腺病毒介导的ING4和IL-24共表达对肝癌的抑瘤增效和化疗增敏效应及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     构建ING4和IL-24双基因共表达腺病毒载体(Ad-ING4-IL-24),研究其对肝癌的抑瘤增效和化疗增敏效应及分子机制。
     方法:
     分别以pGEZ-Term、pAdTrack-CMV-IL-24和pAdTrack-CMV-ING4质粒为模板,PCR扩增IRES(SalI、NotI)、IL-24(XhoI、XbaI)和ING4(BglII、SalI)目的片段,依次亚克隆至pAdTrack-CMV转移载体构建pAdTrack-CMV- ING4-IRES-IL-24双基因共表达重组转移载体。将构建正确的pAdTrack-CMV-ING4-IRES-IL-24重组转移载体经PmeI酶切后与pAdEasy-1腺病毒骨架质粒在BJ5183大肠杆菌中同源重组,得到的同源重组质粒pAdEasy-1-pAdTrack-CMV-ING4-IRES-IL-24(简称为pAd-ING4-IRES-IL-24)经PacI酶切后再用脂质体转染QBI-293A细胞,经多轮感染和扩增后获得Ad-ING4-IRES-IL-24双基因共表达重组腺病毒载体。polyA+promoter介导的ING4和IL-24双基因共表达腺病毒载体(Ad-ING4-polyA+promoter-IL-24)的构建方法基本同上,唯一不同的是polyA+promoter片段的获得是:以pORF-mbcl-2a质粒为模板,PCR分别扩增polyA和promoter片段;再以此为模板,SOE-PCR扩增polyA+promoter融合片段。将Ad-ING4-IRES-IL-24(简称为Ad-ING4-IL-24)体外感染SMMC-7721、HepG2肝癌细胞及联合顺铂(CDDP)化疗药物作用,MTT法和FCM检测其体外抑制肝癌细胞生长和诱导凋亡的协同增效和化疗增敏效应,并建立SMMC-7721裸鼠人肝癌移植瘤模型,观察Ad-ING4-IL-24体内对裸鼠人肝癌移植瘤的抑瘤增效作用。侵袭小室检测Ad-ING4-IL-24体外对SMMC-7721肝癌细胞侵袭能力的影响。Western blot和免疫组化检测细胞周期和凋亡相关蛋白及肿瘤血管形成相关因子P53、P21、P27、Cox-2、Fas、Bcl-2、Bax、Caspase-3、VEGF、CD34的表达。ELISA和半定量RT-PCR法检测Ad-ING4-IL-24对SMMC-7721肝癌细胞促血管形成因子VEGF、IL-8和肿瘤转移相关因子MMP-2、MMP-9表达的影响。
     结果:
     成功构建了IRES和双启动子(polyA+promoter)介导的两种ING4和IL-24双基因共表达腺病毒载体(Ad-ING4-IRES-IL-24和Ad-ING4- polyA+ promoter- IL- 24)。腺病毒介导的ING4和IL-24双基因共表达(Ad-ING4-IL-24)体外能明显抑制SMMC-7721、HepG2肝癌细胞的生长和诱导凋亡及抑制SMMC-7721细胞的体外侵袭能力,体内同样能明显抑制SMMC-7721裸鼠人肝癌移植瘤的生长,且均具协同抑瘤增效作用;而且Ad-ING4-IL-24能提高CDDP化疗药物体外抑制SMMC-7721、HepG2肝癌细胞的生长和诱导凋亡的作用,具有显著的化疗增敏效应。分子机制检测结果表明:Ad-ING4-IL-24能明显上调SMMC-7721肝癌细胞P53、P21、P27、Fas、Bax、Caspase-3和下调Cox-2、Bcl-2等细胞周期和凋亡相关蛋白的表达;能明显下调肿瘤血管形成因子VEGF、IL-8、CD34的表达;还能明显下调肿瘤转移相关因子MMP-2、MMP-9的表达,且其效应均较Ad-ING4、Ad-IL-24更为显著。
     结论:
     1、国内外首次成功构建了两种ING4和IL-24双基因共表达腺病毒载体Ad-ING4-IRES-IL-24和Ad-ING4-polyA+promoter-IL-24。
     2、Ad-ING4-IL-24双基因表达及联合CDDP化疗药物体外抑制SMMC-7721、HepG2肝癌细胞生长和诱导凋亡呈现明显的协同抑瘤增效作用和化疗增敏效应。
     3、Ad-ING4-IL-24双基因表达体内抑制SMMC-7721裸鼠人肝癌移植瘤同样具有协同抑瘤增效作用。
     4、Ad-ING4-IL-24双基因表达更具显著上调P53、P21、P27、Fas、Bax、Caspase-3和下调Cox-2、Bcl-2等细胞周期和凋亡相关蛋白表达的效应,这可能是其双基因表达对肝癌细胞体内外生长抑制具有协同抑瘤增效作用的重要机制之一。
     5、Ad-ING4-IL-24双基因表达更具显著下调肿瘤血管形成因子VEGF、IL-8、CD34表达的效应,这可能是其双基因表达对SMMC-7721裸鼠人肝癌移植瘤体内生长抑制具有协同抑瘤增效作用的另一重要机制。
     6、Ad-ING4-IL-24双基因表达更具显著抑制SMMC-7721肝癌细胞体外侵袭的效应,这与下调肿瘤转移相关因子MMP-2和MMP-9的表达可能密切相关。
Objective:
     To construct a recombinant adenoviral vector co-expressing inhibitor of growth 4 (ING4) and interleukin-24 (IL-24) and explore its enhanced anti-tumor and chemosensitivity to anticancer drug cisplatin (CDDP) effects on hepatocellular carcinoma and its mechanism.
     Methods:
     The internal ribosome entry site (IRES), IL-24, and ING4 fragments were amplified by PCR using pGEZ-Term, pAdTrack-CMV-IL-24, and pAdTrack-CMV-ING4 plasmids as templates, respectively. The IRES (SalI、NotI), IL-24 (XhoI、XbaI), and ING4 (BglII、SalI) fragments were subcloned into pAdTrack-CMV transfer vector to form pAdTrack-CMV-ING4-IRES-IL-24 and identified by PCR, double endonuclease digestion, and DNA sequencing. The pAdTrack-CMV-ING4-IRES-IL-24 transfer vector linearized with PmeI digestion and pAdEasy-1 backbone vector were further cotransformed into the bacteria BJ5183 competent cells for homologous recombination. The resultant pAdEasy-1-pAdTrack-CMV-ING4-IRES-IL-24 (pAd-ING4-IRES-IL-24) homologous recombinant plasmids purified from the above BJ5183 cells were transformed into the bacteria DH5αcompetent cells to abundantly amplify pAd-ING4-IRES-IL-24 plasmids. Then they were linearized with PacI digestion and transfected into the human embryonic kidney 293 (QBI-293A) cells by Lipofectamine2000, leading to formation of the recombinant adenoviruses Ad-ING4-IRES-IL-24 co-expressing ING4 and IL-24. The other kind of recombinant adenoviruses Ad-ING4-polyA+promoter-IL-24 was similarly prepared as described above, except that the polyA+promoter fusion fragments were obtained by SOE-PCR using pORF-mbcl-2a plasmids as templates. The in vitro enhanced growth-suppressing, apoptosis-inducing, and chemosensitivity to anticancer drug cisplatin (CDDP) effect of Ad-ING4-IL-24 co-expressing ING4 and IL-24 on SMMC-7721 and HepG2 human hepatocellular carcinoma cells were assessed by MTT assay and FCM, and its in vivo enhanced anti-tumor effect on hepatocellular carcinoma was further observed using SMMC-7721 human hepatocellular carcinoma transplanted tumor in athymic nude mouse model. The in vitro effect of Ad-ING4-IL-24 on SMMC-7721 cells’invasive ability was addressed using a Transwell Chamber system. The expression of cell cycle and apoptosis- and angiogenesis-related proteins (P53, P21, P27, Cox-2, Fas, Bcl-2, Bax, Caspase-3, VEGF, IL-8, and CD34) in SMMC-7721 hepatocellular carcinoma cells and SMMC-7721 transplanted tumor was determined by Western blot, ELISA, semi-quantitative RT-PCR, and immunohistochemistry analysis, respectively. The effect of Ad-ING4-IL-24 on the expression of metastasis-related factors (MMP-2 and MMP-9) in SMMC-7721 hepatocellular carcinoma cells was also examined by semi-quantitative RT-PCR.
     Results:
     Two kinds of adenoviral vector co-expressing ING4 and IL-24, Ad-ING4-IRES-IL-24 and Ad-ING4-polyA+promoter-IL-24, were successfully constructed. Adenovirus-mediated ING4 and IL-24 co-expression significantly inhibited SMMC-7721 and HepG2 hepatocellular carcinoma cell growth, induced cell apoptosis, suppressed SMMC-7721 cell invasiveness, and retarded SMMC-7721 human hepatocellular carcinoma transplanted tumor growth in athymic nude mouse, exhibiting synergetic anti-tumor effect. Furthermore, Ad-ING4-IL-24 significantly enhanced the chemosensitivity to anticancer drug CDDP in SMMC-7721 and HepG2 cells in vitro. Ad-ING4-IL-24 had more marked effect in up-regulating the expression of P53, P21, P27, Fas, Bax, and Caspase-3 and down-regulating the expression of Cox-2, Bcl-2, VEGF, IL-8, CD34, MMP-2, and MMP-9 compared with Ad-ING4 or Ad-IL-24.
    
     Conclusions:
     1. Two kinds of adenoviral vector co-expressing two suppressor gene of ING4 and IL-24 (Ad-ING4-IRES-IL-24 and Ad-ING4-polyA+promoter-IL-24), for the first time, were successfully constructed at home and abroad.
     2. Ad-ING4-IL-24 co-expressing ING4 and IL-24 had significant synergetic and enhanced chemosensitivity to CDDP effect in suppressing SMMC-7721 and HepG2 human hepatocellular carcinoma cell growth and inducing cell apoptosis in vitro.
     3. Ad-ING4-IL-24 co-expressing ING4 and IL-24 had significant synergetic effect in retarding SMMC-7721 human hepatocellular carcinoma transplanted tumor growth in athymic nude mouse.
     4. Ad-ING4-IL-24 co-expressing ING4 and IL-24 had more potent effect in up-regulating the expression of P53, P21, P27, Fas, Bax, and Caspase-3 and down-regulating the expression of Cox-2 and Bcl-2, which may be responsible for its synergetic anti-tumor effect on SMMC-7721 human hepatocellular carcinoma cells in vitro and in vivo in athymic nude mouse model.
     5. Ad-ING4-IL-24 co-expressing ING4 and IL-24 had more potent effect in down-regulating the expression of angiogenesis-related factors VEGF, IL-8, and CD34, which may be another important mechanism involved in its synergetic effect in suppressing SMMC-7721 human hepatocellular carcinoma transplanted tumor growth in vivo in athymic nude mouse model.
     6. Ad-ING4-IL-24 had more potent effect in suppressing in vitro SMMC-7721 human hepatocellular carcinoma cell’s invasiveness, which may be associated with down-regulating the expression of metastasis-related factors MMP-2 and MMP-9.
引文
[1] World Health Organization. Mortality database. Available from: URL: http://www.who.int/whosis/en.
    [2] Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001 Sep;2(9):533-43.
    [3] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108.
    [4] Yeh CT, Chen TC, Chang ML, Hsu CW, Yeh TS, Lee WC, Huang SF, Tsai CC.Identification of NV-F virus DNA in hepatocellular carcinoma. J Med Virol. 2007 Jan;79(1):92-6.
    [5] Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001 Oct 15;94(2):153-6.
    [6] El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med. 2003 Nov 18;139(10):817-23.
    [7] De Vos Irvine H, Goldberg D, Hole DJ, McMenamin J. Trends in primary liver cancer. Lancet. 1998 Jan 17;351(9097):215-6.
    [8] Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta LA. Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Ann N Y Acad Sci. 2002 Jun;963:13-20.
    [9] Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer. 1993 Jun 19;54(4):594-606.
    [10] Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, Wong J. Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg. 2001 Jul;234(1):63-70.
    [11] Poon RT, Fan ST. Resection prior to liver transplantation for hepatocellular carcinoma: a strategy of optimizing the role of resection and transplantation in cirrhotic patients with preserved liver function. Liver Transpl. 2004 Jun;10(6):813-5.
    [12] Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M, Rodés J; EASL Panel of Experts on HCC. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001 Sep;35(3):421-30.
    [13] Poon RT, Fan ST, Tsang FH, Wong J. Locoregional therapies for hepatocellular carcinoma: a critical review from the surgeon's perspective. Ann Surg. 2002 Apr;235(4):466-86.
    [14] Sangro B, Herraiz M, Prieto J. Gene therapy of neoplastic liver diseases. Int J Biochem Cell Biol. 2003 Feb;35(2):135-48.
    [15] Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003 May 15;63(10):2373-8.
    [16] Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004 Mar 18;428(6980):328-32.
    [17] Zhang X, Xu LS, Wang ZQ, Wang KS, Li N, Cheng ZH, Huang SZ, Wei DZ, Han ZG. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett. 2004 Jul 16;570(1-3):7-12.
    [18] Kim S, Chin K, Gray JW, Bishop JM. A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16251-6.
    [19] Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A. 2005 May 24;102(21):7481-6.
    [20] Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases: recruitment of the candidate tumor suppressor protein ING4. Cell Cycle. 2005 Sep;4(9):1153-6.
    [21] Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L, Miranda C, Ladetto M, Neri TM, Neri A, Greco A, Mangoni M, Bonati A, Rizzoli V, Giuliani N. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood. 2007 Dec 15;110(13):4464-75.
    [22] Unoki M, Shen JC, Zheng ZM, Harris CC. Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem. 2006 Nov 10;281(45):34677-86.
    [23] Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K, Pedeux R, Harris CC. Inhibitor of growth 4 suppresses cell spreading and cell migrationby interacting with a novel binding partner, liprin alpha1. Cancer Res. 2007 Mar 15;67(6):2552-8.
    [24] Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett. 2008 Nov 18;271(1):105-16.
    [25] Li J, Martinka M, Li G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis. 2008 Jul;29(7):1373-9.
    [26] Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L, Hirohata S, Ninomiya Y, Nishizaki K, Shimizu K, Nagai N. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene. 2005 Aug 15;356:109-17.
    [27] Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995 Dec 21;11(12):2477-86.
    [28] Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH, Retter MW, Hill P, Chada S, Grimm EA. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 2002 Jun 15;168(12):6041-6.
    [29] Fickenscher H, H?r S, Küpers H, Knappe A, Wittmann S, Sticht H. The interleukin-10 family of cytokines. Trends Immunol. 2002 Feb;23(2):89-96.
    [30] Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, Sahin AA, Read CM, Prieto VG, Chada S, Grimm EA. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer. 2001 Oct 1;94(1):54-9.
    [31] Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ, Alexandre D, Chen Y, Vozhilla N, Mei MX, Christiansen KA, Sivo F, Goldstein NI, Mhashilkar AB, Chada S, Huberman E, PestkaS, Fisher PB. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene. 2001 Oct 25;20(48):7051-63.
    [32] Emdad L, Lebedeva IV, Su ZZ, Sarkar D, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 reverses multidrug resistance in human colorectal cancer cells. Mol Cancer Ther. 2007 Nov;6(11):2985-94.
    [33] Yacoub A, Mitchell C, Lister A, Lebedeva IV, Sarkar D, Su ZZ, Sigmon C, McKinstry R, Ramakrishnan V, Qiao L, Broaddus WC, Gopalkrishnan RV, Grant S, Fisher PB, Dent P. Melanoma differentiation-associated 7 (interleukin 24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res. 2003 Aug 15;9(9):3272-81.
    [34] Fisher PB. Is mda-7/IL-24 a "magic bullet" for cancer? Cancer Res. 2005 Nov 15;65(22):10128-38.
    [35] Inoue S, Branch CD, Gallick GE, Chada S, Ramesh R. Inhibition of Src kinase activity by Ad-mda7 suppresses vascular endothelial growth factor expression in prostate carcinoma cells. Mol Ther. 2005 Oct;12(4):707-15.
    [36] Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE. Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther. 2004 Jun;9(6):818-28.
    [37] Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K, Mumm JB, Stewart AL, Boquoi A, Dumoutier L, Grimm EA, Renauld JC, Kotenko S, Chada S. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res. 2003 Aug 15;63(16):5105-13.
    [38] Ramesh R, Ito I, Gopalan B, Saito Y, Mhashilkar AM, Chada S. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004 Apr;9(4):510-8.
    [39] Shi H, Wei LL, Yuan CF, Yang JX, Yi FP, Ma YP, Song FZ. Melanoma differentiation-associated gene-7/interleukin 24 inhibits invasion and migration of human cervical cancer cells in vitro. Saudi Med J. 2007 Nov;28(11):1671-5.
    [40] Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241: a review of preclinical and clinical experience. Expert Opin Biol Ther. 2008 Oct;8(10):1633-43.
    [41] McNeish IA, Tenev T, Bell S, Marani M, Vassaux G, Lemoine N. Herpes simplex virus thymidine kinase/ganciclovir-induced cell death is enhanced by co-expression of caspase-3 in ovarian carcinoma cells. Cancer Gene Ther. 2001 Apr;8(4):308-19.
    [42] Tanaka M, Fraizer GC, De La Cerda J, Cristiano RJ, Liebert M, Grossman HB. Connexin 26 enhances the bystander effect in HSVtk/GCV gene therapy for human bladder cancer by adenovirus/PLL/DNA gene delivery. Gene Ther. 2001 Jan;8(2):139-48.
    [43] Castleden SA, Chong H, Garcia-Ribas I, Melcher AA, Hutchinson G, Roberts B, Hart IR, Vile RG. A family of bicistronic vectors to enhance both local and systemic antitumor effects of HSVtk or cytokine expression in a murine melanoma model. Hum Gene Ther. 1997 Nov 20;8(17):2087-102.
    [44] Zheng SY, Li DC, Zhang ZD, Zhao J, Ge JF. Anti-gastric cancer active immunity induced by FasL/B7-1 gene-modified tumor cells. World J Gastroenterol. 2005 Jun 7;11(21):3204-11.
    [45] Fei Q, Zhang H, Fu L, Dai X, Gao B, Ni M, Ge C, Li J, Ding X, Ke Y, Yao X, Zhu J. Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes. Acta Biochim Biophys Sin (Shanghai). 2008 Jun;40(6):466-77.
    [46]刘金,刘必胜,刘新垣. IRES边接双基因在溶瘤腺病毒中的抗肝癌作用.浙江理工大学学报. 2007; 24(4): 466-70.
    [47]王娟,顾锦法,杨水云,肖田,齐荣,孙兰英,刘新垣.癌特异性双靶向载体安全性及其携带基因的杀伤性.癌症. 2006;25(4):385-92.
    [48] Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X, Yang J. Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 2008 Jun;23(3):310-20.
    [49] Wang X, Ye Z, Zhong J, Xiang J, Yang J. Adenovirus-mediated Il-24 expression suppresses hepatocellular carcinoma growth via induction of cell apoptosis and cycling arrest and reduction of angiogenesis. Cancer Biother Radiopharm. 2007Feb;22(1):56-63.
    [50] Pan X, Sheng W, Zhu Q, Xie Y, Ye Z, Xiang J, Li D, Yang J. Inhibition of pancreatic carcinoma growth by adenovirus-mediated human interleukin-24 expression in animal model. Cancer Biother Radiopharm. 2008 Aug;23(4):425-34.
    [1] Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004;428(6980):328-32.
    [2] Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003;63(10):2373-8.
    [3] Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A. 2005;102(21):7481-6.
    [4] Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH, Retter MW, Hill P, Chada S, Grimm EA. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 2002;168(12):6041-6.
    [5] Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ, Alexandre D, Chen Y, Vozhilla N, Mei MX, Christiansen KA, Sivo F, Goldstein NI, Mhashilkar AB, Chada S, Huberman E, Pestka S, Fisher PB. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene. 2001;20(48):7051-63.
    [6] Mountford PS, Smith AG. Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet. 1995 May;11(5):179-84.
    [7] Emerman M, Temin HM. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984 Dec;39(3 Pt 2):449-67.
    [8] He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A.1998;95(5):2509-14.
    [9] Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R, Gu J, Qian C, Liu X. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology. 2004 May;39(5):1371-81.
    [10] Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther. 2000 Jul 20;11(11):1509-19.
    [11] Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988 Jul 28;334(6180):320-5.
    [12] Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001 Jul 1;15(13):1593-612.
    [13] Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res. 1997 Mar 1;25(5):925-32.
    [14] Borman AM, Bailly JL, Girard M, Kean KM. Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res. 1995 Sep 25;23(18):3656-63.
    [15] Houdebine LM, Attal J. Internal ribosome entry sites (IRESs): reality and use. Transgenic Res. 1999 Jun;8(3):157-77.
    [16] Emerman M, Temin HM. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol. 1986 Mar;6(3):792-800.
    [17] Emerman M, Temin HM. Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 1986 Dec 9;14(23):9381-96.
    [18] Dougherty JP, Temin HM. High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol. 1986 Dec;6(12):4387-95.
    [19] Liu YC, Kawagishi M, Mikayama T, Inagaki Y, Takeuchi T, Ohashi H. Processing of a fusion protein by endoprotease in COS-1 cells for secretion of mature peptide by using a chimeric expression vector. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8957-61.
    [20] Sáiz JC, CairóJ, Medina M, Zuidema D, Abrams C, Belsham GJ, Domingo E, Vlak JM. Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization. J Virol. 1994 Jul;68(7):4557-64.
    [21] Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. Comparative genomics of foot-and-mouth disease virus. J Virol. 2005 May;79(10):6487-504.
    [22] de Felipe P, Martín V, Cortés ML, Ryan M, Izquierdo M. Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther. 1999 Feb;6(2):198-208.
    [1] Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003 May 15;63(10):2373-8.
    [2] Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004 Mar 18;428(6980):328-32.
    [3] Zhang X, Xu LS, Wang ZQ, Wang KS, Li N, Cheng ZH, Huang SZ, Wei DZ, Han ZG. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett. 2004;570(1-3):7-12.
    [4] Unoki M, Shen JC, Zheng ZM, Harris CC. Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem. 2006 Nov 10;281(45):34677-86.
    [5] Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L, Miranda C, Ladetto M, Neri TM, Neri A, Greco A, Mangoni M, Bonati A, Rizzoli V, Giuliani N. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood.2007 Dec 15;110(13):4464-75.
    [6] Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH, Retter MW, Hill P, Chada S, Grimm EA. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 2002;168(12):6041-6.
    [7] Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ, Alexandre D, Chen Y, Vozhilla N, Mei MX, Christiansen KA, Sivo F, Goldstein NI, Mhashilkar AB, Chada S, Huberman E, Pestka S, Fisher PB. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene. 2001;20(48):7051-63.
    [8] Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C, Randlev B, Gillenwater AM, Bruso P, Kaye SB, Hong WK, Kirn DH. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000 Aug;6(8):879-85.
    [9] Wands JR, Lavaissiere L, Moradpour D, de la Monte S, Mohr L, Nicolau C, Tanaka S. Immunological approach to hepatocellular carcinoma. J Viral Hepat. 1997;4 Suppl 2:60-74.
    [10] Bates S, Ryan KM, Phillips AC, Vousden KH. Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene. 1998 Oct 1;17(13):1691-703.
    [11] Medema RH, Klompmaker R, Smits VA, Rijksen G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene. 1998 Jan 29;16(4):431-41.
    [12] Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol. 1998 Jan;18(1):629-43.
    [13] Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J,Crabtree GR, Roberts JM. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 1994 Dec 8;372(6506):570-3.
    [14] Peng D, Fan Z, Lu Y, DeBlasio T, Scher H, Mendelsohn J. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res. 1996 Aug 15;56(16):3666-9.
    [15] McIntyre M, Desdouets C, Sénamaud-Beaufort C, Laurent-Winter C, Lamas E, Bréchot C. Differential expression of the cyclin-dependent kinase inhibitor P27 in primary hepatocytes in early-mid G1 and G1/S transitions. Oncogene. 1999 Aug 12;18(32):4577-85.
    [16] Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW. p27kip1:a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol. 1999 Feb;154(2):313-23.
    [17] Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, MassaguéJ. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994 Jul 15;78(1):59-66.
    [18] Chell S, Kaidi A, Williams AC, Paraskeva C. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta. 2006 Aug;1766(1):104-19.
    [19] Kokawa A, Kondo H, Gotoda T, Ono H, Saito D, Nakadaira S, Kosuge T, Yoshida S. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer. 2001 Jan 15;91(2):333-8.
    [20] Ueno T, Chow LW, Toi M. Increases in circulating VEGF levels during COX-2 inhibitor treatment in breast cancer patients. Biomed Pharmacother. 2006 Jul;60(6):277-9.
    [21] Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, Yun YS, Pyo H. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res. 2005 Oct 15;65(20):9501-9.
    [22] Rensing-Ehl A, Frei K, Flury R, Matiba B, Mariani SM, Weller M, Aebischer P, Krammer PH, Fontana A. Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur J Immunol. 1995 Aug;25(8):2253-8.
    [23] Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147-57.
    [24] Hengartner MO. The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770-6.
    [25] Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol. 1999 Feb 11;9(3):147-50.
    [26] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463-516.
    [1] Folkman J. Fighting cancer by attacking its blood supply. Sci Am. 1996 Sep;275(3):150-4.
    [2] Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002 Nov 1;20(21):4368-80.
    [3] Zhou Z, Zhou RR, Guan H, Bucana CD, Kleinerman ES. E1A gene therapy inhibits angiogenesis in a Ewing's sarcoma animal model. Mol Cancer Ther. 2003 Dec;2(12):1313-9.
    [4] Yao DF, Wu XH, Zhu Y, Shi GS, Dong ZZ, Yao DB, Wu W, Qiu LW, Meng XY. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2005 May;4(2):220-6.
    [5] Iavarone M, Lampertico P, Iannuzzi F, Manenti E, Donato MF, Arosio E, Bertolini F, Primignani M, Sangiovanni A, Colombo M. Increased expression of vascular endothelial growth factor in small hepatocellular carcinoma. J Viral Hepat. 2007 Feb;14(2):133-9.
    [6] Horrée N, van Diest PJ, van der Groep P, Sie-Go DM, Heintz AP. Hypoxia and angiogenesis in endometrioid endometrial carcinogenesis. Cell Oncol. 2007;29(3): 219- 27.
    [7] M?bius C, Demuth C, Aigner T, Wiedmann M, Wittekind C, M?ssner J, Hauss J, Witzigmann H. Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma. Eur J Surg Oncol. 2007 Oct;33(8):1025-9.
    [8] El-Gohary YM, Silverman JF, Olson PR, Liu YL, Cohen JK, Miller R, Saad RS. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol. 2007 Apr;127(4):572-9.
    [9] Kopfstein L, Veikkola T, Djonov VG, Baeriswyl V, Schomber T, Strittmatter K, Stacker SA, Achen MG, Alitalo K, Christofori G. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol. 2007Apr;170(4):1348-61.
    [10] Nikiteas NI, Tzanakis N, Theodoropoulos G, Atsaves V, Christoni Z, Karakitsos P, Lazaris AC, Papachristodoulou A, Klonaris C, Gazouli M. Vascular endothelial growth factor and endoglin (CD-105) in gastric cancer. Gastric Cancer. 2007;10(1):12-7.
    [11] Djordjevic G, Mozetic V, Mozetic DV, Licul V, Ilijas KM, Mustac E, Oguic R, Fuckar Z, Jonjic N. Prognostic significance of vascular endothelial growth factor expression in clear cell renal cell carcinoma. Pathol Res Pract. 2007;203(2):99-106.
    [12] Mercurio AM, Bachelder RE, Bates RC, Chung J. Autocrine signaling in carcinoma: VEGF and the alpha6beta4 integrin. Semin Cancer Biol. 2004 Apr;14(2):115-22.
    [13] Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005 Apr;7(2):122-33.
    [14] Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM. CXC chemokines in angiogenesis. J Leukoc Biol. 2000 Jul;68(1):1-8.
    [15] Yuan A, Chen JJ, Yao PL, Yang PC. The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci. 2005 Jan 1;10:853-65.
    [16] Stabenow E, Tavares MR, Ab'Saber AM, Parra-Cuentas ER, de Matos LL, Eher EM, Capelozzi VL, Ferraz AR. Angiogenesis as an indicator of metastatic potential in papillary thyroid carcinoma. Clinics. 2005 Jun;60(3):233-40.
    [1] Okada H, Giezeman-Smits KM, Tahara H, Attanucci J, Fellows WK, Lotze MT,Chambers WH, Bozik ME. Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSVtk tumor vaccine. Gene Ther. 1999 Feb;6(2):219-26.
    [2] Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R, Gu J, Qian C, Liu X. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology. 2004 May;39(5):1371-81.
    [3] Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther. 2000 Jul 20;11(11):1509-19.
    [4] Ngoi SM, Chien AC, Lee CG. Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther. 2004 Mar;4(1):15-31.
    [5] Emerman M, Temin HM. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984 Dec;39(3 Pt 2):449-67.
    [6] Emerman M, Temin HM. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol. 1986 Mar;6(3):792-800.
    [7] Emerman M, Temin HM. Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 1986 Dec 9;14(23):9381-96.
    [8] Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988 Jul 28;334(6180):320-5.
    [9] Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001 Jul 1;15(13):1593-612.
    [10] Mountford PS, Smith AG. Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet. 1995 May;11(5):179-84.
    [11] Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins.Nucleic Acids Res. 1997 Mar 1;25(5):925-32.
    [12] Borman AM, Bailly JL, Girard M, Kean KM. Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res. 1995 Sep 25;23(18):3656-63.
    [13] Houdebine LM, Attal J. Internal ribosome entry sites (IRESs): reality and use. Transgenic Res. 1999 Jun;8(3):157-77.
    [14] Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther. 2000 Apr;1(4):376-82.
    [15] Sáiz JC, CairóJ, Medina M, Zuidema D, Abrams C, Belsham GJ, Domingo E, Vlak JM. Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization. J Virol. 1994 Jul;68(7):4557-64.
    [16] Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. Comparative genomics of foot-and-mouth disease virus. J Virol. 2005 May;79(10):6487-504.
    [17] Donnelly ML, Gani D, Flint M, Monaghan S, Ryan MD. The cleavage activities of aphthovirus and cardiovirus 2A proteins. J Gen Virol. 1997 Jan;78 ( Pt 1):13-21.
    [18] Hahn H, Palmenberg AC. Deletion mapping of the encephalomyocarditis virus primary cleavage site. J Virol. 2001 Aug;75(15):7215-8.
    [19] Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol. 2001 May;82(Pt 5):1013-25.
    [20] Toyoda H, Nicklin MJ, Murray MG, Anderson CW, Dunn JJ, Studier FW, Wimmer E. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell. 1986 Jun 6;45(5):761-70.
    [21] Sommergruber W, Zorn M, Blaas D, Fessl F, Volkmann P, Maurer-Fogy I, Pallai P, Merluzzi V, Matteo M, Skern T, et al. Polypeptide 2A of human rhinovirus type2: identification as a protease and characterization by mutational analysis. Virology. 1989 Mar;169(1):68-77.
    [22] Ryan MD, Drew J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 1994 Feb 15;13(4):928-33.
    [23] de Felipe P, Martín V, Cortés ML, Ryan M, Izquierdo M. Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther. 1999 Feb;6(2):198-208.
    [24] Liu YC, Kawagishi M, Mikayama T, Inagaki Y, Takeuchi T, Ohashi H. Processing of a fusion protein by endoprotease in COS-1 cells for secretion of mature peptide by using a chimeric expression vector. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8957-61.
    [25] G?ken J, Jiang J, Daniel K, van Berkel E, Hughes C, Kuiper M, Darling D, Tavassoli M, Galea-Lauri J, Ford K, Kemeny M, Russell S, Farzaneh F. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther. 2000 Dec;7(23):1979-85.
    [26] Dougherty JP, Temin HM. High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol. 1986 Dec;6(12):4387-95.
    [27] Rogulski KR, Kim JH, Kim SH, Freytag SO. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther. 1997 Jan 1;8(1):73-85.
    [28] Paquin A, Jaalouk DE, Galipeau J. Retrovector encoding a green fluorescent protein-herpes simplex virus thymidine kinase fusion protein serves as a versatile suicide/reporter for cell and gene therapy applications. Hum Gene Ther. 2001 Jan 1;12(1):13-23.
    [29] Candotti F, Agbaria R, Mullen CA, Touraine R, Balzarini J, Johns DG, Blaese RM. Use of a herpes thymidine kinase/neomycin phosphotransferase chimeric gene for metabolic suicide gene transfer. Cancer Gene Ther. 2000 Apr;7(4):574-80.
    [30] Lode HN, Dreier T, Xiang R, Varki NM, Kang AS, Reisfeld RA. Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma. Proc Natl Acad Sci U S A.1998 Mar 3;95(5):2475-80.
    [31] Morgan RA, Couture L, Elroy-Stein O, Ragheb J, Moss B, Anderson WF. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res. 1992 Mar 25;20(6):1293-9.
    [32] De Felipe P, Izquierdo M. Tricistronic and tetracistronic retroviral vectors for gene transfer. Hum Gene Ther. 2000 Sep 1;11(13):1921-31.