellow-blue value b and Hunter whiteness value of the mixed new soybean-wheat powders was related to the colors and mass of each individual powder in the mixed powder. When the color values of L, a, b and H of each individual powder were constant, the color value of the mixed powder was only related to the mass percent of each individual powder, shown a good linear relationship.
     (3) It was found that G' and G" of the mixed powder decreased along with the increase of the percentage of soybean powder added into the mixed soybean-wheat powder, but Tanδincreased. Adding soybean powder could not only reduce the elasticity of the mixed soybean-wheat mixed dough, but also lead to the decrease of its liquidity (or viscosity). The descent speed of the elasticity was faster than its viscosity, and with the increase of the proportion of viscous liquid, it trended to form "class liquid".
     (4) It was found that hardness, flexibility,ε_H,σ_(max), G' and G", as for defatted soybean powder, inactivated defatted soybean powder, whole soybean powder, or inactivated whole soybean powder, had different variations with the increase of the adding percentage. When defatted soybean powder, soybean protein isolate or soybean protein concentrate powder was added less than 4%, or whole soybean powder less than 3%, the values of these parameters were higher than the control (only wheat dough). However, these parameters fell rapidly when the adding percentage was more than 9%, and then slowly fell down. The hardness, flexibility,ε_H,σ_(max), G' and G" properties of the soybean-wheat mixed powder added inactive defatted soybean powder or inactive whole soybean powder were less than the control when the adding percentage was in the range of 0~20%.
     (5) Adding defatted soybean powder, soybean protein isolate powder, soybean protein concentrate powder or whole soybean powder into wheat flour (the percentage of defatted soybean powder, soybean protein isolate powder, soybean protein concentrate powder was not more than 4%, while whole soybean powder was not exceeded 3%), the reasons for the improved rheological properties were mainly that hydrogen peroxide oxidation which was produced from fat under the action of lipoxygenase oxidized–SH bond of gluten protein to form -S-S- bond, which leaded to the strengthened three-dimensional structure of gluten protein.
     (6) When the percentage increasing from 4% to 9% for defatted soybean powder, soybean protein concentrate powder or soybean protein isolate powder, and increasing from 5% to 9% for whole soybean powder, the reason for the weakened dough rheological properties of the mixed soybean-wheat powder was mainly attributed to the dilution of soybean protein for gluten protein; when the adding percentage of soybean powder was more than 9%, however, the protein aggregation which was from the interactions between soybean protein and wheat gluten protein resulting in the breakdown of gluten network mainly contributed to the weakened dough rheological properties.
     (7) Through the experiments of the sensory evaluation of noodles, it was found that defatted soybean powder was the best soybean powder as one of the components added into wheat flour, and its optimal percentage accounted for the mixed soybean-wheat powder was established 4%. Compared with the control, its chewing and hardness properties increased by 16.1% and 15.5%, respectively, its tensile breaking strength increased by 8.5%, and its sensory evaluation increased by 5.8%, which reached 91.
     (8) It was found that if adding defatted soybean powder into wheat flour, when the initial moisture of the mixed soybean-wheat powder was relatively low, soybean protein with high water absorption capacity competed the moisture with gluten protein macromolecular complex in the small regional competition, and then the bound water failed to arrival at the maximal content, leading to the uncompleted and discontinuous gluten structure and the appearance of massive objects at various sizes in cooked noodles, which finally resulted in the loss of noodles without any improvement.
引文
1.王陇德.中国居民营养与健康状况调查报告之一(2002综合报告)[M].北京:人民卫生出版社, 2005, 25-32.
    2.马冠生主编.中国学生营养与健康促进会,中国疾病预防控制中心营养与食品安全所编著.中国不同家庭收入学龄儿童少年营养与健康状况报告[M].北京:中国人口出版社, 2007.
    3.中国发展研究基金会.中国发展报告2007:在发展中消除贫困[M].北京:中国发展出版社, 2007.
    4. Liu Keshun著[美],江连洲主译.大豆化学?加工工艺与应用[M].黑龙江:黑龙江科学技术出版社, 2005.
    5. Merritt R J, Jenks B H.“Safety of soy-based infant formulas containing isoflavones: the clinical evidence”[J]. J Nutr. 2004, 134 (5):1220S-1124S.
    6.江洁,王文侠,栾广忠编.大豆深加工技术[M].北京:中国轻工业出版社, 2005.
    7.中粮集团编制. 2006年粮油市场年度报告[J].粮油加工, 2007, (1):32-39.
    8. Friedman M, Brandon D L. Nutritional and Health Benefits of Soy Proteins[J]. J Agri Food Chem, 2001, 49(3):1069-1086.
    9. Steinke F H. Nutritional value of soybean protein foods. In F. H. Steinke, D. H.Waggle &M. N. Volgarev (Eds.), New protein foods on human health: Nutrition, prevention and therapy (pp. 59–66). Florida, USA: CRC, 1991.
    10.李景明.食品营养强化技术[M].北京:化学工业出版社, 2006.
    11. Brouns F. Soya isoflavones: a new and promising ingredient for the health foods sector[J]. Food Res Int, 2002, 35:187-193.
    12.曾勇庆,张维德,王慧等.热处理对全脂大豆粉营养品质影响的研究[J].山东农业大学学报, 2000, 31(2):151-156.
    13. Mustak G C. Full- fat and Defatted Soy Flour For Human Nutrition[J]. J Amer oil Chem Soc, 1971,48:815-819.
    14. Piax M N. Soybeans as functional[J]. Cereal food world, 1999, (2):88-92.
    15. Anderson JW, Smith BM, Moore KA, Hanna TJ. Soy foods and health promotion[M]. In: Watson RR, editor. Vegetables, fruits and herbs in health promotion. 2001. Boca Raton, Fla.: CRC Press. p 117-134.
    16. Shogren R L, Mohamed A A, Carriere C J. Sensory analysis of whole wheat/soy flour breads[J]. J Food Sci, 2003, 68(6):2141-2145.
    17.王苏闽,姚妙爱.植物蛋白质及其营养价值[J].西部粮油科技, 2001, 26(4):23-26.
    18.张维德,许守英,薛连红等.影响全脂大豆粉氨基酸含量的加工因素研究[J].饲料工业, 1997, 18(5):6-8.
    19.杜长安,陈复生主编.植物蛋白质工艺学[M].北京:中国商业出版社, 1995.
    20. Hasler C M. The cardiovascular effects of soy products[J]. J Cardiovascular Nursing, 2002, 16:50-63.
    21. Torun B. Soy beans and soy products in the feeding of children. J Amer Oil Chem Soc, 1981, 58:460-463.
    22. Sacks F M, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M.“Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee”[J]. Circulation, 2006, 113(7): 1034-1044.
    23. Messina M, McCaskill-Stevens W, Lampe J W.“Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings”[J]. J Natl Cancer Inst 2006, 98(18):1275-84.
    24. Scheiber M D, Liu J H, Subbiah M T R, Rebar R W, Setchell K D R. Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women[J]. Menopause, 2001, (8):384-392.
    25. Hogervorst E, Sadjimim T, Yesufu A, Kreager P, Rahardjo T B. "High tofu intake is associated with worse memory in elderly Indonesian men and women"[J]. Dement Geriatr Cogn Disord, 2008, 26(1): 50-57.
    26.刘国琴,陆启玉,陆登俊等.魔芋粉和脱脂大豆粉复合对面条品质的影响[J].食品科技, 2005, (5):67-70.
    27. Food & Drug Administration,“Food labeling; health claims: soy protein and coronary heart disease”[M]. FDA 21CFR, Part 101; Docket No. 98P-0683, October 26, 1999.
    28. Henkel, John.“Soy:Health Claims for Soy Protein, Question About Other Components”. Food and Drug Administration.. Retrieved on February 16 2008. http://www.fda.gov/fdac/features/2000/300_soy.html.
    29.励建荣.中国传统豆制品及其工业化对策[J].中国粮油学报, 2005, 20(1):41-44.
    30.王尔惠.大豆蛋白质生产新技术[M].北京:中国轻工业出版社, 1999.
    31.李里特主编.大豆加工与利用[M].北京:化学工业出版社, 2003.
    32. Protein Quality-Report of Joint FAO’/WHO Expert Consultation, Food and Agriculture Organisation, Rome, FAO Food and Nutrition Paper 51, 1991.
    33. WHO. Complementary feeding of young children in developing countries: a review of current scientific knowledge. Geneva: WHO, 1998.
    34.赵亦.中国营养强化面粉发展报告[J].面粉通讯, 2006, (4):4-8.
    35. Del-Valle F R, Montemayor E. Industrial production of soy-enriched tortilla flour by lime cooking of whole raw corn-mixture[J]. J Food Sci, 1976, 41:249.
    36. El-Adawy T A. Effect of sesame seed protein supplementation on the nutritional, physical, sensory properties of wheat flour bread[J]. Food Chem, 1997, 59:7-14.
    37.王尔惠.大豆蛋白质生产新技术[M].北京:中国轻工业出版社, 1999.
    38. Marnett L F, Tenney R J, Barry V D. Methods of producing soy-fortified breads. Cereal Sci Today, 1973 18: 38.
    39. U.S. Department of Agriculture, Agricultural stabilitions and conservation service. Announcement WSB-1, Amendments 12, 13. The Department: Minneapolis, Minn, 1971.
    40. Shurtleff W, Aoyagi A. History of Soybeans and Soyfoods: 1100 B.C. to the 1980s[M]. Soyinfo Center, Lafayette, California,2007.
    41.孔祥珍,周惠明,吴刚.酶在面粉品质改良中的作用[J].粮油食品科技, 2003, (2):4-6.
    42.马栎,郑学玲.大豆粉对面粉理化品质影响研究[J].面粉通讯, 2006, (1):32-37.
    43. Fellers D A, Mecham D K, Bean M M, Hanamoto M M. Soy-fortified wheat flour blends. I. Composition and properties[J]. Cereal Foods World. 1976, 21:75.
    44. Bean M M, Hanamoto M M, Mecham D K, Guadagni D G, Fellers D A. Soy-fortified wheat flour blends. II. Storage stability of complete blends[J]. Cereal Chem 1976, 53(3):397-404.
    45. Wheeler E L. Quantitative Determination of Sodium Stearoyl-2-Lactylate in soy-fortified wheat-flour blends[J]. Cereal Chem, 1979, 56(4):236-239.
    46. Mecham D K, Hanamoto M M, Bean M M, Fellers D A, Guadagni D G.. Soy-fortified wheat flour blends. III. Storage stability of ingredients and incomplete blends[J]. Cereal Chem. 1976, 53(3):405-412
    47. Bean M M, Hanamoto M M, Nishita D K, Mecham D K, Fellers D A. Soy-fortified wheat flour blends. IV. Storage stability with several surfactant additives[J]. Cereal Chem. 1977, 54(5):1159-1170.
    48. Mishra H N, Mukherjee R K. Storage stability of full-fat soy flour and soy-wheat flour blend[J]. J Food Sci Technol (mysore), 1992, 29(4):224-227.
    49. Frankel E N. In Search of Better Methods to Evaluate Natural Antioxidants and Oxidative Stability in Food Lipids. Trends Food Sci Technol, 1993, 4:220-225.
    50. Jia M, Kim H J, Min D B. Effects of soybean oil and oxidized soybean oil on the stability of b-carotene. Food Chem, 2007, 103:695-700.
    51. Aubourg S P, Sotelo C G, Gallardo J M. Quality Assessment of Sardines During Storage by Measurement of Fluorescent Compounds. Ibid. 1997, 62:295-298, 304.
    52. Strasburg G M, Ludescher R D. Theory and applications of fluorescence spectroscopy in food research. Trends Food Sci Technol, 1995, 6:69-75.
    53. Traynham T L, Carriquiry A L. Evaluation of Water-Holding Capacity for Wheat–Soy Flour Blends[J]. J Amer Oil Chem Soc, 2007, ( 84):151-155.
    54. Indrani, D, Savithri, G D, Venkateswara-Roa G. Effect of defatted soy flour on the quality of buns[J]. J Food Sci Technol, 1997, 34(5):440-442.
    55. Fleming S E, Sosilski F W. Breadmaking characteristics of flour concentrated plant proteins[J]. Cereal Chem, 1977, 54:1124.
    56.王恕,王显伦,胡运生.小麦粉大豆粉搭配研究[J].郑州粮食学院学报, 1994, (3):59-63.
    57. Basman A, ksel H K, Ng P K W. Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours[ J]. Eur Food Res Technol, 2002, (215):419-424.
    58. Hegazy N A, Faheid M N. Rheological and sensory characteristics of doughs and cookies based on wheat, soybean, chick pea and lupine flour[J]. Die Nahrung, 1990, 9:835-841.
    59. Maforimbo E, Nguyen M, Skurray G R. The effect Lascorbic acid on the rheological properties of soy-wheat dough: A comparison of raw and physically modified soy flours[J]. J Food Eng, 2006, 72:339-345.
    60.王显伦,蒋清民.活性大豆粉对小麦粉品质影响研究[J].河南工业大学学报, 2006, 26(3):26-28.
    61.郑学玲,马栎,李利民.脱脂大豆粉对小麦粉及馒头品质影响研究[J].粮食与饲料工业, 2006, (4):15-16.
    62.余冰,任国谱,曾宇.大豆蛋白在面包中的应用[J].食品科技, 2003, ( 4):49-51.
    63. Rosales-Juárez M, González-MendozaB, López-Guel E C, Lozano-Bautista F, Chanona-Pérez J, Gutiérrez-López G, Farrera-Rebollo R, Calderón-Domínguez G. Changes on Dough Rheological Characteristics and Bread Quality as a Result of the Addition of Germinated and Non-Germinated Soybean Flour[J]. Food Bioprocess Technol, 2008, 1:152-160.
    64. Dobraszczyka B J, Salmanowiczb B P. Comparison of predictions of baking volume using large deformation rheological properties[J]. J Cereal Sci, 2008, 47:292-301.
    65. Autio K, Flander L, Kinnunen A, Heinonen R. Bread quality relationship with rheological measurements of wheat flour dough[J]. Cereal Chem, 2001, 78: 654-657.
    66. Sliwinski E L, Kolster P, van Vliet T. Large-deformation properties of wheat dough in uni- and biaxial extension, Part I: flour dough[J]. Rheologica Acta, 2004, 43:306-320.
    67. Tronsmo K M, Magnus E M, Baardseth P, Schofield J D, Aamodt A, Faergestad E M. Comparison of small and large deformation rheological properties of wheat dough and gluten[J]. Cereal Chem, 2003, 80:587-595.
    68. Dobraszczyk B J. The physics of baking: rheological and polymer molecular structure–function relationships in breadmaking. J Non-Newtonian Fluid Mechanics, 2004, 124:61-69.
    69. Lefebvre J. An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear[J]. Rheologica Acta, 2006, 45:525-538.
    70. Dobraszczyk B J. Measuring the rheological properties of dough. In: Cauvain, S.P. (Ed.), Bread Making: Improving Quality. 2003, Woodhead Publishing Ltd., Cambridge, UK, pp. 375-400.
    71. Stojceska V, Butler F, Gallagher E, Keehan D. A comparison of the ability of several small and large deformation rheological measurements of wheat dough to predict baking behaviour[J]. J Food Eng, 2007, (83):475-482.
    72. Dobraszczyk B J, Morgenstern M P. Review: rheology and the breadmaking process. J Cereal Sci 2003, 38:229-245.
    73. Sliwinski E L, Kolster P, van Vliet T. On the relationship between large-deformation properties ofwheat flour dough and baking quality. J Cereal Sci, 2004, 39, 231-245.
    74. Wikstrom K, Bohlin L. Extensional Flow Studies of Wheat Flour Dough. I Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance. J Cereal Sci, 1999, 29: 217-226.
    75. Uthayakumaran S, Newberry M P, Phan-Thien N, Tanner R. Small and large strain rheology of wheat gluten. Rheologica Acta, 2002, 41:162-172.
    76. Hibbered G E, Wallace W J. Dynamic viscoelastic behavior of wheat Flour doughs[J]. Rheol Acta, 1996, 5:193.
    77. Kahda Y. Viscoelastic Behavior of wheat flour doughs fortified with gluten. J Jap Sci Food Sci Tech, 1979, 26:127.
    78. Kohda Y, Tsen C C, Akinaga T, Izumi H. Rheological behavior of wheat flour dough fortied with soybena additives[J]. Sci Bull Coll Agr Univ Ryukyua, 1980, 27:275-282.
    79. Clyde E S.大豆在烘烤食品中的应用[M]. ASA美国大豆协会, 2003, 16-18.
    80. Piax M N. Healthy Baking with soy ngredients[J]. Cereal food world, 1999, (3):136-139.
    81.冯昌友,陈建霞.大豆蛋白及其在食品中的应用[J].食品与机械, 2000, (1):21-22.
    82.郑刚,胡小松,李全宏等.脱脂大豆对面团流变学特性及用其制成面条品质的影响[J].食品科学, 2007, 28(4):99-102.
    83.郭波莉,张国权,罗勤贵等.大豆分离蛋白对面条品质的影响研究[J].粮食加工, 2005, (1):45-47.
    84. Singh N, Chauhan G S著,唐书泽译.添加大豆粉对面条水煮品质的影响[J]. International J Food Sci Technol, 1986, (24):111-114.
    85.肖安红,李学昌,马昌义.低温脱脂豆粉及其与维生素C协同改良馒头品质的研究.食品工业科技, 2005, 26(2):91-94.
    86.韩俊俊,刘长虹,徐婧婷.低温脱脂豆粉的添加对馒头品质的影响[J].粮油加工与食品机械, 2005, (10):74-77.
    87.徐婧婷,刘长虹,杨兆明等.大豆蛋白在馒头中的应用[J].粮油加工, 2007, (1):82-84.
    88.张剑,肖志刚,李梦琴等.大豆粉对馒头品质影响的研究[J].粮食与饲料工业, 2007, (12):7-8.
    89.刘长虹,徐婧婷,韩俊俊等.经过发酵处理的低温脱脂豆粉在馒头中的应用[J].食品与发酵工业, 2006, 32(12):95-97.
    90.刘素纯,贺武明.大豆馒头的研究[J].食品科技, 2003, (1):20-21.
    91. Ryan K J, Homco-Ryan C L, Enson J J. Effect of lipid extraction process on performance of texturized soy flour added wheat bread[J ]. Sen Nutr Food, 2002, (67):2385-2389.
    92. Shfali Dhingra, Sudesh Jood. Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour[J]. Food Chem, 2001, (77):479-488.
    93.潘秋琴,王兴国,王领军.脱脂豆粉对面团性质的影响及在面包焙烤中的应用[J].粮油加工与食品机械, 2005, (12):79-82.
    94.许永录.脱脂大豆粉的功能特性及在食品工业的应用[J].中国油脂, 1995, 20(5):36-37.
    95.董海洲,郭承东.全脂大豆粉对面包营养品质的影响[J].食品工业科技, 1998, (6):27-29.
    96.马栋,李逸鹤,郑学玲.大豆粉对面粉及面制品品质影响[J].粮食加工, 2008, 33(1):75-77.
    97. Ranhotra G S, Loewe R J, Lehmann T A. Breadmaking characteristics ofwheat flour fortified with various commercial soy protein products[J]. Cereal Chem, 1974, (51):629-634.
    98. Arnulphi S A, Lleon A E. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour[J]. J Sci Food Agri, 2005, (85):1889-1896.
    99. Hoover W J. Blend K bread[J]. Soybean Dig, 1971, (11):14-17.
    100.刘长海.脱脂大豆粉对面包品质及加工特性的影响[J].广州食品工业科技, 2003, 19(4):43-45.
    101. Mashayekh M, Mahmoodi M R, Entezari M H. Effect of fortification of defatted soy flour on sensory and rheological properties of wheat bread. International J Food Sci Technol, 2008, 43:1693-1698.
    102.刘彬;陈中,杨晓泉等.大豆制品对面包品质影响的研究[J].粮食与饲料工业, 2005, (3):25-27.
    103. Ribotta P D, Arnulphi S A, León A E, A?ón M C. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour[J]. J Sci Food Agri, 2005, 85:1889-1896.
    104.纪志伟,王亚秋,蒋东华.添加大豆粉对饼干品质的影响[J].食品工业科技, 1998, (2):55.
    105. Ranjana Singh, Gurmukh Singh, Chauhan G S. Nutritional Evaluation of Soy Fortified Biscuits[J]. J. Food Sci Technol, 2000, 37(2):162-164.
    106. Liang J H, Lin C C. Fluorescence Kinetics of Soybean Flour Oxidation[J]. J Amer Oil Chem Soc, 2000, 77(7): 709-713.
    107. Belitz H D, Grosch W. Lipids, in Food Chemistry, 2nd edn., Springer-Verlag, Heidelberg, Germany, 1999, pp. 184-206.
    108. Tsen C C, Weber J, Pering S K. Evaluation of the quality, acceptability and taste of soy-fortified buns[J]. J Food Sci, 1976, 41:825-827.
    109. Raidl M A, Klein B P. Effects of soy or field pea flour substitution on physical and sensory characteristics of chemically leavened quick breads[J]. Cereal Chem, 1983, 60(5):367-370.
    110. Buck J S, Walker C E, Watson K S. Incorporation of corn gluten meal and soy into various cereal-based foods and resulting product functional, sensory and protein quality[J]. Cereal Chem, 1987, 64:(4)264-269.
    111. Ryan K J, Homco-Ryan C L, Jenson J, Robbins K L, Prestat C, Brewer M S. Effect of lipid extraction process on performance of texturized soy flour added wheat bread[J]. J Food Sci, 2002, 67(6):2385-2390.
    112. King J M, Chin S M, Svendsen L K, Reitmeier C A, Johnson L A, Fehr W R. Processing of lipoxygenase-free soybeans and evaluation in foods[J]. J Am Oil Chem Soc, 2001, 78(4):353-360.
    113. Dhingra S, Jood S. Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour[J]. Food Chem, 2001, 77:479-488.
    114. Shogren R L, Mohamed A A, Carriere C J. Sensory analysis of whole wheat/soy flour breads[J]. J Food Sci, 2003, 68(6):2141-2145.
    115. Drake M A, Gerard P D, Chen X Q. Effects of sweetener, sweetener concentration, and fruit flavor on sensory properties of soy fortified yogurt[J]. J Sensory Stud, 2001, 16(4):393-405.
    116.王显伦,许红,鲍玉茹.酶对馒头品质影响研究[J].郑州工程学院学报, 2003, (4):34-36.
    117. Bean M M, Mehltetter C L, Wilham C A, McGuire T A. Fatty esters of polalkoxylated polyol glycosides as bread additives[J]. Food Prod Dev, 1973, 7(3):30.
    118. Aidoo E S. High-proteins Bread: Interactions of Wheat Proteins andSoy Proteins with Surfactants inDoughs and In Model Systems[D]. Manhattan: Dep. of Grain Sci. and Ind. Kansas State University, 1972.
    119. Chung O K. Interaction Between Flour Lipids and Proteins[D]. Manhattan: Dep. of Grain Sci. and Ind. Kansas State University, 1973.
    120. Basman A, K?ksel H, Ng P K W. Utilization of Transglutaminase to Increase the Level of Barley and Soy Flour Incorporation in Wheat Flour Breads[J]. J Food Sci, 2003, 68(8):2453-2460.
    121.江波.谷氨酰胺转胺酶的性质及在食品中的应用[J].中国食品添加剂, 2001, (4):34-36.
    122. Gerrard J A, Fayle SE, Brown PA, et al. Effects of microbial transglutaminase on the wheat proteins of bread and croissant dough[J]. J Food Sci, 2001, 66(6):782-786.
    123. Basman A, K?ksel H, Ng P K W. Effects of transglutaminase on SDS-PAGE patterns of wheat, soy and barley proteins and their blends. J Food Sci, 2002a, 67:2654-2658.
    124. Autio K, Kruus K, Knaapila A, et al. Kinetics of transglutaminase-induced cross-linking of wheat prteins in dough[J]. J Agri Food Chem, 2005, 53:1039-1045.
    125. Larre C, Denery-Papini S, Popineau Y, Deshasey G, Desserme C, Lefebure J. Biochemical analysis and rheological properties of gluten modified by transglutaminase[J]. Cereal Chem, 2000, 77:32-38.
    126. LarréC, Denery P S, Popineau Y, et al. Biochemical analysis and rheological properties of gluten modified by transglutaminase[J]. Cereal Chem, 2000, 77:32-38.
    127.陈晓明.谷氨酰胺转胺酶对大豆粉-面粉面团特性的影响[J].食品与机械, 2008, (1):139-142.
    128. Sakamoto H, Yamazaki K, Kaga C, et al. Strength enhancement by addition of microbial transglutaminase during Chinese noodle processing[J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 1996, 43:598-602.
    129. Vemulapalli V, Miller K A, Hoseney R C. Glucose oxidase in breadmaking systems[J]. Cereal Chem, 1998, 75(4):439-442.
    130. Rosell C M, Wang J, Aja S, et al. Wheat flour proteins as affected by transglutaminase and glucose oxidase[J]. Cereal Chem, 2003, 80(1):52-55.
    131.温纪平,林江涛,王晓曦等.酶制剂对面团流变学特性及面食品制作品质的影响[J].食品科技, 2003, (4):44-46.
    132. Courtin C M, Delcour, et al. Arabinoxylans and endoxylanases in wheat flour bread-making[J]. Cereal Sci, 2002, (35):225-243.
    133. Poutanen K. Enzymes:An important tool in the improvement of the quality of cereal foods[J]. Trends Food Technol, 1997, 8:300-306.
    134.精细与专用化学品编辑部.“诺帕酶”提高面条制品质量[J].精细与专用化学品, 2002, 10(19):31.
    135. Evans L G, Pearson A M, Hooper G R. Scanning electron microscopy of flour-water doughs treated with oxidizing and reducing agents. Scanning Electron Microscopy, P3, 583-592, 1981.
    136. Moss R, Gore P J, Murray I C. The influence of ingredients and processing variables on the quality and microstructure of hokkien, Cantonese and instant noodles[J]. Food Microstructure, 1987, 6:63-74.
    137. Gan Z, Ellis P R, Vaughan J G, Galliard T. Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread structure[J]. J Cereal Sci, 1989, 10:81-91.
    138. Fleming S E, Sosulski F W. Microscopic evaluation of bread fortified with concentrated plant proteins[J]. Cereal Chem, 1978, 55:373-382.
    139. Yamazaki W T, Donelson J R, Kwolik W F. Effects of flour fraction composition on cookie diameter[J]. Cereal Chem, 1977, 54:352-360.
    140. Larsson H, Eliasson A C. Influence of the starch granule surface on the rheological behaviour of wheat flour dough[J]. J Texture Studies, 1997, 28:487-501.
    141. Morrision W R, Scott D C. Measurements of the dimensions of wheat starch granule populations using a Coulter Counter with 100-channel analyzer[J]. J Cereal Sci, 1986, 4:13-16.
    142. Eliasson A C, Tjerneld E. Adsorption of wheat proteins on starch granules[J]. Cereal Chem, 1990, 67(4):366-372.
    143. Ryan, K. J. (2003). Investigation of the interaction of modified soy protein fractions with wheat starch or wheat granule components[D]. Ph.D. Dissertation, University of Illinois, Urbana, IL.
    144. Seguchi M. Oil binding ability of chlorinated and heated whe at starch granules and their use in breadmaking and pancake baking[J]. Starch, 2001, 53:408-413.
    145. Baldwin P M. Starch granule-associated proteins and polypeptides: A review[J]. Starch, 2001, 53:475-503.
    146. Greenwell P, Schofield J D. A starch granule protein associated with endosperm softness in wheat[J]. Cereal Chem, 1986, 63:379-380.
    147. Dubreil L, Meliande S, Chiron H, Compoint J P, Quillien L, Branlard G, et al. Effect of puroindolines on the breadmaking properties of wheat flour[J]. Cereal Chem, 1998, 75(2):222-229.
    148. Ryan K J, Brewer M S. In situ examination of starch granule-soy protein and wheat protein interactions[J]. Food Chem, 2007, 104:619-629.
    149. Pomeranz Y, El-Baya A W, Seibel W, Stephan H. Toast bread from defatted wheat flour[J]. Cereal Chem, 1984, 61:136-140.
    150. Marston P, Macritchie F. Lipids– effects on the breadmaking qualities of Australian flours[J]. Food Technol Australia, 1985, 37:362-365.
    151. Clements R L, Donelson J R. Functionality of specific flour lipids in cookies[J]. Cereal Chem, 1981, 58:204-206.
    152. Ryan K J, Brewer M S. Model system analysis of wheat starch-soy protein interaction kinetics using polystyrene microspheres[J]. Food Chem, 2005, 92:325-335.
    153. Hyder M A., Hoseney R C, Finney K F, Shogren M D. Interactions of soy flour fractions with wheat flour components in breadmaking[J]. Cereal Chem, 1974, 51:666-671.
    154. Maforimbo E, Nguyen M, Skurray G R. The effect L-ascorbic acid on the rheological properties of soy–wheat dough: a comparison of raw and physically modified soy flours[J]. J Food Engineering, 2006a, 72:339-345.
    155. Maforimbo E, Skurray G, Uthayakumaran S, Wrigley C. Improved functional properties for soy–wheat doughs due to modification of the size distribution of polymeric proteins[J]. J Cereal Sci, 2006b, 43:223-229.
    156. Liu K. Chemistry and nutritional value of soybean components. In: Soybeans, Chemistry, Technology and Utilisation. Chapman & Hall, London, pp. 36–95, 1997.
    157. Ryan K J. Lipid Extraction Process on Texturized Soy Flour and Wheat Gluten Protein-Protein Interactions in a Dough Matrix[J]. Cereal Chem, 2002, (79):434-438.
    158. Perez G T, Ribotta P D. Effect of soybean proteins on gluten depolymerization during mixing and resting[J]. J Sci Food Agri, 2008, (88):455-463.
    159. Fisichella S, Alberghina G, Amato M E, Lafiandra D, Mantarro D, Palermo A, Savarino A, Scarlata G. Purification of wheat flour high-Mr glutenin subunits by reactive red 120-agarose and reactive yellow 86-agarose resins[J]. J Cereal Sci, 2003, 38:77-85.
    1. McDonald R E, Hultin O H. Some Characteristics of the Enzymic Lipid Peroxidation System in the Microsomal Fraction of Flounder Skeletal Muscle[J]. J Food Sci, 1987, 52:15-21, 27.
    2.马永强.大豆灭酶工艺中脂肪氧化酶活力的研究[J].食品与机械, 1999, 73(5):20-21.
    3.裴茂清,霍瑞贞.大豆脂肪氧化酶催化油酸氧化反应动力学研究[J].华南理工大学学报(自然科学版), 1996, 24(8):15-20.
    4. Borhan M, Snyder H E. Lipoiygenase destruction in whole soybean by combinations of heating and ethanol[J]. J Food Sci, 1979, 44:586-590.
    5. Ryan K J, Homco-Ryan C L, Enson J J. Effect of lipid extraction process on performance of texturized soy flour added wheat bread[J]. Sensory Nutr Food, 2002, (67):2385-2389.
    6. Mitsuda H, Yasumoto K, Iwami K. Antioxidative Action of Indole Compounds During the Autoxidation of Linoleic Acid[J]. J Jpn Soc Nutr Food Sci, 1966, 19:210-214.
    7.王显伦,蒋清民.活性大豆粉对小麦粉品质影响研究[J].河南工业大学学报, 2006, 27(3):26-28.
    8.郑学玲,马栎,李利民.脱脂大豆粉对小麦粉及馒头品质影响研究[J].粮食与饲料工业, 2006, (4):15-16.
    9.董海洲,郭承东.全脂大豆粉对面包营养品质的影响[J].食品工业科技, 1996, (6):27-29.
    10.钱海峰,周惠明,顾瑾芳.不同种类大豆粉对面包加工特性的影响[J].农业工程学报, 2006, 22(10):233-236.
    11.肖安红,李学昌,马昌义.添加大豆粉制作馒头的研究[J].粮食与饲料工业, 2004, (11):19-21.
    12.任国谱,曾宇.大豆蛋白在面条中的应用研究[J].食品科技, 2003, (1):82-83.
    13.郑刚,胡小松,李全宏等.脱脂大豆对面团流变学特性及用其制成面条品质的影响[J].食品科学, 2007, 28(4):99-102.
    14.刘长海.脱脂大豆粉对面包品质及加工特性的影响[J].广州食品工业科技, 2003, 19(1):43-45.
    15.孙国英,宋光华.大豆蛋白方便面的研制[J].大豆通报, 2004, (1):22
    16. Traynham T L, Carriquiry A L. Evaluation of Water-Holding Capacity for Wheat–Soy Flour Blends[J]. J Amer Oil Chem Soc ,2007( 84):151–155.
    17. Singh N, Chauhan G S著,唐书泽译.添加大豆粉对面条水煮品质的影响[J]. International J Food Sci Technol, 1986, (24):111-114.
    18. Dhingra S, Jood S . Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour[J]. Food Chem, 2001, (77):479-488.
    19.蒋和体,今泉滕己,佐藤匡央.大豆脂肪氧化酶酶活性变化研究[J].中国粮油学报, 2006, 21(3):133-135.
    20. Aidoo E S. High-proteins bread: interactions of wheat proteins and soy proteins with surfactants in doughs and in model systems. dissertation[M]. Manhattan: Dep. of Grain, Sci. and Ind., Kansas State University.
    21. Chung O K. Interaction between flour lipids and proteins. dissertation[M]. Manhattan: Dep. of Grain, Sci. and Ind., Kansas State University.
    22. Ryan K J. Lipid Extraction Process on Texturized Soy Flour and Wheat Gluten Protein-Protein Interactions in a Dough Matrix[J]. Cereal Chem, 2002, (79):434-438.
    23. Perez G T, Ribotta P D. Effect of soybean proteins on gluten depolymerization during mixing and resting[J]. J Sci Food Agri, 2008(88):455-463.
    24. Hatcher D W, Symons S J, Anderson M J. Assessment of oriental noodle appearance as a function of flour refinement and noodle type by image analysis[J]. Cereal Chem, 2000, 77:181-186.
    25. G?kmen V, ?enyuva H Z. Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating[J]. Food Chem, 2006, 99:238-243.
    26. Elgasim E A, Al-Wesali M S. Water activity and Hunter colour values of beef patties extended with samh (Mesembryanthemum forsskalei Hochst) flour[J]. Food Chem. 2000, 69:181-185.
    27. McCaig T N. Extending the use of visible/near-infrared reflectance spectrophotometers to measure colour of food and agriculture to measure colour of food and agricultural products[J]. Food Research International, 2002, 35:731-736.
    28. Oliver J R, Blakeney A B, Allen H M. Measurement of Flour Color in Color Space Parameters[J]. Cereal Chem, 1992, 69:546-551.
    29. Colourimetry, 2nd ed., Wien, Austria: CIE Central Bureau Kegelgasse[M] 27 A-1030. CIE Publication, No. 15.2. 1986.
    30. papadakis S E, Abdul-Malek S, Kamdem R E, et al. A versatile and inexpensive technique for measuring colour of foods[J]. Food Technol, 2000, 54:48-51.
    31. Judd D B, Wiszecki G. Color in Business Science and Industry[M], John Wiley and Sons, 1975.
    32. Seve R. Physique de la couleur. De l’apparence coloréeàla technique colorimétrique[M], Masson, 1996.
    33. Garay H, Eterradossi O, Benhassaine A. Should Melamed's spherical model of size-colour dependence in powder be adapted to non-spheric particles?[J]. Powder Technol, 2005, 156:8-18.
    34. Wulf D M, Wise J W. Measuring muscle color on beef carcasses using the L*a*b* color space[J]. J Animal Sci, 1999, 77:2418-2427.
    35. Ortola M D, Londono L. Gutierrez C L, et al. Influence of roasting temperature on physicochemical properties of different coffees[J]. Food Sci Technol International, 1998, 4:59-66.
    36. Joubert E, Tristimulus colour measurement of rooibos tea extracts as an objective quality parameter[J]. International J Food Sci Technol, 1995, 30:783-792.
    37. Drake M A, Chen X Q, Gerard P D, et al. Composition and quality attributes of reduced-fat cheese as affected by lecithin type[J]. J Food Sci, 1998, 63:1018-1023.
    38. Arias R, Lee T C, Logendra L, et al. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content[J]. J Agri Food Chem, 2000, 48:1697-1702.
    39. Oliver J R, Blakeney A B, Allen H M. Measurement of flour color in color space parameters[J]. Cereal Chem, 1992, 69:546-551.
    40. Wang Chun, Kovacs M I P, Fowler D B, Holley R. Effects of protein content and composition on white noodle making quality: Color[J]. Cereal Chem, 2004, 81:777-784.
    41. Hatcher D W, Symons S J, Anderson M J. Assessment of oriental noodle appearance as a function of flour refinement and noodle type by image analysis[J]. Cereal Chem, 2000, 77(2):181-186.
    42. Oh N H, Seib P A, Ward A B, Deyoe C W. Noodles. IV. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of dry noodles[J]. Cereal Chem, 1985, 62:441-446.
    43. McCaig T N, McLeod J G, Clarke J M, et al. Depauw, Measurement of durum pigment with a near-infrared instrument operating in the visible range[J]. Cereal Chem, 1992, 69:671-672.
    44. Miskelly D M. Flour components affecting paste and noodle colour[J]. J Sci Food Agri, 1984, 35:463-471.
    45. Kovacs M I P, Wang C, Fowler D B, et al. Effects of protein content and composition on white noodle making quality: Colour[J]. Cereal Chem, 2004, 81:777-784.
    46. Hatcher D W, Symons S J, Anderson M J. Assessment of oriental noodle appearance as a function of flour refinement and noodle type by image analysis[J]. Cereal Chem, 2000, 77:181-186.
    47. Oh N H, Seib P A, Ward A B, et al. Noodles. IV. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of dry noodles[J]. Cereal Chem, 1985, 62: 441-446.
    48. Gunde M K, Kunaver M, Mozeti? M, et al. Method for the evaluation of degree of pigment dispersion in coatings[J]. Powder Technol, 2004, 148:64-66.
    49. Duivenvoorde F L, Nostrum C F V, Linde R V D. The pigmentation of powder coatings with the use of block copolymer dispersants[J]. Progress in Organic Coatings, 1999, 36:225-230.
    50. Melamed N T. Optical properties of powders: Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance[J]. J Applied Physics, 1963, 34:560-570.
    51. Kortum G. Reflectance Spectroscopy[M], J E Lohr Transl., Springer-Verlag, Berlin, 1969.
    52. Bozec-Garay H. Paramètres morphogranulométriques et comportement optique des matériaux divisés. Mise en luvre d’un modèle de diffusion en vue de son applicationàdes opérations industrielles sur des poudres minérales[D]. PhD thesis, Ecole des Mines de Saint-Etienne and INP of Grenoble, 2000.
    53. Standard practice for computing the colors of objects by using the CIE system[M]. In ASTM standards on color and appearance measurement (6th ed.) CIE Central Bureau Kegelgasse 27 A-1030 Wien, Austria, CIE Publication, No. E308-99. 2000.
    54.张清文,刘忠关.关于白度、ISO亮度与D65亮度[J].中国造纸, 2005, 24(6):14-18.
    55. Williams P C, Sobering D C. Comparison of commercial near-infrared transmittance and reflectance instruments for analysis of whole grains and seeds[J]. J Near Infrared Spectroscopy, 1993, 1:25-32.
    56.王晋海,张新丽.白度的目视评价和仪器度量[J].现代涂料与涂装, 2006, 06:47-49.
    57.邓文红,黄宏伟. GB/T2015-2005《白色硅酸盐水泥》之白度测定[J].广东建材, 2006, 7:106-107.
    58.刘玉龙.白度颜色的最新定量评价[J].科技情报开发与经济, 2005, 15:261-262.
    59.石胜尧,张延坤,郭大发等.大豆脂肪氧化酶活性的测定[J].营养学报, 1996, 18(3):354-357.
    60. Hasegawa K, Endo Y, Fujimoto K. Oxidative Deterioration in Dried Fish Model Systems Assessed by Solid Sample Fluorescence Spectrophotometry[J]. Ibid. 1992, 57:1123-1126.
    61. Weber F, Laskawy G, Grosch W, et al. Co-oxidation of carotene and crocin by soyabean lipoxygenase isoenzymes[J]. Zeitschrift für Lebensmittel-Untersuchung und-Forschung, 1974, (7):142-150.
    62. Weber F, Laskawy G, Grosch W, et al. Co-oxidation of carotene and crocin by soyabean lipoxygenase isoenzymes[J]. Zeitschrift für Lebensmittel-Untersuchung und-Forschung, 1974, (7):142-150.
    63.吴鸣声,雷海峰,程建平等.黑色素的提取、利用及其结构研究[J].南昌职业技术师范学院学报, 1997, (2):88-91.
    64. Hatcher D W, Symons S J. Influence of sprout damage on oriental noodle appearance as assessed by Image Analysis[J]. Cereal Chem, 1999, 76(2):380-387.
    65. Hatcher D W, Symons S J, Kruger J E. Measurement of the time-dependent appearance of discolored spots in Alkamine noodles by image analysis[J]. Cereal chem, 1999, 76(2):189-194.
    66.曲敬阳等编著.现代大豆蛋白食品生产技术.山东:山东科学技术出版社, 1991.
    67. Kamarei A R, Karel M. Assessment of Autoxidation in Freeze-Dried Meats by a Fluorescence Assay[J]. J Food Sci, 1984, 49:1517-1520, 1524.
    68. Hasegawa K, Endo Y, Fujimoto K. Oxidative Deterioration in Dried Fish Model Systems Assessed by Solid Sample Fluorescence Spectrophotometry[J]. Ibid. 1992, 57:1123-1126.
    69. Aubourg S P, Sotelo C G, Gallardo J M. Quality Assessment of Sardines During Storage by Measurement of Fluorescent Compounds[J]. Ibid. 1997, 62:295-298, 304.
    70. Liang J H, Lin C C. Fluorescence Kinetics of Soybean Flour Oxidation [J]. J Amer Oil Cereal Soc, 2000, (77):715-722.
    71.王贵元.类胡萝卜素的自然分布与特性[J].现代农业, 2007, (03):20-21.
    72. McDonald R E, Hultin O H. Some Characteristics of the Enzymic Lipid Peroxidation System in the Microsomal Fraction of Flounder Skeletal Muscle[J]. J Food Sci, 1987, 52:15-21, 27.
    73. Hasegawa K, Endo Y, Fujimoto K. Oxidative Deterioration in Dried Fish Model Systems Assessed by Solid Sample Fluorescence Spectrophotometry[J]. Ibid. 1992, 57:1123-1126.
    74. Aubourg S P, Sotelo C G, Gallardo J M. Quality Assessment of Sardines During Storage by Measurement of Fluorescent Compounds[J]. Ibid. 1997, 62:295-298, 304.
    75. Chipualt J R, Hawkins J M. Lipid Oxidation in freeze-Dried Meats[J]. J Agri Food Chem, 1971, 19:495-499.
    76. Williams J C, Field R A, Miller G J, et al. Evaluation of TBA methods for Determination of Lipid Oxidation in Red Meat from Four Species[J]. J Food Sci, 1983, 48:1776-1782.
    77.管斌,林洪,王广策编著.食品蛋白质化学[M].北京:化学工业出版社, 2005.
    78.冯凤琴,叶立扬主编.食品化学[M].北京:化学工业出版社, 2005.
    1.蔚然.面团流变学特性品质分析方法比较与研究[J].中国粮油学报, 1998, 13(3):10-12.
    2.李里特著,食品物性学[M].北京:中国农业出版社, 2001.
    3.王岩东,郭顺堂.大豆乳清蛋白的面粉增白效果及其对面团流变学特性的影响[J].食品科技, 2007, (10):60-63.
    4. Basman A, ksel H K, Ng P K W. Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours[ J]. Eur Food Res Technol, 2002, (215):419-424.
    5. Traynham T L, Carriquiry A L. Evaluation of Water-Holding Capacity for Wheat–Soy Flour Blends[J]. J Amer Oil Chem Soc, 2007, ( 84):151-155.
    6. Ranhotra G S, Loewe R J, Lehmann T A. Breadmaking characteristics ofwheat flour fortified with various commercial soy protein products[J]. Cereal Chem, 1974, (51):629-634.
    7. Basman A, ksel H K , Ng P K W. Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours[ J]. Eur Food Res Technol, 2002, (215):419-424.
    8.郭勇,张根旺.大豆蛋白在焙烤食品中应用的研究, I、大豆蛋白对面团特性的影响[J].郑州工程学院学报, 1992, (3):15-22.
    9.钱海峰,周惠明,顾瑾芳.不同种类大豆粉对面包加工特性的影响[J].农业工程学报, 2006, 22(10):233-236.
    10. Collar C, Andreu P, Martínez J C, et al. Optimization of hydrocolloid addition to improve wheatbread dough functionality: a response surface methodology study[J]. Food Hydrocolloids. 1999, 13(6):467-475.
    11. Collar C, Martínez J C, Andreu P, et al. Effects of enzyme association on bread dough performance. A response surface analysis[J]. International Food Sci Technol, 2000, 6(3):217-226.
    12. Smewing J. The Measurement of Dough and Gluten Extensibility Using the SMS/Kieffer Rig and the TA.XT2 Texture Analyser[M]. Stable Micro Systems Ltd., Surrey, UK, 1995.
    13.钱海峰,周惠明,顾瑾芳.不同种类大豆粉对面包加工特性的影响[J].农业工程学报, 2006, 22(10):233-236.
    14. Doxastakisa G, Zafiriadisb I, Iraklib M, et al. Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties[J]. Food Chem, 2002, 77:219-227.
    15. Renkema J M S.Relations between rheological properties and network Struetureofsoy Protein gels[J]. Food hydro, 2004, 18:39-47
    16.陈学玲.大豆11S_7S球蛋白的功能特性及其与淀粉相互作用研究[D].华中农业大学,硕士学位论文, 2005.
    17. Doxastakisa G, Zafiriadisb I, Iraklib M, et al. Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties[J]. Food Chem, 2002, 77:219-227.
    18.李云.大豆蛋白聚集及共混凝胶性质研究[D].硕士学位论文,无锡:江南大学, 2007.
    19. Dunnewind B, Sliwinski E L, Grolle K C F, Vliet T Van. The Kieffer dough and gluten extensibility Rig―an experimental evaluation[J]. J Texture Studies, 2007, 34(5-6):537-560.
    20. Abang Zaidel D N, Chin N L, Rahman R. A, Karim R. Development of gluten extensibility measurement using tensile test[J]. World Engineering Congress, pp 1-8 Penang, Malaysia, 5–9 August 2007.
    21. Dobraszczyk B J, Roberts C A. Strain hardening and dough gas cell-wall failure in biaxial extension[J]. J Cereal Sci, 1994, 20, 265-274.
    22. Sroan B S, Bean S R, MacRitchie F. Mechanism of gas cell stabilization in bread making. I. The primary gluten–starch matrix[J]. J Cereal Sci, 2009, 49:32-40.
    23. MacRitchie F, Lafiandra D. Structure–functionality relationships of wheat proteins. In: Damodaran, S., Paraf, A. (Eds.), Food Proteins and Their Applications. Marcel Dekker, Inc., New York, USA, pp. 293-324. 1997.
    24. Singh, H., MacRitchie, F., Application of polymer science to properties of gluten[J]. J Cereal Sci 2001, 33:231-243.
    25. Stojceska V, Butler F, Gallagher E, Keehan D. A comparison of the ability of several small and large deformation rheological measurements of wheat dough to predict baking behaviour[J]. J Food Eng, 2007, 83:475-482.
    26. Dobraszczyk B J. Measuring the rheological properties of dough. In S. P. Cauvain (Ed.), Bread making improving quality (pp. 375–400). 2003, Boca Raton: CRC Press.
    27. Hibbered G E, Wallace W J. Dynamic viscoelastic behavior of wheat Flour doughs[J]. Rheol Acta, 1996, 5:193.
    28. Kahda Y. Viscoelastic Behavior of wheat flour doughs fortified with gluten[J]. J Jap Sci Food Sci Tech,1979, 26:127.
    29. Kohda Y, Tsen C C, Akinaga T, Izumi H. Rheological behavior of wheat flour dough fortied with soybena additives[J]. Sci Bull Coll Agr Univ Ryukyua, 1980, 27:275-282.
    30. Autio K, Flander L, Kinnunen A, Heinonen R. Bread quality relationship with rheological measurements of wheat flour dough[J]. Cereal Chem, 2001, 78(6):654-657.
    31. Safari-Ardi M, Phan-Thien N. Stress relaxation and oscillatory tests to distinguish between doughs prepared from wheat flours of different varietal origin[J]. Cereal Chem, 1998, 75(1):80-84.
    32. Bloksma A H. Rheology of the breadmaking process[J]. Cereal Foods World, 1990, 35(2):228-236.
    33. Launey B. A simplified nonlinear model for describing the viscoelastic properties of wheat flour doughs at high shear strain[J]. Cereal Chem, 1990, 67:25-31.
    34. Wang F C, Sun X S. Creep-recovery of wheat flour doughs and relationship to other physical dough tests and breadmaking performance[J]. Cereal Chem, 2002, 79(4):567-571.
    35. Van Vliet T, Janssen A M, Bloksma A H, Walstra P. Strain hardening of dough as a requirement for gas retention[J]. J Texture studies, 1992, 23:439-460.
    36. Wikstrom K, Bohlin L. Extensional flow studies of wheat flour dough. I. Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance[J]. J Cereal Sci, 1999, 29(3):217-226.
    37. Stojceska V, Butler F, Gallagher E, Keehan D. A comparison of the ability of several small and large deformation rheological measurements of wheat dough to predict baking behaviour[J]. J Food Eng, 2007, (83):475-482.
    38. Autio K, Flander L, Kinnunen A, Heinonen R. Bread quality relationship with rheological measurements of wheat flour dough[J]. Cereal Chem, 2001, 78: 654-657.
    39. Dobraszczyk B J. Development of a new dough inflation system to evaluate doughs[J]. Cereal Foods World, 1997, 42:516-519.
    40. Janssen A M, van Vliet T, Vereijken J M. Rheological behaviour of wheat glutens at small and large deformations: comparison of two glutens differing in bread making potential[J]. J Cereal Sci, 1996, 23:19-31.
    41. Kokelaar J J, van Vliet T, Prins A. Strain hardening and extensibility of flour and gluten doughs in relation to breadmaking performance[J]. J Cereal Sci, 1996, 24:199-214.
    42. Safari-Ardi M., Phan-Thien N. Stress relaxation and oscillatory tests to distinguish between doughs prepared from wheat flours of different varietal origin[J]. Cereal Chem, 1998, 75:80-84.
    43. Sliwinski E.L, Kolster P, van Vliet T. Large-deformation properties of wheat dough in uni- and biaxial extension, Part I: flour dough[J]. Rheologica Acta, 2004, 43:306-320.
    44. Tronsmo K M, Magnus E M, Baardseth P, Schofield J D, Aamodt A, Faergestad E M. Comparison of small and large deformation rheological properties of wheat dough and gluten[J]. Cereal Chem, 2003, 80:587-595.
    45. Dobraszczyk B J, Morgenstern M P. Review: rheology and the breadmaking process[J]. J Cereal Sci 2003, 38:229-245.
    46. Sliwinski E L, Kolster P, van Vliet T. On the relationship between large-deformation properties of wheat flour dough and baking quality[J]. J Cereal Sci, 2004, 39:231-245.
    47. Tronsmo K M, Magnus E M, Faergestad E M, Schofield J D. Relationship between gluten rheological properties and hearth loaf characteristics[J]. Cereal Chem, 2003, 80:575-586.
    48. Dobraszczyk B J, Roberts C A. Strain hardening and dough gas cell-wall failure in biaxial extension[J]. J Cereal Sci, 1994, 20:265-274.
    49. Kieffer R, Wieser H, Henderson M H, Graveland A. Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale[J]. J Cereal Sci, 1998. 27:53-60.
    50. Wikstr?m K, Bohlin L. Extensional Flow Studies of Wheat Flour Dough. I Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance[J]. J Cereal Sci, 1999, 29:217-226.
    51. Uthayakumaran S, Newberry M P, Phan-Thien N, Tanner R. Small and large strain rheology of wheat gluten[J]. Rheologica Acta, 2002, 41:162-172.
    1. Thanh V H, Okubo K, Shibasaki K. Major Proteins of soybean seeds: A straight-forward fractionation and their charaeterization[J]. J Agri Food Chem, 1976, 24:1117-1121.
    2. Armero E, Collar C. Texture properties of formulated wheat doughs[J]. Zeitschrift für Lebensmittel-Untersuchung und-Forschschung. 1997, 204:136-145.
    3. Collar C, Andreu P, Martínez J C, et al. Optimization of hydrocolloid addition to improve wheat bread dough functionality: a response surface methodology study[J]. Food Hydrocolloids. 1999, 13(6):467-475.
    4. Collar C, Martínez J C, Andreu P, et al. Effects of enzyme association on bread dough performance. A response surface analysis[J]. Food Sci Technol International, 2000 6(3):217-226.
    5. Smewing J. The Measurement of Dough and Gluten Extensibility Using the SMS/Kieffer Rig and the TA.XT2 Texture Analyser[M]. Stable Micro Systems Ltd., Surrey, UK, 1995.
    6. Lampart-Szczapa E, Jankiewicz M. Changes in the protein complex of wheat dough affected by soybean 11 S globulin: Part 2—The interactions of soybean 11 S globulin with gluten proteins. FoodChem, 1983, 10, (2): 97-109.
    7. Lampart-Szczapa E, Jankiewicz M. Changes in the protein complex of wheat dough affected by soybean 11 S globulin: Part 1—the effects of soybean 11 S globulin addition on the technological properties of wheat dough[J]. Food Chem, 1982, 9(4): 307-314.
    8.郑刚,胡小松,李全宏等.脂大豆对面团流变学特性及用其制成面条品质的影响[J].食品科学, 2007, 28(04):99-102.
    9. Basman A, ksel H K , Ng P K W. Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours[J]. Eur Food Res Technol, 2002, (215):419-424.
    10. Ryan K J. Lipid Extraction Process on Texturized Soy Flour and Wheat Gluten Protein-Protein Interactions in a Dough Matrix[J]. Cereal Chem, 2002(79):434-438.
    11.刘志华,胡尚莲,韩占江等.小麦蛋白质组分与加工品质关系[J].粮食与油脂, 2003, (10):7-9.
    1.刘桂华,杨雪,李卫华.小麦淀粉、蛋白质特性与面条品质关系的研究进展[J].新疆农业科学, 2007, 44(2):176-179.
    2.魏利青,李立会.适于加工面条的小麦品质研究现状[J].植物遗传资源科学, 2002, 3(4):57-60, 63.
    3.李里特.国内外面条的新产品开发和新技术应用[M],新世纪制面应用技术研讨会, 2001.
    4.尹寿伟,陆启玉,杨秀改.面条评价方法的研究[J].河南工业大学学报(自然科学版), 2005, 26(3):45-48.
    5.张艳,阎俊,H.Yoshida等.中国面条的标准化实验室制作与评价方法研究[J].麦类作物学报, 2007, 27(1): 158-165.
    6. Byung-kee B, Zuzanna C, Yeshajahu P. Role and contribution of starch and protein contents and quality to texture profile analysis of oriental noodles[J]. Cereal Chem, 1994, 71(4):315-320.
    7. Kovacs M I, P., Fu B X, Woods S M, et al. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture[J]. J Cereal Sci, 2004, 39:9-19.
    8.张晓燕.面条专用小麦品种品质的研究[D]. [硕士学位论文].郑州:河南工业大学,2006.
    9.张水华,孙君社,薛毅等.食品感官鉴评[M].广东:华南理工大学出版社, 1999.
    10.刘鹏,陈洁,丁琳.面条品质评价方法的研究[J].河南工业大学学报(自然科学版), 2007, 28(1):66-69.
    11. Larsson H, Eliasson A C. Phase separation of wheat flour dough studied by ultracentrifugation and stress relaxation. I. Influence of water content [J]. Cereal Chem. 1996, 73(1):18-24.
    12. Saldo J, Sendra E, Guamis B. Changes in water binding in high-pressure treated cheese, measured by TGA (thermogravimetrical analysis) [J]. Innovative Food Science & Emerging Technologies. 2002, 3(3):203-207.
    13.余冰,任国谱,曾宇.大豆蛋白在面包中的应用[J].食品科技, 2003, ( 4):49-51.
    14.师俊玲.蛋白质和淀粉对挂面面条和方便面品质影响机理研究[D].中国博士学位论文全文数据库, 2001.
    15. Roccia P, Ribotta P D, Perez G T, Leon A E. Influence of soy protein on rheological properties and water retention capacity of wheat gluten[J]. Food Science and Technology. 2009, 42:358-362.
    16. Raidl, Klein B P. Effects of Soy or Field Pea Flour Substitution on Physical and Sensory Characteristics of Chemically Leavened Quick Bread[J].Cereal Chem, 1983,60(5):367-370.
    17. asman A, ksel H K, Ng P K W. Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours[ J]. Eur Food Res Technol, 2002, (215):419-424.
    18. Traynham T L, Carriquiry A L. Evaluation of Water-Holding Capacity for Wheat–Soy Flour Blends[J]. J Amer Oil Chem Soc, 2007, ( 84):151-155.
    19. Ranhotra G S, Loewe R J, Lehmann T A. Breadmaking characteristics ofwheat flour fortified with various commercial soy protein products[J]. Cereal Chem, 1974, (51):629-634.
    20. Létang C, Piau M, Verdier C, et al. Characterization of wheat-flour-water doughs: a new method using ultrasound[M]. Ulrruronirs, 2001, 39:133-141.
    21. Létang C, Piau M, Verdier C. Characterization of wheat flour-water doughs. Part I: Rheometry and microstructure. J Food Eng, 1999, 41:121-132.
    22. Maurice T J, Slade L, Sirett R R, et al. Polysaccharide–water interactions. Thermal behavior of rice starch[M]. In: D., Simatos, & S. L., Multon (Eds.). Influence of water on food quality and stability. Dordrecht, Netherlands: Nijhoff Martinus Publishers, 1985.
    23. Biliaderis C G., Page C M, Maurice T J, et al. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch[J]. J Agri Food Chem, 1986, 34:6-14.
    24. Slade L, Levine H. Recent advances in starch retrogradation. In S. S. Stivala, V. Crescenzi, & I. C. M. Dea (Eds.), Recent developments in industrial polysaccharides[M]. pp. 387-430. New York: Gorton and Breach Science, 1987.
    25. Slade L, Levine H. Non-equilibrium melting of native granular starch. I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches[J]. Carbohydrate Polymers, 1988, 8:183-208.
    26. Chatakanonda P, Varavinit S, Chinachoti P. Effect of crosslinking on thermal and microscopic transitions of rice starch[J]. Lebensmittel-Wissenschaft und -Technologie. 2000, 33: 276-284.
    27. Yost D A, Hoseney R C. Annealing and the glass transition in starch[J]. Starch/St?rke. 1986, 38:289-292.
    28. Shiotsubo T, Takahashi K. Changes in enthalpy and heat capacity associated with the gelatinization of potato starch as evaluated from isothermal calorimetry[J]. Carbohydrate Research. 1986, 158:1-6.
    29. Shiotsubo T, Takahashi K. Changes in enthalpy and heat capacity associated with the gelatinization of potato starch as evaluated from isothermal calorimetry[J]. Carbohydrate Res, 1986, 158:1-6.
    30. Wada K, Takahashi K, Shirai J S, et al. DTA applied to examining gelatinization of starches in foods[J]. J Food Sci, 1979, 44:1366-1368.
    31. Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization: Origin of the enthalpic transition[J]. Carbohydrate Res, 1992, 227:103-112.
    32. Mohamed A, Rayas-Duarte P, Gordon, S H, et al. Estimation of HRW wheat heat damage by DSC, capillary zone electrophoresis, photoacoustic spectroscopy and rheometry[J]. Food Chem, 2004, 87:195-203.
    33. Léon A, Rosell C M, Barber C B. A. differential scanning calorimetry study of wheat proteins[J]. Eur Food Res Technol, 2003, 217:13-16.
    34. Falc?o-Rodrigues M M, Mold?o-Martins M, Beirāo-da-Costa M L. Thermal properties of gluten proteins of two soft wheat varieties[J]. Food Chem, 2005, 93:459-465.
    35. Stathopoulos C E, Tsiami A A, Dobrasczcyk B J, et al. Effect of heat on rheology of gluten fractions from flours with different bread-making quality[J]. J Cereal Sci, 2006, 43:322-330.
    36. Kieffer R, Wieser H. Effect of high pressure and temperature on the functional and chemical properties of gluten[M]. In: Lafiandra, D., Masci, S., D’Ovidio, R. (Eds.), pp. 235-238. The Gluten Proteins. Royal Society of Chemistry, Cambridge, 2004.
    37. Kovacs M I P, Fu B X, Woods S M, et al. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture[J]. J Cereal Sci, 2004, 39:9-19.
    38. Singh H, MacRitchie F. Changes in proteins induced by heating gluten dispersions at high temperature[J]. J Cereal Sci. 2004, 39:297-310.