心血管手术规划的血流动力学数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血流动力学因素直接作用于血管内皮细胞,对内皮细胞的生理和病理功能具有调节作用。研究发现,在血管分叉、弯曲、动脉瓣膜等部位存在异常和不均匀的血流动力学因素,包括流动分离、涡流、高压、低壁面切应力、振荡剪切应力、长粒子滞留时间、二次流等。这些异常的血流动力学因素能够引起血管内膜增生、内皮细胞损伤等,导致血管壁面处动脉粥样硬化斑块的形成,被普遍认为是血管病变产生与发展的重要原因,称为粥样硬化危险性血流动力学因素。
     危险性血流动力学因素除发生在上述特定血管部位之外,在心血管搭桥手术局部位置也存在,可能会导致手术部位的血管内膜增生,造成术后血管再狭窄、移植血管病变等临床症状,影响着手术的成败及长期有效性。因此,在心血管疾病的手术过程中,也必须充分考虑血流动力学因素。心血管疾病治疗的手术规划就是在术前通过对各种手术方案可能产生的血流动力学因素进行预测和比较,避免危险性血流动力学因素,从而优化术后的血流动力学,为手术决策提供依据。
     本论文以优化手术血流动力学,辅助心血管手术决策为目的,开展了单心室、Fallot四联症和冠状动脉狭窄三种心血管疾病的血流动力学研究,从搭桥手术几何多样性角度研究了不同手术方式的血流动力学特征,评估了不同搭桥几何对手术效果的影响,为临床手术决策和疾病预防提供了理论依据。
     论文的研究内容包括以下几方面:
     (1)个性化心血管手术建模研究:主要包括两部分工作,一是基于医学图像的个性化解剖模型三维重建;二是基于重建模型,利用虚拟现实技术开发心血管手术虚拟建模工具,实现心血管手术虚拟操作,构建了血流动力学仿真所需的个性化手术模型。
     (2)单心室手术模型的血流动力学数值研究:研究了治疗单心室疾病的Fontan手术的三个步骤,主要研究了不同搭桥位置、角度、血管直径等几何因素对血流动力学的影响,寻找最优化的搭桥几何结构,达到分离体循环和肺循环、减小手术后的能量损失、实现肝静脉血向两肺的平均分流、实现腔静脉血向左右肺动脉的平均灌注、减少涡流及低壁面切应力等危险性血流动力学现象的目的,提高手术的长期有效性。
     (3)法洛氏四联症手术模型的血流动力学数值研究:研究了两种常用的体肺分流术,即改良的BT手术和中央分流术。着重分析了搭桥管的局部血流动力学内环境,定量分析了主动脉向肺动脉的血液灌注比,搭桥后左、右肺动脉的分流比等,指导临床医生更好的认识体肺分流术,辅助临床体肺分流术的决策。
     (4)冠状动脉狭窄手术模型的血流动力学数值研究:研究了冠状动脉不同狭窄率时竞争流对搭桥管内血流动力学的影响,探索竞争流与搭桥管失败之间的关系;研究了传统冠状动脉搭桥术后血管内的血流动力学,发明了一种双移植管搭桥方式来增加手术后的血管通透性,减小冠状动脉再狭窄的发生几率。
     论文通过血流动力学因素的优化来优化搭桥血管几何结构,建立了一套医学图像三维重建-虚拟心血管手术建模-血流动力学计算与评估相结合的心血管疾病手术规划理论和方法,对促进血流动力学的临床应用、提高心血管手术的科学化水平具有理论意义和潜在的应用价值。
Hemodynamic factors directly impact on vascular endothelial cells, and playimportant roles on the physiological and pathological function of endothelial cells. Ithas been found that abnormal or uneven hemodynamic factors, including the flowseparation, vortex, high pressure, low wall shear stress, oscillatory shear stress, longparticle residence time, second flow and so on, always appear at the artery bifurcation,bending and valve. These abnormal hemodynamic factors, which are also calledatherosclerotic-dangerous hemodynamic factors, can cause arterial intimal hyperplasiaor endothelial cell damage, and lead to the formation of atherosclerotic plaque nearthe wall. Therefore, these factors have been widely thought to be closely related withthe cause and development of arterial diseases.
     Except for the above-mentioned areas, dangerous hemodynamic factors are alsoobserved at the cardiovascular bypass regions. These factors can cause intimalhyperplasia at local bypass regions and result in post-operational restenosis or graftdiseases, which have serious influences on the surgery and long-term effectiveness.Therefore, hemodynamics must be considered in the cardiovascular surgery.Cardiovascular surgical planning is trying to optimize the post-operationalhemodynamics and assist surgical decisions before the surgery by predicting andevaluating the hemodynamics of possible surgical options based on the principle ofavoiding dangerous hemodynamic factors.
     Three cardiovascular diseases, including single ventricle heart defect, tetralogy ofFallot and coronary artery stenosis, were studied with the objective of optimizingsurgical options based on hemodynamic optimization. Hemodynamic parameters werecalculated in each surgery from the view point of geometrical bypass-diversity, andthe influences of different bypass geometries on the surgical outcomes were evaluatedto help cardiovascular surgical decision.
     The research contents consist of the following aspects:
     1. Patient-specific cardiovascular surgery modeling. It mainly consists of two parts.One part is the three-dimensional reconstruction of patient-specific anatomy based onmedical slices, and the other is to develop a virtual cardiovascular modeling tool byusing virtual reality technology, with which to establish the computational models.
     2. Hemodynamic study of surgeries for single ventricle heart defect. The threestages of the Fontan procedure were studied according to different bypass offsets,angles and diameters based on hemodynamic optimization with the aims of separatingsystemic circulatory and pulmonary circulatory, saving energy, achieving balancedflow to both longs, and avoiding dangerous hemodynamic performances such asvortex, low wall shear stress and so on.
     3. Hemodynamic study of surgeries for tetralogy of Fallot. Two common systemicto pulmonary shunts, including modified B-T shunt and central shunt, were studied byanalyzing the hemodynamic performance inside of the bypass graft, the blood flowrate from aorta to both lungs and the flow rate of both pulmonary arteries to help thesurgical decision of systemic to pulmonary shunt.
     4. Hemodynamic study of surgeries for coronary artery stenosis. The influence ofcompetitive flow caused by different coronary artery stenosis on bypass graft wasevaluated from the view point of hemodynamics. A new coronary artery bypass graftdesign called double-bypass graft design was developed to enhance the long-termpatency of coronary artery and reduce the risk of coronary artery stenosis.
     This study tried to optimize the geometry of the bypass graft through hemodynamicoptimization and established a cardiovascular planning strategy by coupling medicalimage processing, virtual cardiovascular operation and hemodynamic evaluationtogether. This study has potential value to promote the application of cardiovascularsurgical planning and enhance the scientific level of cardiovascular surgery.
引文
[1]张啸飞,胡大一,丁荣晶,等.中国心脑血管疾病死亡现况及流行趋势[J].中华高血压杂志.2012(06):600.
    [2] Del A J, Marsden A L, Lasheras J C. Recent advances in the application of computationalmechanics to the diagnosis and treatment of cardiovascular disease[J]. Rev Esp Cardiol.2009,62(7):781-805.
    [3]吴清玉.单心室的手术治疗[J].继续医学教育.2006(10):41-47.
    [4] Jacobs M L, Mayer J J. Congenital Heart Surgery Nomenclature and Database Project: singleventricle[J]. Ann Thorac Surg.2000,69(4Suppl): S197-S204.
    [5] Connor J A, Thiagarajan R. Hypoplastic left heart syndrome[J]. Orphanet J Rare Dis.2007,2:23.
    [6] Krishnan U. Univentricular heart: management options[J]. Indian J Pediatr.2005,72(6):519-524.
    [7] Hoke T R, Donohue P K, Bawa P K, et al. Oxygen saturation as a screening test for criticalcongenital heart disease: a preliminary study[J]. Pediatr Cardiol.2002,23(4):403-409.
    [8] Caspi J, Pettitt T W, Ferguson T J, et al. Effects of controlled antegrade pulmonary blood flowon cardiac function after bidirectional cavopulmonary anastomosis[J]. Ann Thorac Surg.2003,76(6):1917-1921,1921-1922.
    [9] Sharma R. Surgical therapy for the univentricular heart[J]. Indian J Pediatr.2000,67(3Suppl):S37-S40.
    [10] Chowdhury U K, Airan B, Kothari S S, et al. Surgical outcome of staged univentricular-typerepairs for patients with univentricular physiology and pulmonary hypertension[J]. IndianHeart J.2004,56(4):320-327.
    [11] Bradley S M, Simsic J M, Atz A M, et al. The infant with single ventricle and excessivepulmonary blood flow: results of a strategy of pulmonary artery division and shunt[J]. AnnThorac Surg.2002,74(3):805-810,810.
    [12] Klima U, Peters T, Peuster M, et al. A novel technique for establishing total cavopulmonaryconnection: from surgical preconditioning to interventional completion[J]. J ThoracCardiovasc Surg.2000,120(5):1007-1009.
    [13] Rodriguez E, Al-Ahmadi M, Spray T. Surgical approach to hyploplastic left heart syndrome–Norwood Stage I[J]. Multimed Manual Cardio-Thoracic Surg.2007:1-5.
    [14] Mcguirk S P, Stickley J, Griselli M, et al. Risk assessment and early outcome following theNorwood procedure for hypoplastic left heart syndrome[J]. Eur J Cardiothorac Surg.2006,29(5):675-681.
    [15] Stasik C N, Gelehrter S, Goldberg C S, et al. Current outcomes and risk factors for theNorwood procedure[J]. J Thorac Cardiovasc Surg.2006,131(2):412-417.
    [16] Pizarro C, Mroczek T, Malec E, et al. Right ventricle to pulmonary artery conduit reducesinterim mortality after stage1Norwood for hypoplastic left heart syndrome[J]. Ann ThoracSurg.2004,78(6):1959-1963,1963-1964.
    [17] Day R W, Etheridge S P, Veasy L G, et al. Single ventricle palliation: greater risk ofcomplications with the Fontan procedure than with the bidirectional Glenn procedure alone[J].Int J Cardiol.2006,106(2):201-210.
    [18] Mainwaring R D, Lamberti J J, Uzark K, et al. Bidirectional Glenn. Is accessory pulmonaryblood flow good or bad?[J]. Circulation.1995,92(9Suppl): I294-I297.
    [19] Uemura H, Yagihara T, Kawashima Y, et al. Use of the bidirectional Glenn procedure in thepresence of forward flow from the ventricles to the pulmonary arteries[J]. Circulation.1995,92(9Suppl): I228-I232.
    [20] Day R, Hawkins J, Di Russo G, et al. Exercise performance in young children followingmodifications of the bidirectional Glenn procedure[J]. Pediatr Cardiol.2001(22):435.
    [21] Yamada K, Roques X, Elia N, et al. The short-and mid-term results of the bidirectionalcavopulmonary shunt with additional source of pulmonary blood flow as definitive palliationfor the functional single ventricle[J]. Eur J Cardio-Thoracic Surg.2000,18:683-689.
    [22] Webber S A, Horvath P, Leblanc J G, et al. Influence of competitive pulmonary blood flow onthe bidirectional superior cavopulmonary shunt. A multi-institutional study[J]. Circulation.1995,92(9Suppl): I279-I286.
    [23] Mitchell M E, Ittenbach R F, Gaynor J W, et al. Intermediate outcomes after the Fontanprocedure in the current era[J]. J Thorac Cardiovasc Surg.2006,131(1):172-180.
    [24] Bardo D M, Frankel D G, Applegate K E, et al. Hypoplastic left heart syndrome[J]. Radiograph.2001,21(3):705-717.
    [25] Laks H, Ardehali A, Grant P W, et al. Modification of the Fontan procedure. Superior venacava to left pulmonary artery connection and inferior vena cava to right pulmonary arteryconnection with adjustable atrial septal defect[J]. Circulation.1995,91(12):2943-2947.
    [26]蔡豪祺,郑景浩.改良Fontan手术的进展[J].中国胸心血管外科临床杂志.2009(2):137-140.
    [27] Kim H K, Kim W H, Kim S C, et al. Surgical strategy for pulmonary coarctation in theuniventricular heart[J]. Eur J Cardiothorac Surg.2006,29(1):100-104.
    [28] Francois K, Tamim M, Bove T, et al. Is morbidity influenced by staging in the fontan palliation?A single center review[J]. Pediatr Cardiol.2005,26(4):350-355.
    [29] Jonas R A. Early primary repair of tetralogy of Fallot[J]. Semin Thorac Cardiovasc Surg PediatrCard Surg Annu.2009:39-47.
    [30] Bacha E A, Scheule A M, Zurakowski D, et al. Long-term results after early primary repair oftetralogy of Fallot[J]. J Thorac Cardiovasc Surg.2001,122(1):154-161.
    [31] Fraser C J, Mckenzie E D, Cooley D A. Tetralogy of Fallot: surgical managementindividualized to the patient[J]. Ann Thorac Surg.2001,71(5):1556-1561,1561-1563.
    [32] Walsh E P, Rockenmacher S, Keane J F, et al. Late results in patients with tetralogy of Fallotrepaired during infancy[J]. Circulation.1988,77(5):1062-1067.
    [33] Bedard E, Mccarthy K P, Dimopoulos K, et al. Structural abnormalities of the pulmonary trunkin tetralogy of Fallot and potential clinical implications: a morphological study[J]. J Am CollCardiol.2009,54(20):1883-1890.
    [34] Hirsch J C, Mosca R S, Bove E L. Complete repair of tetralogy of Fallot in the neonate: resultsin the modern era[J]. Ann Surg.2000,232(4):508-514.
    [35] Hoffman J I, Kaplan S. The incidence of congenital heart disease[J]. J Am Coll Cardiol.2002,39(12):1890-1900.
    [36] Gatzoulis M A, Balaji S, Webber S A, et al. Risk factors for arrhythmia and sudden cardiacdeath late after repair of tetralogy of Fallot: a multicentre study[J]. Lancet.2000,356(9234):975-981.
    [37]丁文祥,苏肇伉.小儿心脏外科学[M].山东:山东科学技术出版社,2000:370-375.
    [38] Holman W L, Buhrman W C, Oldham H N, et al. The Blalock-Taussig shunt: an analysis oftrends and techniques in the fourth decade[J]. J Card Surg.1989,4(2):113-124.
    [39] Blalock A, Taussig H B. Landmark article May19,1945: The surgical treatment ofmalformations of the heart in which there is pulmonary stenosis or pulmonary atresia. ByAlfred Blalock and Helen B. Taussig[J]. JAMA.1984,251(16):2123-2138.
    [40] Tempe D K, Hasija S, Malik I, et al. TEE images of aorto-pulmonary (central) shunt[J]. AnnCard Anaesth.2011,14(3):230-231.
    [41] Potapov E V, Alexi-Meskishvili V V, Dahnert I, et al. Development of pulmonary arteries aftercentral aortopulmonary shunt in newborns[J]. Ann Thorac Surg.2001,71(3):899-905,905-906.
    [42] Kim S, Park S. A study of systemic-to-pulmonary shunt deformation shape by CFD [J]. Int JPrecis Eng Manuf.2010(11):137-143.
    [43] Migliavacca F, Dubini G, Pennati G, et al. Computational model of the fluid dynamics insystemic-to-pulmonary shunts[J]. J Biomech.2000,33(5):549-557.
    [44] Gladman G, Mccrindle B, Williams W. The modifed Blalock-Taussig shunt:Clinical impactandmorbidity in Fallot’s tetralogy in the current era[J]. J Thorac Cardiovasc Surg.1997(115):25-30.
    [45] Pennati G, Migliavacca F, Dubini G, et al. Modeling of systemic-to-pulmonary shunts innewborns with a univentricular circulation:State of the art and future directions[J]. ProgrPediatr Cardiol.2010(30):23-29.
    [46] Sachweh J, Dabritz S, Didilis V, et al. Pulmonary artery stenosis after systemic-to-pulmonaryshunt operations[J]. Eur J Cardiothorac Surg.1998,14(3):229-234.
    [47] Godart F, Qureshi S, Simha A. Effects of modifed and classic Blalock-Taussig shunts on thepulmonary arterial tree[J]. Ann Thorac Surg.1998(66):512-518.
    [48] Calder A L, Chan N S, Clarkson P M, et al. Progress of patients with pulmonary atresia aftersystemic to pulmonary arterial shunts[J]. Ann Thorac Surg.1991,51(3):401-407.
    [49] Bove E, Kohman L, Sereika S. The modifed Blalock-Taussig shunt–analysis of adequacy andduration of palliation[J]. Circulation.1987, Suppl2(76):19-23.
    [50] Taggart D P. Surgery is the best intervention for severe coronary artery disease[J]. BMJ.2005,330(7494):785-786.
    [51] Da R A, Da S P. Can patients with left main coronary artery disease wait for myocardialrevascularization surgery?[J]. Arq Bras Cardiol.2003,80(2):191-193,187-190.
    [52] Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary artery bypass graft surgery on survival:overview of10-year results from randomised trials by the Coronary Artery Bypass GraftSurgery Trialists Collaboration[J]. Lancet.1994,344(8922):563-570.
    [53] Sciagra R, Tebbe U, Vogt A, et al. Occlusion of the common trunk of the left coronary artery.Physiopathological features and clinical findings[J]. G Ital Cardiol.1986,16(6):516-521.
    [54] Gersh B J, Kronmal R A, Frye R L, et al. Coronary arteriography and coronary artery bypasssurgery: morbidity and mortality in patients ages65years or older. A report from the CoronaryArtery Surgery Study[J]. Circulation.1983,67(3):483-491.
    [55] Kornfeld D S, Heller S S, Frank K A, et al. Psychological and behavioral responses aftercoronary artery bypass surgery[J]. Circulation.1982,66(5Pt2): I24-I28.
    [56] Gundle M J, Reeves B J, Tate S, et al. Psychosocial outcome after coronary artery surgery[J].Am J Psychiatry.1980,137(12):1591-1594.
    [57] Langeluddecke P, Fulcher G, Baird D, et al. Aprospective evaluation of coronary arterysurgery[J]. J Psychosomat Res.1989(33):37-45.
    [58] Magni G, Unger H, Valfre C, et al. Psychological outcome one year after heart surgery[J]. ArchIntern Med.1987(147):473-477.
    [59] Mehta D, Izzat M B, Bryan A J, et al. Towards the prevention of vein graft failure[J]. Int JCardiol.1997,62Suppl1: S55-S63.
    [60] Bayliss W M. On the local reactions of the arterial wall to changes of internal pressure[J]. JPhysiol.1902,28(3):220-231.
    [61] Dzau V J, Gibbons G H. Vascular remodeling: mechanisms and implications[J]. J CardiovascPharmacol.1993,21Suppl1: S1-S5.
    [62] Malek A M, Alper S L, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J].JAMA.1999,282(21):2035-2042.
    [63] Ku D N, Giddens D P, Zarins C K, et al. Pulsatile flow and atherosclerosis in the human carotidbifurcation. Positive correlation between plaque location and low oscillating shear stress[J].Arteriosclerosis.1985,5(3):293-302.
    [64] Glagov S. Hemodynamic factors in localisation of atherosclerosis[J]. Acta Cardiol.1965:11-311.
    [65] Bassiouny H S, White S, Glagov S, et al. Anastomotic intimal hyperplasia: mechanical injury orflow induced[J]. J Vasc Surg.1992,15(4):708-716,716-717.
    [66] Nerem R M. Vascular fluid mechanics, the arterial wall, and atherosclerosis[J]. J Biomech Eng.1992,114(3):274-282.
    [67] Fry D L. Certain histological and chemical responses of the vascular interface to acutelyinduced mechanical stress in the aorta of the dog[J]. Circ Res.1969,24(1):93-108.
    [68] Caro C G, Fitz-Gerald J M, Schroter R C. Arterial wall shear and distribution of early atheromain man[J]. Nature.1969,223(5211):1159-1160.
    [69] Liepsch D W. Flow in tubes and arteries--a comparison[J]. Biorheology.1986,23(4):395-433.
    [70] Karino T, Goldsmith H L. Particle flow behavior in models of branching vessels. II. Effects ofbranching angle and diameter ratio on flow patterns[J]. Biorheology.1985,22(2):87-104.
    [71] Chiu J J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basisand clinical perspectives[J]. Physiol Rev.2011,91(1):327-387.
    [72] Friedman M H, Hutchins G M, Bargeron C B, et al. Correlation between intimal thickness andfluid shear in human arteries[J]. Atherosclerosis.1981,39(3):425-436.
    [73] Yeung J J, Kim H J, Abbruzzese T A, et al. Aortoiliac hemodynamic and morphologicadaptation to chronic spinal cord injury[J]. J Vasc Surg.2006,44(6):1254-1265.
    [74] Zarins C K, Giddens D P, Bharadvaj B K, et al. Carotid bifurcation atherosclerosis.Quantitative correlation of plaque localization with flow velocity profiles and wall shearstress[J]. Circ Res.1983,53(4):502-514.
    [75] Berk B C. Atheroprotective signaling mechanisms activated by steady laminar flow inendothelial cells[J]. Circulation.2008,117(8):1082-1089.
    [76] Taylor C, Draney M. Experimental and computational methods in cardiovascular fluidmechanics[J]. Ann Rev Fluid Mechan.2004,1(36):197-231.
    [77] Cebral J R, Yim P J, Lohner R, et al. Blood flow modeling in carotid arteries withcomputational fluid dynamics and MR imaging[J]. Acad Radiol.2002,9(11):1286-1299.
    [78] Milner J S, Moore J A, Rutt B K, et al. Hemodynamics of human carotid artery bifurcations:computational studies with models reconstructed from magnetic resonance imaging of normalsubjects[J]. J Vasc Surg.1998,28(1):143-156.
    [79] Davies P F, Spaan J A, Krams R. Shear stress biology of the endothelium[J]. Ann Biomed Eng.2005,33(12):1714-1718.
    [80] Taylor C A, Draney M T, Ku J P, et al. Predictive medicine: computational techniques intherapeutic decision-making[J]. Comput Aided Surg.1999,4(5):231-247.
    [81]刘有军,乔爱科.基于血流动力学仿真的心血管外科手术规划进展[J].医用生物力学.2009,24(6):395-400,407.
    [82] Taylor C A. Simulation-based medical planning for cardiovascular disease:challenges andopportunities:2003Summer Bioengineering Conference[Z]. Florida:2003.
    [83] Wilson N, Wang K, Dutton R W, et al. A Software Framework for Creating Patient SpecificGeometric Models from Medical Imaging Data for Simulation Based Medical Planning ofVascular Surgery: In Medical Image Computing and computer-Assisted intervention(MICCAI):4th International Conference[Z]. Utrecht,The Netherlands:200114-17.
    [84] Spicer S A, Taylor C A. Simulation-based medical planning for cardiovascular disease:visualization system foundations[J]. Comput Aided Surg.2000,5(2):82-89.
    [85] Pekkan K, Whited B, Kanter K, et al. Patient-specific surgical planning and hemodynamicscomputational fluid dynamics optimization through free-form haptic anatomy editing tool(SURGEM)[J]. Med Biolog Eng Comput.2008,46(11):1139-1152.
    [86] Dougherty G. Digital Image Processing for Medical Applications[M]. Cambridge UniversityPress,2009:1-462.
    [87] Steele B N, Draney M T, Ku J P, et al. Internet-based system for simulation-based medicalplanning for cardiovascular disease[J]. IEEE Trans Inf Technol Biomed.2003,7(2):123-129.
    [88] Steele B N, Wan J, Ku J P, et al. In vivo validation of a one-dimensional finite-element methodfor predicting blood flow in cardiovascular bypass grafts[J]. IEEE Trans Biomed Eng.2003,50(6):649-656.
    [89] Prosi M, Perktold K, Ding Z, et al. Influence of Curvature Dynamics on Pulsatile CoronaryArtery Flow in a Realistic Bifurcation Model[J]. J Biomech.2004,37(11):1767-1775.
    [90] Migliavacca F, de Leval MR, Dubini G, et al. Computational Fluid Dynamic Simulations ofCavopulmonary Connections with an Extra-cardiac Lateral Conduit[J]. Med Eng Phys.1999,21(3):187-193.
    [91] Migliavacca F, Kilner P, Pennati G, et al. MR Computational Fluid Dynamic and MagneticResonance Analyses of Flow Distribution between the Lungs after Total CavopulmonaryConnection[J]. IEEE Trans Biomed Eng.1999,46(4):393-399.
    [92]谭珂,郭光友,潘新华,等.一种鼻内窥镜虚拟手术仿真系统[J].计算机工程.2006,32(16):243-244,276.
    [93]张绍祥,王平安,刘正津,等.首套中国男、女数字化可视人体结构数据的可视化研究[J].第三军医大学学报.2003,25(7):563-565.
    [94] Tsai M D, Hsieh M S, Tsai C H. Bone drilling haptic interaction for orthopedic surgicalsimulator[J]. Comput Biol Med.2007,37(12):1709-1718.
    [95] Vignon-Clementel I E, Marsden A L, Feinstein J A. A primer on computational simulation incongenital heart disease for the clinician[J]. Progr Pediatr Cardiol.2010,30:3-13.
    [96] Migliavacca F, Dubini G, Bove E L, et al. Computational fluid dynamics simulations in realistic3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior cavalanastomosis[J]. J Biomech Eng.2003,125(6):805-813.
    [97] Ensley A, Lynch P, Norman D, et al. Flaring of the vessels at the total cavopulmonaryconnection (TCPC) site further reduces power losses[J]. J Am Coll Cardiol.1998,31:113.
    [98] Bertolotti C, Deplano V. Three-dimensional numerical simulations of flow through a stenosedcoronary bypass[J]. J Biomech.2000,33(8):1011-1022.
    [99] Lei M, Archie J P, Kleinstreuer C. Computational design of a bypass graft that minimizes wallshear stress gradients in the region of the distal anastomosis[J]. J Vasc Surg.1997,25(4):637-646.
    [100] Ding Z, Fan Y, Deng X, et al. Effect of swirling flow on the uptakes of native and oxidizedLDLs in a straight segment of the rabbit thoracic aorta[J]. Exp Biol Med (Maywood).2010,235(4):506-513.
    [101] Pekkan K, Dasi L P, Nourparvar P, et al. In vitro hemodynamic investigation of the embryonicaortic arch at late gestation[J]. J Biomech.2008,41(8):1697-1706.
    [102] Kim M, Taulbee D B, Tremmel M, et al. Comparison of two stents in modifying cerebralaneurysm hemodynamics[J]. Ann Biomed Eng.2008,36(5):726-741.
    [103] Ohta M, Wetzel S G, Dantan P, et al. Rheological changes after stenting of a cerebral aneurysm:a finite element modeling approach[J]. Cardiovasc Intervent Radiol.2005,28(6):768-772.
    [104]李莹,罗先武,李映男,等.肺动脉局部狭窄对血液流动的影响[J].清华大学学报:自然科学版.2009,5:707-710.
    [105] Gates R N, Laks H, Johnson K. Side-to-side aorto-Gore-Tex central shunt[J]. Ann Thorac Surg.1998,65(2):515-516.
    [106]汪成为,高文,王行人.灵境(虚拟现实)技术的理论、实现及应用[M].北京:清华大学出版社、广西科学技术出版社,1996.
    [107]吴家铸,党岗,刘华峰,等.视景仿真技术及应用[M].西安:西安电子科技大学出版社,2001.
    [108]李建广,姚英学.虚拟制造中的攻坚建模和描述[J].计算机集成制造系统.2000,6(1):54-59.
    [109]韩庆,高庆利.虚拟现实技术在教育领域的应用前景[J].铁路计算机应用.1999,8(1):3-6.
    [110] Wang P, Becker A A, Jones I A, et al. A virtual reality surgery simulation of cutting andretraction in neurosurgery with force-feedback[J]. Comput Methods Programs Biomed.2006,84(1):11-18.
    [111] Wagner C, Schill M A, Manner R. Collision Detection and Tissue Modeling in a VR-simulatorfor Eye Surgery[M]. Eigth Eurographics Workshop on Virtual Environments,2002.
    [112] Webster R, Sassani J, Shenk R, et al. Simulating the continuous curvilinear capsulorhexisprocedure during cataract surgery on the EYESI system[J]. Stud Health Technol Inform.2005,111:592-595.
    [113] Song G, Guo S X. Development of a Novel Tele-rehabilitation System: Proceedings of the2006IEEE Int Confere Robot Biomiment[Z].2006.
    [114] Gildenberg P L, Labuz J. Use of a volumetric target for image-guided surgery[J]. Neurosurgery.2006,59(3):651-659,651-659.
    [115] Aulignac D D, Balaniuk R, Laugier C. A Haptic Interface for a Virtual Exam of the HumanThigh: Proceedings of the2006IEEE Int Confer Robot Automat [Z].2000.
    [116] Barnett G H. The role of image-guided technology in the surgical planning and resection ofgliomas[J]. J Neurooncol.1999,42(3):247-258.
    [117] Vannier M W, Marsh J L. Three-dimensional imaging, surgical planning, and image-guidedtherapy[J]. Radiol Clin North Am.1996,34(3):545-563.
    [118]王子罡,唐泽圣,王田苗,等.基于虚拟现实的计算机辅助立体定向神经外科手术系统[J].计算机学报.2000,23(9):931-937.
    [119] Teschner M, Heidelberger S K B, Fuhrmann A, et al. Collision Detection for DeformableObjects[J]. Computer Graphics Forum.2005,24(1):61-81.
    [120]邹益胜,丁国富,许明恒,等.实时碰撞检测算法综述[J].计算机应用研究.2008,25(1):8-12.
    [121] Garcia D, Barenbrug P J, Pibarot P, et al. A ventricular-vascular coupling model in presence ofaortic stenosis[J]. Am J Physiol Heart Circ Physiol.2005,288(4): H1874-H1884.
    [122] Pekkan K, Kitajima H, Forbess J, et al. Total cavopulmonary connection fow with functionalleft pulmonary artery stenosis—fenestration and angioplasty in vitro[J]. Circulation.2005,112(21):3264-3271.
    [123] de Zélicourt D A, Pekkan K, Wills L, et al. In vitro flow analysis of a patient specificintra-atrial TCPC[J]. Ann Thorac Surg.2005,79(6):2094-2102.
    [124] Segers P, Stergiopulos N, Westerhof N, et al. Systemic and pulmonary hemodynamics assessedwith a lumped-parameter heart-arterial interaction model[J]. J Eng Math.2003,47(3-4):185-199.
    [125] Tanne D, Kadem L, Rieu R, et al. Hemodynamic impact of mitral prosthesis-patient mismatchon pulmonary hypertension: an in silico study[J]. J Appl Physiol.2008,105(6):1916-1926.
    [126] Lagana K, Balossino R, Migliavacca F, et al. Multiscale modeling of the cardiovascular system:application to the study of pulmonary and coronary perfusions in the univentricularcirculation[J]. J Biomech.2005,38(5):1129-1141.
    [127] Migliavacca F, Pennati G, Dubini G, et al. Modeling of the Norwood circulation: effects ofshunt size, vascular resistances, and heart rate[J]. Am J Physiol Heart Circ Physiol.2001,280(5): H2076-H2086.
    [128] Andersson H I, Halden R, Glomsaker T. Effects of surface irregularities on flow resistance indifferently shaped arterial stenoses[J]. J Biomech.2000,33(10):1257-1262.
    [129] Marsden A L, Chan F P, Vignon-Clementel I E, et al. Effects of Exercise and Respiration onHemodynamic Effciency in CFD Simulations of the Total Cavopulmonary Connection[J].Ann Biomed Eng.2007,35(2):250-263.
    [130] Davies P F. Hemodynamic shear stress and the endothelium in cardiovascularpatho-physiology[J]. Nature Clin Pract Cardiovasc Med.2009,6(1):16-26.
    [131] Fukumoto Y, Hiro T, Fujii T, et al. Localized elevation of shear stress is related to coronaryplaque rupture:a3-dimensional intra-vascular ultrasound study with in-vivo color mapping ofshear stress distribution[J]. J Am Coll Cardiol.2008,51(6):645-650.
    [132] Sundareswaran K S, de Zelicourt D, Pekkan K, et al. Anatomically realistic patient-specificsurgical planning of complex congenital heart defects using MRI and CFD[J]. Conf Proc IEEEEng Med Biol Soc.2007,2007:202-205.
    [133] de Zélicourt D A, Fogel M A, Yoganathan A P. Imaging and patient-specifc simulations for theFontan surgery:Current methodologies and clinical applications[J]. Progr Pediatr Cardiol.2010,30:31-44.
    [134] Jalali A, Nataraj C. A cycle-averaged model of hypoplastic left heart syndrome (HLHS)[J].Conf Proc IEEE Eng Med Biol Soc.2011,2011:190-194.
    [135] di Carlo D, Williams W G, Freedom R M, et al. The role of cava-pulmonary (Glenn)anastomosis in the palliative treatment of congenital heart disease[J]. J Thorac Cardiovasc Surg.1982,83(3):437-442.
    [136] Guadagni G, Bove E L, Migliavacca F, et al. Effects of pulmonary afterload on thehemodynamics after the hemi-Fontan procedure[J]. Med Eng Phys.2001,23(5):293-298.
    [137] Pekkan K, Dasi L P, de Zelicourt D, et al. Hemodynamic performance of stage-2univentricularreconstruction: Glenn vs. hemi-Fontan templates[J]. Ann Biomed Eng.2009,37(1):50-63.
    [138] Mavroudis C, Backer C L, Kohr L M, et al. Bidirectional Glenn shunt in association withcongenital heart repairs: the1(1/2) ventricular repair[J]. Ann Thorac Surg.1999,68(3):976-981,982.
    [139] Kawashima Y, Kitamura S, Matsuda H, et al. Total cavopulmonary shunt operation in complexcardiac anomalies. A new operation[J]. J Thorac Cardiovasc Surg.1984,87(1):74-81.
    [140] de Leval M R, Deanfield J E. Four decades of Fontan palliation[J]. Nat Rev Cardiol.2010,7(9):520-527.
    [141] Degroff C G. Modeling the Fontan circulation: where we are and where we need to go[J].Pediatr Cardiol.2008,29(1):3-12.
    [142] Bertolotti C, Qin Z, Lamontagne B. Influence of multiple stenosis on Echo–Doppler functionaldiagnosis of peripheral arterial disease:a numerical and experimental study[J]. Ann BiomedEng.2006,34(4):564-574.
    [143] Siouffi M, Deplano V, Pelissier R. Experimental analysis of unsteady flows through astenosis[J]. J Biomech.1998,31(1):11-19.
    [144] Farmakis T M, Soulis J V, Giannoglou G D, et al. Wall shear stress gradient topography in thenormal left coronary arterial tree: possible implications for atherogenesis[J]. Curr Med ResOpin.2004,20(5):587-596.
    [145] Ethier C R, Steinman D A, Zhang X, et al. Flow waveform effects on end to side anastomoticfow patterns[J]. J Biomech.1998,31(7):609-617.
    [146] de Zélicourt D A, Marsden A, Fogel M A, et al. Imaging and patient-specific simulations forthe Fontan surgery: Current methodologies and clinical applications[J]. Progr Pediatr Cardiol.2010,30:31-44.
    [147] Anderson R H, Cook A C. Morphology of the functionally univentricular heart[J]. CardiolYoung.2004,14Suppl1:3-12.
    [148] Friesen C H, Forbess J M. Surgical management of the single ventricle[J]. Progr Pediatr Cardiol.2002,16:47-68.
    [149] de Zelicourt D A, Pekkan K, Parks J, et al. Flow study of an extracardiac connection withpersistent left superior vena cava[J]. J Thorac Cardiovasc Surg.2006,131(4):785-791.
    [150] Hsia T Y, Migliavacca F, Pittaccio S, et al. Computational fluid dynamic study of flowoptimization in realistic models of the total cavopulmonary connections[J]. J Surg Res.2004,116(2):305-313.
    [151] Biffi M, Boriani G, Frabetti L, et al. Left superior vena cava persistence in patients undergoingpacemaker or cardioverter-defibrillator implantation: a10-year experience[J]. Chest.2001,120(1):139-144.
    [152] Sun Q, Wan D W, Liu J F, et al. Patient-specifc computational fluid dynamic simulation of abilateral bidirectional Glenn connection[J]. Med Biol Eng Comput.2008,46:1153-1159.
    [153] Kostelka M, Hucin B, Tlaskal T, et al. Bidirectional Glenn followed by total cavopulmonaryconnection or primary total cavopulmonary connection?[J]. Eur J Cardiothorac Surg.1997,12(2):177-183.
    [154] Sun Q, Wan D, Liu J, et al. Patient-specific computational fluid dynamic simulation of abilateral bidirectional Glenn connection[J]. Med Biol Eng Comput.2008,46(11):1153-1159.
    [155]赵夕,刘有军,白帆,等.双向双侧格林手术的数值研究[J].医用生物力学.2012,27(5):488-494.
    [156] Migliavacca F, Dubini G, Bove E L, et al. Computational fluid dynamics simulations in realistic3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior cavalanastomosis[J]. J Biomech Eng.2003,125(6):805-813.
    [157] Kabinejadian F, Chua L P, Ghista D N, et al. A novel coronary artery bypass graft design ofsequential anastomoses[J]. Ann Biomed Eng.2010,38(10):3135-3150.
    [158] Ding J L, Chai L J, Liu Y J. Hemodynamic based cardiovascular surgical planning system:Proceedings of the20103rd International Conference on Biomedical Engineering andInformatics (BMEI2010)[Z].2010290-293.
    [159] Pekkan K, Whited B, Kanter K, et al. Patient-specifc surgical planning and hemodynamiccomputational fluid dynamics optimization through free-form haptic anatomy editing tool(SURGEM)[J]. Med Biol Eng Comput.2008,46:1139-1152.
    [160] He X, Ku D N. Pulsatile flow in the human left coronary artery bifurcation: averageconditions[J]. J Biomech Eng.1996,118(1):74-82.
    [161] Donato R, Amodeo A, Grigioni M. Towards the optimal Fontan operation:a single-institutionexperience[J]. Paediatrics and Child Health.2009,19(1): S43-S47.
    [162] Kuroczynski W, Kampmann C, Choi Y H, et al. The Fontan-operation: from intra-toextracardiac procedure[J]. Cardiovasc Surg.2003,11(1):70-74.
    [163] Kotani Y, Kasahara S, Fujii Y, et al. Clinical outcome of the Fontan operation in patients withimpaired ventricular function[J]. Eur J Cardiothorac Surg.2009,36(4):683-687.
    [164] Lee J, Choi J, Kang C, et al. Surgical results of patients with a functional single ventricle[J].Eur J Cardio-Thoracic Surg.2003,24(5):716-722.
    [165] Sun Q, Wan D, Liu J, et al. Influence of antegrade pulmonary blood flow on the hemodynamicperformance of bidirectional cavopulmonary anastomosis: a numerical study[J]. Med Eng Phys.2009,31(2):227-233.
    [166] Krishnankuttyrema R, Dasi L P, Pekkan K, et al. Quantitative analysis of extracardiac versusintraatrial Fontan anatomic geometries[J]. Ann Thorac Surg.2008,85(3):810-817.
    [167] Bove E, de Leval MR, Migliavacca F, et al. Computational fluid dynamics in the evaluation ofhemodynamic performance of cavopulmonary connections after the Norwood procedure forhypoplastic left heart syndrome[J]. J Thorac Cardiovasc Surg.2003,126(4):1040-1047.
    [168] Dasi L P, Pekkan K, Katajima H D, et al. Functional analysis of Fontan energy dissipation[J]. JBiomech.2008,41(10):2246-2252.
    [169] Ochiai Y, Imoto Y, Sakamoto M, et al. Mid-term follow-up of the status of Gore-Tex graft afterextracardiac conduit Fontan procedure[J]. Eur J Cardiothorac Surg.2009,36(1):63-67,67-68.
    [170] Itatani K, Miyaji K, Tomoyasu T, et al. Optimal Conduit Size of the ExtracardiacFontanOperation Based on Energy Loss and Flow Stagnation[J]. The Annals of Thoracic Surgery.2009,88:565-573.
    [171] Alexi-Meskishvili V, Ovroutski S, Ewert P, et al. Optimal conduit size for extracardiac Fontanoperation[J]. Eur J Cardiothorac Surg.2000,18(6):690-695.
    [172] Hvass U, Pansard Y, B hm G, et al. Bicavalpulmonary connection in tricuspid atresia using anextracardiac tube of autologous pediculated pericardium to bridge inferior vena cava[J]. Eur JCardio-thoracic Surg.1992,6:49-51.
    [173] Bernstein D, Naftel D, Chin C, et al. Outcome of listing for cardiac transplantation for failedFontan: a multi-institutional study[J]. Circulation.2006,114(4):273-280.
    [174] van den Bosch A E, Roos-Hesselink J W, Van Domburg R, et al. Long-term outcome andquality of life in adult patients after the Fontan operation[J]. Am J Cardiol.2004,93(9):1141-1145.
    [175] Soulis J V, Giannoglou G D, Chatzizisis Y S, et al. Non-Newtonian models for molecularviscosity and wall shear stress in a3D reconstructed human left coronary artery[J]. Med EngPhys.2008,30(1):9-19.
    [176] Azakie A, McCrindle B W, Van Arsdell G, et al. Extracardiac conduit versus lateral tunnelcavopulmonary connections at a single institution: impact on outcomes[J]. J Thorac CardiovascSurg [J].2001,122(6):1219-1228.
    [177] Degroff C G, Carlton J D, Weinberg C E, et al. Effect of vessel size on the fow effciency ofthe total cavopulmonary connection:in vitro studies[J]. Pediatr Cardiol.2002,32(2):171-177.
    [178] Migliavacca F, Dubini G, Pietrabissa R, et al. Computational fuid dynamic simulations ofcavopulmonary connections with an extracardiac lateral conduit[J]. Med Eng Phys.1999,21:187-193.
    [179] Sharma S, Goudy S, Walker P, et al. In vitro fow experiments for determination of optimalgeometry of total cavopulmonary connection for surgical repair of children with functionalsingle ventricle[J]. J Am Coll Cardiol.1996,27:1264-1269.
    [180] Migliavacca F, Balossino R, Pennati G, et al. Multiscale modelling in biofluidynamics:application to reconstructive paediatric cardiac surgery[J]. J Biomech.2006,39(6):1010-1020.
    [181] Pennati G, Fiore G B, Migliavacca F, et al. In vitro steady-flowanalysis ofsystemic-to-pulmonary shunt haemodynanmics[J]. J Biomech.2001,34:23-30.
    [182] Fenton K N, Siewers R D, Rebovich B, et al. Interim mortality in infants with systemic topulmonary artery shunts[J]. Ann Thorac Surg.2003,76(1):152-156.
    [183] Ensley A E, Lynch P, Chatzimavroudis G P, et al. Toward designing the optimal totalcavopulmonary connection: an in vitro study[J]. Ann Thorac Surg.1999,68(4):1384-1390.
    [184] Evegren P, Fuchs L, Revstedt J. Wall shear stress variations in a90-degree bifurcation in3Dpulsating flows[J]. Med Eng Phys.2010,32(2):189-202.
    [185] Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in acompliant carotid artery bifurcation model[J]. J Biomech.1995,28(7):845-856.
    [186] Barnea O, Austin E H, Richman B, et al. Balancing the circulation: theoretic optimization ofpulmonary/systemic flow ratio in hypoplastic left heart syndrome[J]. J Am Coll Cardiol.1994,24(5):1376-1381.
    [187] Gedicke M, Morgan G, Parry A, et al. Risk factors for acute shuntblockage in children aftermodeled BlalockTaussig shunt operations[J]. Heart Vess.2010,25:405-409.
    [188] Glagov S. Intimal hyperplasia, vascular modeling, and the restenosis problem[J]. Circulation.1994,89(6):2888-2891.
    [189] Hodgson J M, Reinert S, Most A S, et al. Prediction of long-term clinical outcome with finaltranslesional pressure gradient during coronary angioplasty[J]. Circulation.1986,74(3):563-566.
    [190] Reneman R S, Arts T, Hoeks A P. Wall shear stress--an important determinant of endothelialcell function and structure--in the arterial system in vivo. Discrepancies with theory[J]. J VascRes.2006,43(3):251-269.
    [191]丁皓,刘永,沈力行,等.壁冠状动脉血流动力学特性的实验模拟与理论研究[J].医用生物力学.2007(3):251-254.
    [192] Nwasokwa O N. Coronary artery bypass graft disease[J]. Ann Int Med.1995,123:528-533.
    [193] Bezon E, Choplain J N, Maguid Y A, et al. Failure of internal thoracic artery grafts: conclusionsfrom coronary angiography mid-term follow-up[J]. Ann Thorac Surg.2003,76(3):754-759.
    [194] Sabik J F, Blackstone E H. Coronary artery bypass graft patency and competitive fow[J]. J AmColl Cardiol.2008,51:126-128.
    [195] Villareal R P, Mathur V S. The string phenomenon: an important cause of internal mammaryartery graft failure[J]. Tex Heart Inst J.2000,27(4):346-349.
    [196] Pevni D, Hertz I, Medalion B, et al. Angiographic evidence for reduced graft patency due tocompetitive fow in composite arterial T-grafts[J]. Surg Acquir Cardiovasc Disease.2007,133:1220-1225.
    [197] Nordgaard H, Nordhaug D, Kirkeby-Garstad I, et al. Different graft flow patterns due tocompetitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry ina porcine model[J]. Eur J Cardio-Thoracic Surg.2009,36(1):137-142.
    [198] Kawamura M, Nakajima H, Kobayashi J, et al. Patency rate of the internal thoracic artery to theleft anterior descending artery bypass is reduced by competitive flow from the concomitantsaphenous vein graft in the left coronary artery[J]. Eur J Cardiothorac Surg.2008,34(4):833-838.
    [199] Ma R W, Wu R B, Guo H M, et al. Relation between competitive flow and graft flow incoronary artery bypass grafting[J]. Chin J Clin Thorac Cardiovasc Surg.2005,12:335-338.
    [200] Fu Q, Bi Y W, Yu J M, et al. Effects of competitive blood flow from differently stenoticcoronary artery on internal mammary artery graft flow[J]. J Shand Univ.2006,44:364-367.
    [201]于建民. CABG术后竞争血流与血管活性药物对动脉桥、静脉桥血流影响的实验研究[D].山东大学,2006.
    [202] Berger A, Maccarthy P A, Siebert U, et al. Long-term patency of internal mammary arterybypass grafts: relationship with preoperative severity of the native coronary artery stenosis[J].Circulation.2004,110(11Suppl1): I36-I40.
    [203] Nordgaard H, Swillens A, Nordhaug D, et al. Impact of competitive flow on wall shear stress incoronary surgery: computational fluid dynamics of a LIMA-LAD model[J]. Cardiovasc Res.2010,88(3):512-519.
    [204] Chaichana T, Sun Z, Jewkes J. Computational fluid dynamics analysis of the effect of plaquesin the left coronary artery[J]. Comput Math Methods Med.2012,2012:504367.
    [205] Hughes P E, How T V. Effects of geometry and flow division on flow structures in models ofthe distal end-to-side anastomosis[J]. J Biomech.1996,29(7):855-872.
    [206] Lawrie G M, Morris G C, Earle N. Long-term results of coronary bypass surgery[J]. Ann Surg.1991,213:377-385.
    [207] Rittgers S E, Karayannacos P E, Guy J F, et al. Velocity distribution and intimal proliferation inautologous vein grafts in dogs[J]. Circ Res.1978,42(6):792-801.
    [208] Sottiurai V S, Yao J S T, Batson R C, et al. Distal anastomotic intimal hyperplasia:histopathological character and biogenesis[J]. Ann Vasc Surg.1989,1:26-33.
    [209] Inzoli F, Migliavacca F, Pennati G. Numerical analysis of steady flow in aorto-coronary bypass3-D model[J]. J Biomech Eng.1996,118(2):172-179.
    [210] Henry F S, Collins M W, Hughes P E, et al. Numerical investigation of steady flow in proximaland distal end-to-side anastomoses[J]. J Biomech Eng.1996,118(3):302-310.
    [211] Perktold K, Hofer M, Rappitsch G, et al. Validated computation of physiologic flow in arealistic coronary artery branch[J]. J Biomech.1998,31(3):217-228.
    [212] Kleinstreuer C, Lei M, Archie J J. Flow input waveform effects on the temporal and spatial wallshear stress gradients in a femoral graft-artery connector[J]. J Biomech Eng.1996,118(4):506-510.