磁粒子标记骨髓间充质干细胞经动脉移植治疗犬脑梗死的MR成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分犬脑梗死模型建立及影像学评估
     第一章较大直径血栓栓塞犬大脑中动脉建立类腔隙性脑梗死模型及其影像学评估
     目的:研究使用大直径血栓栓塞时,血管的栓塞部位、脑梗死的功能MRI表现,并探讨该模型的发生机制。
     方法:选取六只成年健康比格犬,抽取自体静脉血,制备白色血栓。经股动脉插管至左侧颈内动脉近端,注射一条直径约1.7mm、长度约5mm的血栓,血管造影确认左侧大脑中动脉栓塞成功。栓塞后6小时内,每半小时进行DWI和T2WI扫描,之后在12小时、24小时及1周时间点再次进行扫描,通过Image J测量脑梗体积。栓塞后6小时、24小时及1周时,进行PWI及MRA扫描,评估脑灌注及栓塞血管情况。计算脑梗死的PWI-DWI不匹配比值(:PWI体积-DWI体积)/DWI体积。
     结果:六只比格犬均出现左侧MCA供血区的单一或多发的,直径小于10mm的圆形或卵圆形类腔隙性脑梗死病灶,主要位于左侧尾状核、内囊及皮质下白质。DWI在栓塞后1.08±0.49小时可以检测到病灶,表现为高信号,24小时病灶直径为(6.38±1.56)mm。栓塞后DWI上病灶体积持续增加,从1小时的(87.19±67.16)mm~3增加至24小时的(368.98±217.05)mm~3(P=0.009)。同时PWI上缺血体积逐渐减小(P=0.002),6小时为(7315.00±2054.38)mm~3,24小时为(4900.33±1319.71)mm~3,一周时降至(3334.33±1195.11)mm~3。梗死后6小时,PWI-DWI不匹配比值为41.93±22.75,表现为“广泛性不匹配”,24小时减小至18.10±13.74(P=0.002)。左侧MCA栓塞后24小时内,MRA未见左侧MCA再通,一周时MCA存在不同程度再通。
     结论:1.7mm较大直径血栓可以栓塞MCA近端,由于犬有丰富的颅内外血管吻合,形成了类腔隙性脑梗死。DWI可以早期检测到梗死灶,该模型特征性的MR表现为广泛性的PWI-DWI不匹配。
     第二章犬大脑中动脉栓塞联合颈内动脉近端血流阻断建立脑梗死模型及其影像学评估
     目的:联合应用MCA栓塞及同侧ICA短暂性或持续性血流阻断建立脑梗死模型,通过功能磁共振对比两种脑梗死模型的特征,探索合适的犬MCA供血区梗死模型。
     方法:12只健康成年比格犬,分别抽取静脉血,离心后制备直径约1.7mm,长约5mm的自体白色血栓备用。将犬随机分为两组:组A(n=6只),左侧MCA近端自体白色血栓栓塞后,使用5F椎动脉导管对左侧ICA血流持续阻断2小时;组B(n=6只),左侧MCA近端自体白色血栓栓塞,联合左侧ICA近端明胶海绵条栓塞。在栓塞完成后24小时及1周时分别进行DWI、T2WI及PWI扫描。测量24小时DWI、T2WI及1周T2WI上脑梗死体积,计算24小时及1周rCBF比值(rrCBF),同时对两种模型分别进行神经功能评分。
     结果:组A动物脑梗死主要累及左侧颞叶皮质、皮质下白质及左侧基底节,24小时DWI及T2WI体积分别为2154.00±1034.35mm~3、1417.57±926.83mm~3,PWI显示24小时rCBF下降明显,rrCBF为0.61±0.05。1周时T2WI体积下降至841.58±582.42mm~3,rrCBF升高为0.82±0.11。24小时及一周神经系统评分分别为6.53±1.58,4.80±0.98。组B动物脑梗死面积较组A明显增大(P <0.01),表现为左侧MCA供血区大面积脑梗死,24小时DWI及T2WI体积分别为8928.10±1515.52mm~3、6523.94±1460.33mm~3,rCBF下降更明显,rrCBF为0.21±0.09(P <0.01),神经系统评分较组A升高,为8.67±0.52(P <0.05)。一周时组B T2WI体积为4059.87±916.49mm~3,较组A脑梗死体积明显增加,rrCBF为0.56±0.12,神经系统评分为7.33±0.58。组A无动物死亡,而组B一周内出现两只动物死亡。
     结论:犬MCA近端栓塞联合同侧ICA阻断2小时的脑梗死模型主要累及MCA供血区皮质、皮质下白质及基底节区,与MCA及ICA近端均栓塞模型相比,梗死体积、脑血流量下降程度和神经功能障碍适中,可以用于脑梗死诊疗相关的实验研究。
     第二部分犬骨髓间充质干细胞的磁粒子标记和体外MR成像
     目的:探讨超顺磁性氧化铁纳米颗粒(Fe3O4-DMSA-PLL,SPIO)体外标记犬骨髓间充质干细胞(BMSCs)的合适方案,以及体外MR成像特点及示踪时效性。
     方法:分离培养犬BMSC,分别用不同浓度SPIO(5,10,20,40,80μg/mL)标记犬BMSC,37℃5%CO2孵育24小时,通过标记效率指标(普鲁士蓝染色)确定最佳标记方案。测定标记后细胞毒性(使用台盼蓝排除试验、AnnexinV-FITC/PI双染细胞凋亡检测SPIO标记后的细胞毒性,并与未标记对照组比较。标记后细胞行3.0T磁共振体外成像,并对标记后BMSCs体外衰减进行长时间示踪。
     结果:①20μg/mL及以上浓度的SPIO标记24小时后,BMSCs标记率可达95%以上;②20μg/mL SPIO进行犬BMSCs标记后,细胞凋亡检测显示标记组凋亡细胞比率约为8.86±3.56%,与对照组比较无统计学差异(P>0.05);③标记细胞在3.0T MRI T2*WI和SWI序列上信号降低最明显,体外可检测的最低细胞量为5×10~4个, T2*值与细胞量呈负相关(P <0.05);④随标记后培养时间延长,SPIO标记率及信号强度均下降,体外MRI仅可示踪到2周左右,T2*值可一定程度反映体外衰减。
     结论: SPIO20μg/ml标记24小时是可行的BMSCs的标记方案,对细胞活力无明显影响。3.0T MRI的T2*WI及SWI序列可以敏感的检测到5×10~4个细胞。纳米铁标记后细胞体外示踪周期较短。
     第三部分磁粒子标记犬骨髓间充质干细胞经颈内动脉颅内移植的MR示踪研究
     目的:使用犬脑梗死模型,评估经颈内动脉移植超顺磁性纳米铁颗粒(SPIO)标记的犬骨髓间充质干细胞(BMSCs)的可行性,并对移植后细胞进行MR活体示踪研究。
     方法:分离培养比格犬骨髓间充质干细胞,用20μg/mL SPIO进行体外标记。14只成年健康比格犬,通过左侧大脑中动脉近端自体血栓栓塞联合左侧颈内动脉血流阻断2小时建立犬脑梗死模型。12只犬于栓塞后一周进行BMSCs移植,2只为对照组。细胞移植前行DSA造影,根据左侧大脑中动脉再通情况,将比格犬分为三组:组A,左侧大脑中动脉完全性再通;组B,左侧大脑中动脉部分性再通;组C,左侧大脑中动脉完全未见再通。3×106个SPIO标记的BMSCs通过左侧颈内动脉进行颅内移植。移植前、移植后1小时、24小时,1周、2周、3周、4周,采用3.0T MRI对移植细胞进行活体示踪。24小时及4周时的MRI结果分别与病理结果(HE及普鲁士蓝染色)进行对照分析。
     结果:组A、B、C比格犬数目分别为5只、4只、3只。SPIO标记的BMSCs经左侧颈内动脉移植后,组A比格犬可见左侧大脑半球广泛散在分布的小斑点状低信号,组B比格犬左侧大脑半球内散在的低信号细胞量较组A小,组C犬颅脑内未见明显低信号移植细胞。移植前脑梗死体积越大,移植后颅内细胞量越多。MRI可在四周内对磁粒子标记的BMSCs进行有效示踪。四周时,MRI显示梗死周边明显低信号,HE及普鲁士蓝染色显示梗死周边见聚集的蓝染铁颗粒。
     结论:在犬的脑梗死模型中,经颈内动脉途径移植BMSCs技术上可行。移植侧大脑中动脉通畅情况及移植前脑梗死体积可能会影响颅内移植细胞量。MRI对经颈内动脉移植的SPIO-BMSCs可以进行至少四周的有效活体示踪。
Part one: Establishment of cerebral infarction and its MRevaluation in a canine model
     Section Ⅰ: Magnetic resonance imaging for assessing a novelembolic stroke resembling lacunar infarction after proximal middlecerebral artery occlusion in a canine model
     Purpose: We hypothesized that lacunar infarction could be induced by the proximalMCA occlusion involving the orifices of lenticulostriate arteries in animal models,which had abuntdant distal cerebral collateral anastomosis.This study established aproximal MCA occlusion model using thrombi (1.7mm in diameter and5mm inlength), investigated the MRI characterics of this model and discussed the potentialmechanisms of lacunar infarction.
     Materials and Methods: The left proximal MCA was embolized with an autologousthrombus in six beagles. Diffusion-weighted imaging (DWI) and T2-weightedimaging (T2WI) were performed every half hour during the first six hours afterocclusion, followed by three time points at12hours,24hours, and one week.Perfusion-weighted imaging (PWI) and magnetic resonance angiography (MRA)were carried out at six hours,24hours and one week. The PWI-DWI mismatch ratiowas defined as (PWI-DWI)/DWI ischemic volume.
     Results: Solitary or multiple small ischemic lesions resembling lacunar infarctionwere induced by MCA occlusion. They located in the left caudate nucleus, internalcapsule and/or deep white matter, with the diameter of6.38±1.56mm at24hour. Allthe lesions could be detected within two hours by DWI. Lesion volume on DWIincreased in a time dependent manner, from (87.19±67.16) mm~3at one hour up to (368.98±217.05) mm~3at24hours (P=0.009), while that on PWI gradually decreasedfrom (7315±2054.38) mm~3at six hours to (4900.33±1319.71) mm~3at24hours and(3334.33±1195.11) mm~3at one week (P=0.002). The mismatch ratio was41.93±22.75at six hours after ischemia, showing “extensive mismatch”, anddecreased to18.10±13.74at24hours (P=0.002). No MCA recanalization wasobserved within24hours after MCA occlusion.
     Conclusions: Lacunar infarction could be induced by proximal MCA occlusion incanine model due to abundant collateral anastomosis. It could be detected early byDWI and was characterized by extensive PWI-DWI mismatch.
     Section Ⅱ:MR evaluation of canine stroke models established bycombination of middle cerebral artery occlusion and ipsilateralinternal carotid artery blockage
     Purpose: To establish two canine stroke models by combination of MCA occlusionand temporal blockage or consistent occlusion of ipsilateral internal carotid artery andto further compare these two models by MR examination.
     Materials and Methods: Twelve beagle dogs were enrolled and randomly separatedinto two groups. Group A: left proximal MCA was embolized with autologous clot(1.7mm in diameter,5mm in length), the left ICA was then temporally blocked for2hours using5F vertebral catheter. Group B: left proximal MCA was embolized withautologous clot. The left ICA was also embolized by gelatin sponge. DWI, T2WI andPWI were performed at24hours and one week after embolization. The infarction volumes were measured at24h-DWI,24h-T2WI, and1w-T2WI. rrCBF was assessedfrom24h-and1w-PWI. The neurological scoring at24hours and one week afterembolization were also compared between the two groups.
     Results: The ischemic infarctions were mainly located in the left basal ganglia andtemporal lobe in group A. The volume measured on24h-DWI and24h-T2WI were2154.00±1034.35mm~3and1417.57±926.83mm~3, respectively. rrCBF was0.61±0.05.One week later, the infarction volume on T2WI decreased to841.58±582.42mm~3while rrCBF increased to0.82±0.11. The neurological scores were6.53±1.58at24hours and4.80±0.98at one week after embolization, respectively. In group B, largecerebral infarctions involving the left MCA territory were observed. The volumemeasured on24h-DWI and24h-T2WI were8928.10±1515.52mm~3and6523.94±1460.33mm~3, obviously larger than those of group A (P <0.01). rrCBFsharply decreased to0.21±0.09, lower than that of group A (P <0.01). Theneurological scores at24hours was8.67±0.52, higher than that of group A (P <0.05).One week after embolization, the infarction volume on T2WI decreased to4059.87±916.49mm~3, but still much larger than that of group A (P <0.01). rrCBFand neurological score recovered to0.56±0.12and7.33±0.58, respectively. All thebeagles survived for one week in group A. But two beagles in group B sacrificedwithin one week.
     Conclusions: Beagle dogs presented moderate volume of cerebral infarction,moderate decreased rCBF and mild neuro-behavioral disfunction after combination ofleft proximal MCA embolization and temporal blockage of left ICA for two hours.This canine stroke model is more suitable for experimental research than the modelinduced by occluding both proximal MCA and ICA.
     Part Two: Magnetically labeling of canine bone marrowmesenchymal stem cells and MR imaging in vitro
     Purpose: To explore the optimal labeling procedure of canine BMSCs withhome-synthesized superparamagnetic iron oxide (SPIO) and to obtain the in vitro MRimages of the labeled BMSCs by3.0T MR.
     Materials and Methods: BMSCs isolated from canines were incubated with SPIOwith different concentrations (5,10,20,40,80μg/mL, respectively) at37℃5%CO2for24hours. The labeling ratio was assessed by Prussian blue staining andimmunofluorescence tests. Cell viability was evaluated by trypan-blue exclusion andAnnexin-FITC/PI apoptosis. Labeled-cells were imaged by3.0T MRI. MR signalattenuation of labeled BMSCs was monitored continuously after in vitro culture.
     Results:①When SPIO concentration went up to20μg/mL or above, the labelingratio could reach95%or more;②The apoptosis ratio was8.86±3.56%after BMSCswere labeled with20μg/mL SPIO for24hours, which was not significant differentfrom that of the unlabeled BMSCs;③As few as5×10~4BMSCs could be detected by3.0T MR imaging with T2*WI and SWI sequences. T2*value and BMSCs numberwere inversely correlated (P <0.05);④The labeling ratio and MR signal of BMSCswere attenuated with time after in vitro culture. MR imaging could only track labeledBMSCs efficiently within2weeks.
     Conclusions: BMSCs could be labeled with home-synthesized SPIO efficiently andsafely. T2*WI and SWI sequences could detected5×10~4BMSCs sensitively. However,the tracking time of SPIO-labeled BMSCs by3.0T MRI in vitro was short.
     Part Three: In vivo MR imaging of intraarterially deliveredmagnetically labeled bone marrow mesenchymal stem cellsin a canine stroke model
     Purpose: This study aimed to evaluate the feasibility of intraarterial (IA) delivery andin vivo MR imaging of superparamagnetic iron oxide (SPIO)-labeled bone marrowmesenchymal stem cells (BMSCs) in a canine stroke model.
     Materials and Methods: BMSCs harvested from beagles’ bone marrow were labeledwith home-synthesized SPIO. Adult beagle dogs (n=14) were subjected to leftproximal middle cerebral artery (MCA) occlusion by autologous thrombus, followedby two-hour left internal carotid artery (ICA) occlusion with5French vertebralcatheter. One week later,12dogs were classified as three groups before transplantation:group A: complete MCA recanalization, group B: incomplete MCA recanalization,group C: no MCA recanalization.3×106labeled-BMSCs were delivered through leftICA. The left two dogs were distributed to the control group. Series in vivo MRIimages were obtained before cell grafting, one and24hours after transplantation andweekly thereafter until four weeks. MRI findings were compared with histologicalstudies at the time point of24hours and four weeks.
     Results: Home-synthesized SPIO was useful to label BMSCs without cell viabilitycompromise. BMSCs scattered widely in the left cerebral hemisphere in group A,while fewer grafted cells were observed in group B and no cell was detected in group Cat one hour after transplantation. A larger infarction on the day of cell transplantationwas associated with more grafted cells in the brain. Grafted BMSCs could be trackedeffectively by MRI within four weeks and were found in peri-infarction area byPrussian blue staining.
     Conclusions: It is feasible of IA BMSCs transplantation in a canine stroke model.Both the ipsilateral MCA condition and infarction volume before transplantation mayaffect the amount of grafted cells in target brain. In vivo MR imaging is useful fortracking IA delivered BMSCs after SPIO labeling.
引文
1. Suldow CL, Warlow CP. International Stroke Incidence Collaboration.Comparable studies of the incidence of stroke and its pathological types: resultsfrom an international collaboration. Stroke,1997,28(3):491-499
    2. Yamashita T, Dequchi K, Sehara Y, et al. Therapeutic strategy for ischemic stroke.Neurochem Res,2009,34(4):707-10.
    3. Katzan IL, Furlan AJ, Lloyd LE, et al. Use of tissue-type plasminogen activatorfor acute ischemic stroke: the Cleveland area experience. JAMA,2000,283(9):1151-1158.
    4. Thrombolysis with Alteplase4.5-6Hours after Acute Ischemic Stroke. EurNeurol,2011,65(3):170-174.
    5. Alexandrov AV, Hall CE, Labiche LA, et al. Ischemic stunning of the brain: earlyrecanalization without immediate clinical improvement in acute ischemic stroke.Stroke,2004,35(2):449-452.
    6. Kidd PM. Integrated brain restoration after ischemic stroke-medical management,risk factors, nutrients, and other interventions for managing inflammation andenhancing brain plasticity. Altern Med Rev2009,14(1):14-35.
    7. Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapyreduces apoptosis and promotes endogenous cell proliferation after stroke infemale rat. Journal of neuroscience research.2003;73(6):778-86.
    8. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalizedhuman mesenchymal stem cells protects against injury in a cerebral ischemiamodel in adult rat. Experimental neurology.2006;199(1):56-66.
    9. Jiang Q, Zhang ZG, Ding GL, et al. Investigation of neural progenitor cellinduced angiogenesis after embolic stroke in rat using MRI. NeuroImage.2005;28(3):698-707.
    10. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeuticbenefits by human mesenchymal stem cells (hMSCs) and Ang-1gene-modifiedhMSCs after cerebral ischemia. Journal of cerebral blood flow and metabolism.2008;28(2):329-40.
    11. Toyama K, Honmou O, Harada K, et al. Therapeutic benefits of angiogeneticgene-modified human mesenchymal stem cells after cerebral ischemia.Experimental neurology.2009;216(1):47-55.
    12. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancetneurology.2002;1(2):92-100.
    13. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:nature, biology, and potential applications. Stem Cells.2001;19(3):180-92.
    14. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet.2005;366(9485):592-602.
    15. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenousadministration of human bone marrow stromal cells induces angiogenesis in theischemic boundary zone after stroke in rats. Circ Res2003;92:692-699.
    16. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit ofintravenous administration of bone marrow stromal cells after cerebral ischemiain rats. Stroke2001;32:1005-1011.
    17. Rice HE, Hsu EW, Sheng H, Evenson DA, Freemerman AJ, Safford KM, et al.Superparamagnetic iron oxide labeling and transplantation of adipose-derivedstem cells in middle cerebral artery occlusion-injured mice. Am J Roentgenol2007;188:1101-1108.
    18. Kang BT, Lee JH, Jung DI,et al. Canine model of ischemic stroke withpermanent middle cerebral artery occlusion: clinical and histopathologicalfindings. J Vet Sci,2007,8:369-376.
    19. Stuckey DJ, Carr CA, Martin-Rendon E, et al. Iron particles for noninvasivemonitoring of bone marrow stromal cell engraftment into, and isolation of viableengrafted donor cells from the heart. Stem Cells,2006,24(8):1968-1975.
    20. Arbab AS, Yocum GT, Rad, AM, et al. Labeling of cells withferumoxides-protamine sulfate complexes does not inhibit function ordifferentiation capacity of hematopoietic or mesenchymal stem cells.NMRBiomed,2005,18:553-559.
    1. Bamford J, Sandercock P, Jones L, Warlow C. The natural history of lacunarinfarction: the Oxfordshire Community Stroke Project. Stroke1987;18:545-551.
    2. Donnan GA. Classifications of subcortical infarcts. In: Donnan G NB, BamfordJM, eds. Classifications of subcortical infarcts. Oxford, UK: Oxford MedicalPublications;2002:27-34.
    3. Fisher CM. Lacunar strokes and infarcts: a review. Neurology1982;32:871-876.
    4. Fisher CM. Capsular infarcts: the underlying vascular lesions. Arch Neurol1979;36:65-73.
    5. Millikan C, Futrell N. The fallacy of the lacune hypothesis. Stroke1990;21:1251-1257.
    6. Hashimoto Y, Kaneko T, Ohtaki M. Multiple small subcortical infarction requiredto distinguish from lacunar infarction: evaluation by use of diffusion-weightedimaging. No To Shinkei2003;55:1041-1046.
    7. Cho AH, Kang DW, Kwon SU, Kim JS. Is15mm size criterion for lacunarinfarction still valid? A study on strictly subcortical middle cerebral arteryterritory infarction using diffusion-weighted MRI. Cerebrovasc Dis2007;23:14-19.
    8. Gass A, Ay H, Szabo K, Koroshetz WJ. Diffusion-weighted MRI for the "smallstuff": the details of acute cerebral ischaemia. Lancet Neurol2004;3:39-45.
    9. Ay H, Oliveira-Filho J, Buonanno FS, Ezzeddine M, Schaefer PW, Rordorf G, etal. Diffusion-weighted imaging identifies a subset of lacunar infarctionassociated with embolic source. Stroke1999;30:2644-2650.
    10. Baird AE, Lovblad KO, Schlaug G, Edelman RR, Warach S. Multiple acutestroke syndrome: marker of embolic disease? Neurology2000;54:674-678.
    11. Gerraty RP, Parsons MW, Barber PA, Darby DG, Desmond PM, Tress BM, et al.Examining the lacunar hypothesis with diffusion and perfusion magneticresonance imaging. Stroke2002;33:2019-2024.
    12. Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiplebrain infarction on diffusion-weighted imaging. Stroke2000;31:688-694.
    13. Olivot JM, Mlynash M, Thijs VN, Purushotham A, Kemp S, Lansberg MG, et al.Geography, structure, and evolution of diffusion and perfusion lesions inDiffusion and perfusion imaging Evaluation For Understanding Stroke Evolution(DEFUSE). Stroke2009;40:3245-3251.
    14. Kang BT, Lee JH, Jung DI, Park C, Gu SH, Jeon HW, et al. Canine model ofischemic stroke with permanent middle cerebral artery occlusion: clinical andhistopathological findings. J Vet Sci2007;8:369-376.
    15. Liu S, Hu WX, Zu QQ, Lu SS, Xu XQ, Sun L, et al. A novel embolic strokemodel resembling lacunar infarction following proximal middle cerebral arteryocclusion in beagle dogs. J Neurosci Methods2012;209:90-96.
    16. Okada Y, Shima T, Yokoyam N, et al. Comparison of middle cerebral arterytrunk occlusion by silicone cylinder embolization and by trapping. J Neurosurg,1983,58(5):492-499.
    17. Kloska SP, Wintermark M, Engelhorn T, Fiebach JB. Acute stroke magneticresonance imaging: current status and future perspective. Neuroradiology2010;52:189-201.
    18. Minematsu K, Li L, Fisher M, Sotak CH, Davis MA, Fiandaca MS.Diffusion-weighted magnetic resonance imaging: rapid and quantitative detectionof focal brain ischemia. Neurology1992;42:235-240.
    19. Mintorovitch J, Moseley ME, Chileuitt L, Shimizu H, Cohen Y, Weinstein PR.Comparison of diffusion-and T2-weighted MRI for the early detection ofcerebral ischemia and reperfusion in rats. Magn Reson Med1991;18:39-50.
    20. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al.Enlargement of human cerebral ischemic lesion volumes measured bydiffusion-weighted magnetic resonance imaging. Ann Neurol1997;41:581-589.
    21. Hofmeijer J, Veldhuis WB, Schepers J, Nicolay K, Kappelle LJ, Bar PR, et al.The time course of ischemic damage and cerebral perfusion in a rat model ofspace-occupying cerebral infarction. Brain Res2004;1013:74-82.
    22. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, DeruginN, et al. Diffusion-weighted MR imaging of acute stroke: correlation withT2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNRAm J Neuroradiol1990;11:423-429.
    23. Rohl L, Sakoh M, Simonsen CZ, Vestergaard-Poulsen P, Sangill R, Sorensen JC,et al. Time evolution of cerebral perfusion and apparent diffusion coefficientmeasured by magnetic resonance imaging in a porcine stroke model. J MagnReson Imaging2002;15:123-129.
    24. Quast MJ, Huang NC, Hillman GR, Kent TA. The evolution of acute strokerecorded by multimodal magnetic resonance imaging. Magn Reson Imaging1993;11:465-471.
    25. Nuutinen J, Liu Y, Laakso MP, Karonen JO, Vanninen EJ, Kuikka JT, et al.Perfusion differences on SPECT and PWI in patients with acute ischemic stroke.Neuroradiology2009;51:687-695.
    26. Rivers CS, Wardlaw JM, Armitage PA, Bastin ME, Carpenter TK, Cvoro V, et al.Do acute diffusion-and perfusion-weighted MRI lesions identify final infarctvolume in ischemic stroke? Stroke2006;37:98-104.
    27. Copen WA, Rezai Gharai L, Barak ER, Schwamm LH, Wu O, Kamalian S, et al.Existence of the diffusion-perfusion mismatch within24hours after onset ofacute stroke: dependence on proximal arterial occlusion. Radiology2009;250:878-886.
    28. Mihara F, Kuwabara Y, Tanaka A, Yoshiura T, Sasaki M, Yoshida T, et al.Reliability of mean transit time obtained using perfusion-weighted MR imaging;comparison with positron emission tomography. Magn Reson Imaging2003;21:33-39.
    29. Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C. Local brainhaemodynamics and oxygen metabolism in cerebrovascular disease. Positronemission tomography. Brain1989;112(Pt4):931-951.
    30. Cho TH, Hermier M, Alawneh JA, Ritzenthaler T, Desestret V, Ostergaard L, etal. Total mismatch: negative diffusion-weighted imaging but extensive perfusiondefect in acute stroke. Stroke2009;40:3400-3402.
    1. Suldow CL, Warlow CP. International Stroke Incidence Collaboration.Comparable studies of the incidence of stroke and its pathological types: resultsfrom an international collaboration. Stroke,1997,28(3):491-499
    2. Yamashita T, Dequchi K, Sehara Y, et al. Therapeutic strategy for ischemic stroke.Neurochem Res,2009,34(4):707-10.
    3. Bailey EL, McCulloch J, Sudlow C, et al. Potential animal models of lacunarstroke: A systematic review. Stroke,2009,40(6):451-8.
    4. Hossmann KA. Experimental models for the investigation of brain ischemia.Cardiovascular Research,1998,39(2):106-120.
    5.赵永生,赵峰,杨淑琴,等.急性脑梗死的动物实验及临床应用研究.中国医学影像技术,2001,17(2):125-127.
    6. Graham SM, McCullough LD, Murphy SJ, et al. Animal models of ischemicstroke: balancing experimental aims and animal care [J]. Comp Med,2004,54(8):486-496.
    7. Liu S, Hu WX, Zu QQ, Lu SS, Xu XQ, Sun L, et al. A novel embolic strokemodel resembling lacunar infarction following proximal middle cerebral arteryocclusion in beagle dogs. J Neurosci Methods2012;209:90-96.
    8. Kang BT, Lee JH, Jung DI, Park C, Gu SH, Jeon HW, et al. Canine model ofischemic stroke with permanent middle cerebral artery occlusion: clinical andhistopathological findings. J Vet Sci2007;8:369-376.
    9. Rink C, Christoforidis G, Abdujalil A, et al. Minimally invasive neuroradiologicmodel of preclinical transient middle cerebral artery occlusion in canines. PNAS.2008,105(37):14100-14105.
    10. Lu SS, Liu S, Zu QQ, et al. Multimodal magnetic resonance imaging forassessing lacunar infarction after proximal middle cerebral artery occlusion in acanine model. Chinese medical journal.2013;126(2):311-7.
    11. Suldow CL, Warlow CP. International Stroke Incidence Collaboration.Comparable studies of the incidence of stroke and its pathological types: resultsfrom an international collaboration. Stroke,1997,28(4):491-499.
    12. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focalischemic stroke in the rat: reproducible extensive cortical infarction. Stroke.1986;17(4):738-43.
    13. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W. Focal brain ischemia inthe rat: methods for reproducible neocortical infarction using tandem occlusionof the distal middle cerebral and ipsilateral common carotid arteries. Journal ofcerebral blood flow and metabolism.1988;8(4):474-85.
    14. Markgraf CG, Kraydieh S, Prado R, Watson BD, Dietrich WD, Ginsberg MD.Comparative histopathologic consequences of photothrombotic occlusion of thedistal middle cerebral artery in Sprague-Dawley and Wistar rats. Stroke.1993;24(2):286-92; discussion92-3.
    15.武柏林,刘怀军,汪国石,等.一种不开颅的微创家犬局灶性脑梗死疾病模型.中国医学影像学杂志,2003,11(1):51-55.
    1. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders.Nature.2006;441(7097):1094-6.
    2. Srivastava D, Ivey KN. Potential of stem-cell-based therapies for heart disease.Nature.2006;441(7097):1097-9.
    3. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administeredmesenchymal stem cells protect against ischemic acute renal failure throughdifferentiation-independent mechanisms. American journal of physiology Renalphysiology.2005;289(1):F31-42.
    4. Hauger O, Frost EE, van Heeswijk R, et al. MR evaluation of the glomerularhoming of magnetically labeled mesenchymal stem cells in a rat model ofnephropathy. Radiology.2006;238(1):200-10.
    5. Li L, Jiang Q, Ding G, et al. Effects of administration route on migration anddistribution of neural progenitor cells transplanted into rats with focal cerebralischemia, an MRI study. Journal of cerebral blood flow and metabolism.2010;30(3):653-62.
    6. van Buul GM, Kotek G, Wielopolski PA, et al. Clinically translatable celltracking and quantification by MRI in cartilage repair using superparamagneticiron oxides. PloS one.2011;6(2):e17001.
    7. Rice HE, Hsu EW, Sheng H, et al. Superparamagnetic iron oxide labeling andtransplantation of adipose-derived stem cells in middle cerebral arteryocclusion-injured mice. AJR American journal of roentgenology.2007;188(4):1101-8.
    8. Amsalem Y, Mardor Y, Feinberg MS, et al. Iron-oxide labeling and outcome oftransplanted mesenchymal stem cells in the infarcted myocardium. Circulation.2007;116(11Suppl):I38-45.
    9. Ju S, Teng G, Zhang Y, Ma M, Chen F, Ni Y. In vitro labeling and MRI ofmesenchymal stem cells from human umbilical cord blood. Magnetic resonanceimaging.2006;24(5):611-7.
    10. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:nature, biology, and potential applications. Stem Cells.2001;19(3):180-92.
    11. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet.2005;366(9485):592-602.
    12.黄浙勇,葛均波,杨姗等,铁羧葡胺标记猪间充质干细胞的体内外磁共振成像研究,介入放射学杂志,2006;16(2):115-121.
    13. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling withprotamine sulfate complexed to ferumoxides for cellular MRI. Blood.2004;104(4):1217-23.
    14. Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the staticdephasing regime theory to superparamagnetic iron-oxide loaded cells. Magneticresonance in medicine.2002;48(1):52-61.
    15.王庆国,严福华,徐鹏举等,磁共振成像R2*map示踪超顺磁性氧化铁标记的内皮组细胞,中华肝脏病杂志,2009;17(1):50-52.
    16. Weber A, Pedrosa I, Kawamoto A, et al. Magnetic resonance mapping oftransplanted endothelial progenitor cells for therapeutic neovascularization inischemic heart disease. European journal of cardio-thoracic surgery.2004;26(1):137-43.
    17. Stuckey DJ, Carr CA, Martin-Rendon E, et al. Iron particles for noninvasivemonitoring of bone marrow stromal cell engraftment into, and isolation of viableengrafted donor cells from, the heart. Stem Cells.2006;24(8):1968-75.
    1. Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutictime window of mesenchymal stem cells derived from bone marrow aftercerebral ischemia. Brain Res2010;1334:84-92.
    2. Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK.Intravascular cell replacement therapy for stroke. Neurosurg Focus2008;24:E15.
    3. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy forstroke. Stroke2007;38:817-826.
    4. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenousadministration of human bone marrow stromal cells induces angiogenesis in theischemic boundary zone after stroke in rats. Circ Res2003;92:692-699.
    5. Li L, Jiang Q, Zhang L, Ding G, Wang L, Zhang R, et al. Ischemic cerebral tissueresponse to subventricular zone cell transplantation measured by iterativeself-organizing data analysis technique algorithm. J Cereb Blood Flow Metab2006;26:1366-1377.
    6. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al.Therapeutic benefits of angiogenetic gene-modified human mesenchymal stemcells after cerebral ischemia. Exp Neurol2009;216:47-55.
    7. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, et al. Intracarotidtransplantation of bone marrow stromal cells increases axon-myelin remodelingafter stroke. Neuroscience2006;137:393-399.
    8. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. LancetNeurol2002;1:92-100.
    9. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit ofintravenous administration of bone marrow stromal cells after cerebral ischemiain rats. Stroke2001;32:1005-1011.
    10. Rice HE, Hsu EW, Sheng H, Evenson DA, Freemerman AJ, Safford KM, et al.Superparamagnetic iron oxide labeling and transplantation of adipose-derivedstem cells in middle cerebral artery occlusion-injured mice. AJR Am JRoentgenol2007;188:1101-1108.
    11. Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial administrationof marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma2001;18:813-819.
    12. Criado FJ, Lingelbach JM, Ledesma DF, Lucas PR. Carotid artery stenting in avascular surgery practice. J Vasc Surg2002;35:430-434.
    13. Rink C, Christoforidis G, Abduljalil A, Kontzialis M, Bergdall V, Roy S, et al.Minimally invasive neuroradiologic model of preclinical transient middlecerebral artery occlusion in canines. Proc Natl Acad Sci U S A2008;105:14100-14105.
    14. Weon YC, Kang SG, Chung JW, Kim YI, Park JH, Lee DY. Technical feasibilityand biocompatibility of a newly designed separating stent-graft in the normalcanine aorta. AJR Am J Roentgenol2006;186:1148-1154.
    15. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, et al. Effects of administrationroute on migration and distribution of neural progenitor cells transplanted intorats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab2010;30:653-662.
    16. Song M, Kim Y, Ryu S, Song I, Kim SU, Yoon BW. MRI tracking ofintravenously transplanted human neural stem cells in rat focal ischemia model.Neurosci Res2009;64:235-239.
    17. Zhou B, Shan H, Li D, Jiang ZB, Qian JS, Zhu KS, et al. MR tracking ofmagnetically labeled mesenchymal stem cells in rats with liver fibrosis. MagnReson Imaging2010;28:394-399.
    18. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. StemCells Dev2004;13:436-448.
    19. Liu S, Hu WX, Zu QQ, Lu SS, Xu XQ, Sun L, et al. A novel embolic strokemodel resembling lacunar infarction following proximal middle cerebral arteryocclusion in beagle dogs. J Neurosci Methods2012;209:90-96.
    20. Kang BT, Jang DP, Gu SH, Lee JH, Jung DI, Lim CY, et al. MRI features in acanine model of ischemic stroke: correlation between lesion volume andneurobehavioral status during the subacute stage. Comp Med2009;59:459-464.
    21. Kang BT, Lee JH, Jung DI, Park C, Gu SH, Jeon HW, et al. Canine model ofischemic stroke with permanent middle cerebral artery occlusion: clinical andhistopathological findings. J Vet Sci2007;8:369-376.
    22. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, et al.Characterization of biophysical and metabolic properties of cells labeled withsuperparamagnetic iron oxide nanoparticles and transfection agent for cellularMR imaging. Radiology2003;229:838-846.
    23. Yocum GT, Wilson LB, Ashari P, Jordan EK, Frank JA, Arbab AS. Effect ofhuman stem cells labeled with ferumoxides-poly-L-lysine on hematologic andbiochemical measurements in rats. Radiology2005;235:547-552.
    24. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al.Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stemcells after transient ischemia. Stroke2008;39:1569-1574.
    25. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat withintracarotid administration of marrow stromal cells. Neurology2001;56:1666-1672.
    26. Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al.The blood-brain barrier is continuously open for several weeks followingtransient focal cerebral ischemia. Neuroscience2008;153:175-181.
    27. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrinreceptor and ferritin following ferumoxides-protamine sulfate labeling of cells:implications for cellular magnetic resonance imaging. NMR Biomed2006;19:581-592.
    28. Thu MS, Najbauer J, Kendall SE, Harutyunyan I, Sangalang N, Gutova M, et al.Iron labeling and pre-clinical MRI visualization of therapeutic human neuralstem cells in a murine glioma model. PLoS One2009;4:e7218.
    29. Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E,Karussis D, et al. Transplanted multipotential neural precursor cells migrate intothe inflamed white matter in response to experimental autoimmuneencephalomyelitis. Glia2003;41:73-80.
    30. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directedmigration of neural stem cells to sites of CNS injury by the stromal cell-derivedfactor1alpha/CXC chemokine receptor4pathway. Proc Natl Acad Sci U S A2004;101:18117-18122.
    31. Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cellsfor the repair of central nervous system injury. Bone Marrow Transplant2007;40:609-619.
    1. Shen LH, Li Y, Chen J, et al. Therapeutic benefit of bone marrow stromal cellsadministered1month after stroke. Journal of cerebral blood flow and metabolism.2007;27(1):6-13.
    2. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrowstromal cells induces angiogenesis in the ischemic boundary zone after stroke inrats. Circulation research.2003;92(6):692-9.
    3. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bonemarrow-derived mesenchymal stem cells secrete brain-derived neurotrophicfactor which promotes neuronal survival in vitro. Stem cell research.2009;3(1):63-70.
    4. Boddington S, Henning TD, Sutton EJ, Daldrup-Link HE. Labeling stem cellswith fluorescent dyes for non-invasive detection with optical imaging. Journal ofvisualized experiments.2008(14).
    5. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging ofintegrin alphavbeta3in brain tumor xenografts. Cancer research.2004;64(21):8009-14.
    6. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging withnear-infrared light: new technological advances that enable in vivo molecularimaging. European radiology.2003;13(1):195-208.
    7. Jaiswal JK, Simon SM. Imaging single events at the cell membrane. Naturechemical biology.2007;3(2):92-8.
    8. Zhang SJ, Wu JC. Comparison of imaging techniques for tracking cardiac stemcell therapy. Journal of nuclear medicine.2007;48(12):1916-9.
    9. Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cellrecruitment to ischemic infarcts in a murine model. Stroke.2004;35(4):952-7.
    10. Okada S, Ishii K, Yamane J, et al. In vivo imaging of engrafted neural stem cells:its application in evaluating the optimal timing of transplantation for spinal cordinjury. FASEB journal.2005;19(13):1839-41.
    11. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivotracking of neural progenitor cell migration to glioblastomas. Human genetherapy.2003;14(13):1247-54.
    12. Daadi MM, Li Z, Arac A, et al. Molecular and magnetic resonance imaging ofhuman embryonic stem cell-derived neural stem cell grafts in ischemic rat brain.Molecular therapy.2009;17(7):1282-91.
    13. Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for opticalmeasurements of neoplastic disease in vivo. Neoplasia.2000;2(1-2):41-52.
    14. Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light:the evolution of whole-body photonic imaging. Nature biotechnology.2005;23(3):313-20.
    15. Walczak P, Bulte JW. The role of noninvasive cellular imaging in developingcell-based therapies for neurodegenerative disorders. Neuro-degenerativediseases.2007;4(4):306-13.
    16. Modo M, Beech JS, Meade TJ, Williams SC, Price J. A chronic1year assessmentof MRI contrast agent-labelled neural stem cell transplants in stroke. NeuroImage.2009;47Suppl2:T133-42.
    17. Hammoud DA, Hoffman JM, Pomper MG. Molecular neuroimaging: fromconventional to emerging techniques. Radiology.2007;245(1):21-42.
    18. van Buul GM, Kotek G, Wielopolski PA, et al. Clinically translatable celltracking and quantification by MRI in cartilage repair using superparamagneticiron oxides. PloS one.2011;6(2):e17001.
    19. Modo M. Understanding stem cell-mediated brain repair through neuroimaging.Current stem cell research&therapy.2006;1(1):55-63.
    20. Weber R, Wegener S, Ramos-Cabrer P, Wiedermann D, Hoehn M. MRI detectionof macrophage activity after experimental stroke in rats: new indicators for lateappearance of vascular degradation? Magnetic resonance in medicine.2005;54(1):59-66.
    21. Zhou R, Acton PD, Ferrari VA. Imaging stem cells implanted in infarctedmyocardium. Journal of the American College of Cardiology.2006;48(10):2094-106.
    22. Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplantedhuman neural stem cells in developmental and pathological contexts with MRI.Proceedings of the National Academy of Sciences of the United States ofAmerica.2007;104(24):10211-6.
    23. Miyoshi S, Flexman JA, Cross DJ, et al. Transfection of neuroprogenitor cellswith iron nanoparticles for magnetic resonance imaging tracking: cell viability,differentiation, and intracellular localization. Molecular imaging and biology.2005;7(4):286-95.
    24. Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labeling of human neuralprecursor cells with superparamagnetic iron oxide particles: relevance for in vivocell tracking. Stem Cells.2008;26(2):505-16.
    25. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling withprotamine sulfate complexed to ferumoxides for cellular MRI. Blood.2004;104(4):1217-23.
    26. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW. Instant MR labeling ofstem cells using magnetoelectroporation. Magnetic resonance in medicine.2005;54(4):769-74.
    27. Walczak P, Kedziorek DA, Gilad AA, Barnett BP, Bulte JW. Applicability andlimitations of MR tracking of neural stem cells with asymmetric cell division andrapid turnover: the case of the shiverer dysmyelinated mouse brain. Magneticresonance in medicine.2007;58(2):261-9.
    28. Chen IY, Greve JM, Gheysens O, et al. Comparison of optical bioluminescencereporter gene and superparamagnetic iron oxide MR contrast agent as cellmarkers for noninvasive imaging of cardiac cell transplantation. Molecularimaging and biology.2009;11(3):178-87.
    29. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M. Ferritin as an endogenousMRI reporter for noninvasive imaging of gene expression in C6glioma tumors.Neoplasia.2005;7(2):109-17.
    30. Wang Y, Xu F, Zhang C, et al. High MR sensitive fluorescent magnetitenanocluster for stem cell tracking in ischemic mouse brain. Nanomedicine.2011;7(6):1009-19.
    31. Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with braintrauma. The New England journal of medicine.2006;355(22):2376-8.
    32. Doyle B, Kemp BJ, Chareonthaitawee P, et al. Dynamic tracking duringintracoronary injection of18F-FDG-labeled progenitor cell therapy for acutemyocardial infarction. Journal of nuclear medicine.2007;48(10):1708-14.
    33. Elhami E, Goertzen AL, Xiang B, et al. Viability and proliferation potential ofadipose-derived stem cells following labeling with a positron-emitting radiotracer.European journal of nuclear medicine and molecular imaging.2011;38(7):1323-34.
    34. Fu Y, Azene N, Xu Y, Kraitchman DL. Tracking stem cells for cardiovascularapplications in vivo: focus on imaging techniques. Imaging in medicine.2011;3(4):473-86.
    35. Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cellhoming into the infarcted human myocardium. Circulation.2005;111(17):2198-202.
    36. Wolfs E, Struys T, Notelaers T, et al.18F-FDG Labeling of Mesenchymal StemCells and Multipotent Adult Progenitor Cells for PET Imaging: Effects onUltrastructure and Differentiation Capacity. Journal of nuclear medicine.2013.
    37. Wu C, Ma G, Li J, et al. In vivo cell tracking via (1)(8)F-fluorodeoxyglucoselabeling: a review of the preclinical and clinical applications in cell-baseddiagnosis and therapy. Clinical imaging.2013;37(1):28-36.
    38. Qiao H, Zhang H, Zheng Y, et al. Embryonic stem cell grafting in normal andinfarcted myocardium: serial assessment with MR imaging and PET dualdetection. Radiology.2009;250(3):821-9.
    39. Waerzeggers Y, Klein M, Miletic H, et al. Multimodal imaging of neuralprogenitor cell fate in rodents. Molecular imaging.2008;7(2):77-91.
    40. Higuchi T, Anton M, Dumler K, et al. Combined reporter gene PET and ironoxide MRI for monitoring survival and localization of transplanted cells in the ratheart. Journal of nuclear medicine.2009;50(7):1088-94.
    41. Love Z, Wang F, Dennis J, et al. Imaging of mesenchymal stem cell transplant bybioluminescence and PET. Journal of nuclear medicine.2007;48(12):2011-20.
    1. Suldow CL, Warlow CP. International Stroke Incidence Collaboration.Comparable studies of the incidence of stroke and its pathological types: resultsfrom an international collaboration. Stroke,1997,28(3):491-499
    2. Yamashita T, Dequchi K, Sehara Y, et al. Therapeutic strategy for ischemic stroke.Neurochem Res,2009,34(4):707-10.
    3. Katzan IL, Furlan AJ, Lloyd LE, et al. Use of tissue-type plasminogen activatorfor acute ischemic stroke: the Cleveland area experience. JAMA,2000,283(9):1151-1158.
    4. Thrombolysis with Alteplase4.5-6Hours after Acute Ischemic Stroke. EurNeurol,2011,65(3):170-174.
    5. Alexandrov AV, Hall CE, Labiche LA, et al. Ischemic stunning of the brain: earlyrecanalization without immediate clinical improvement in acute ischemic stroke.Stroke,2004,35(2):449-452.
    6. Kidd PM. Integrated brain restoration after ischemic stroke-medical management,risk factors, nutrients, and other interventions for managing inflammation andenhancing brain plasticity. Altern Med Rev2009,14(1):14-35.
    7. Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapyreduces apoptosis and promotes endogenous cell proliferation after stroke infemale rat. Journal of neuroscience research.2003;73(6):778-86.
    8. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalizedhuman mesenchymal stem cells protects against injury in a cerebral ischemiamodel in adult rat. Experimental neurology.2006;199(1):56-66.
    9. Jiang Q, Zhang ZG, Ding GL, et al. Investigation of neural progenitor cellinduced angiogenesis after embolic stroke in rat using MRI. NeuroImage.2005;28(3):698-707.
    10. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeuticbenefits by human mesenchymal stem cells (hMSCs) and Ang-1gene-modifiedhMSCs after cerebral ischemia. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow andMetabolism.2008;28(2):329-40.
    11. Toyama K, Honmou O, Harada K, et al. Therapeutic benefits of angiogeneticgene-modified human mesenchymal stem cells after cerebral ischemia.Experimental neurology.2009;216(1):47-55.
    12. Young HE, Black AC, Jr. Adult stem cells. The anatomical record Part A,Discoveries in molecular, cellular, and evolutionary biology.2004;276(1):75-102.
    13. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins,phenotypes, lineage commitments, and transdifferentiations. Annual review ofcell and developmental biology.
    14. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:nature, biology, and potential applications. Stem Cells.2001;19(3):180-92.
    15. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet.2005;366(9485):592-602.
    16. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotentstem cells. Molecular biology of the cell.2002;13(12):4279-95.
    17. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrownonhematopoietic cells improves functional recovery after stroke in adult mice.Journal of cerebral blood flow and metabolism: official journal of theInternational Society of Cerebral Blood Flow and Metabolism.2000;20(9):1311-9.
    18. Kondziolka D, Steinberg GK, Wechsler L, et al. Neurotransplantation for patientswith subcortical motor stroke: a phase2randomized trial. Journal ofneurosurgery.2005;103(1):38-45.
    19. Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR.Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts:a preliminary safety and feasibility study. Cerebrovasc Dis.2005;20(2):101-7.
    20. Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site ofstem cell grafts on behavioral recovery from stroke damage. Stroke; a journal ofcerebral circulation.2002;33(9):2270-8.
    21. Rabinovich SS, Seledtsov VI, Banul NV, et al. Cell therapy of brain stroke.Bulletin of experimental biology and medicine.2005;139(1):126-8.
    22. Misra V, Yang B, Sharma S, Savitz SI. Cell-based therapy for stroke. In: Cox C,editor. Progenitor Cell Therapy for Neurological Injury. New York: Springer;2011:143-162.
    23. Hauger O, Frost EE, van Heeswijk R, et al. MR evaluation of the glomerularhoming of magnetically labeled mesenchymal stem cells in a rat model ofnephropathy. Radiology.2006;238(1):200-10.
    24. Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneicmesenchymal stem cells trafficking to myocardial infarction. Circulation.2005;112(10):1451-61.
    25. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem celltransplantation in stroke patients. Annals of neurology.2005;57(6):874-82.
    26. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-upstudy of intravenous autologous mesenchymal stem cell transplantation inpatients with ischemic stroke. Stem Cells.2010;28(6):1099-106.
    27. Honmou O, Houkin K, Matsunaga T, et al. Intravenous administration of autoserum-expanded autologous mesenchymal stem cells in stroke. Brain: a journalof neurology.2011;134(Pt6):1790-807.
    28. Savitz SI, Misra V, Kasam M, et al. Intravenous autologous bone marrowmononuclear cells for ischemic stroke. Annals of neurology.2011;70(1):59-69.
    29. Li L, Jiang Q, Ding G, et al. Effects of administration route on migration anddistribution of neural progenitor cells transplanted into rats with focal cerebralischemia, an MRI study. Journal of cerebral blood flow and metabolism.2010;30(3):653-62.
    30. Kamiya N, Ueda M, Igarashi H, et al. Intra-arterial transplantation of bonemarrow mononuclear cells immediately after reperfusion decreases brain injuryafter focal ischemia in rats. Life sciences.2008;83(11-12):433-7.
    31. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al.Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stemcells after transient ischemia. Stroke2008;39:1569-1574.
    32. Chua JY, Pendharkar AV, Wang N, et al. Intra-arterial injection of neural stemcells using a microneedle technique does not cause microembolic strokes. Journalof cerebral blood flow and metabolism.2011;31(5):1263-71.
    33. Shen LH, Li Y, Chen J, et al. Therapeutic benefit of bone marrow stromal cellsadministered1month after stroke. Journal of cerebral blood flow and metabolism.2007;27(1):6-13.
    34. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrowstromal cells induces angiogenesis in the ischemic boundary zone after stroke inrats. Circulation research.2003;92(6):692-9.
    35. Jiang Q, Zhang ZG, Ding GL, et al. MRI detects white matter reorganization afterneural progenitor cell treatment of stroke. NeuroImage.2006;32(3):1080-9.
    36. Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in hostblood factors and brain glia accompanying the functional recovery after systemicadministration of bone marrow stem cells in ischemic stroke rats. Celltransplantation.2010;19(9):1073-84.
    37. Chen Q, Long Y, Yuan X, et al. Protective effects of bone marrow stromal celltransplantation in injured rodent brain: synthesis of neurotrophic factors. Journalof neuroscience research.2005;80(5):611-9.
    38. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bonemarrow-derived mesenchymal stem cells secrete brain-derived neurotrophicfactor which promotes neuronal survival in vitro. Stem cell research.2009;3(1):63-70.
    39. Misra V, Ritchie MM, Stone LL, Low WC, Janardhan V. Stem cell therapy inischemic stroke: role of IV and intra-arterial therapy. Neurology.2012;79(13Suppl1):S207-12.
    40. Vendrame M, Cassady J, Newcomb J, et al. Infusion of human umbilical cordblood cells in a rat model of stroke dose-dependently rescues behavioral deficitsand reduces infarct volume. Stroke.2004;35(10):2390-5.
    41. Mendonca ML, Freitas GR, Silva SA, et al.[Safety of intra-arterial autologousbone marrow mononuclear cell transplantation for acute ischemic stroke. ArqBras Cardiol.2006;86(1):52-5.
    42. Correa PL, Mesquita CT, Felix RM, et al. Assessment of intra-arterial injectedautologous bone marrow mononuclear cell distribution by radioactive labeling inacute ischemic stroke. Clin Nucl Med.2007;32(11):839-41.
    43. Battistella V, de Freitas GR, da Fonseca LM, et al. Safety of autologous bonemarrow mononuclear cell transplantation in patients with nonacute ischemicstroke. Regen Med.2011;6(1):45-52.