多发性大动脉炎颈动脉受累的超声研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.系统性分析多发性大动脉炎(TA)颈动脉受累的声像图特点,以期发现新的超声征象
     2.比较活动期与非活动期受累颈动脉管壁厚度的差异,分析管壁厚度在疾病活动状态评估中的作用
     3.比较不同狭窄程度时颈动脉的血流动力学改变
     资料与方法
     对2011年10月至2013年3月在我院就诊的58例TA患者的106条受累颈动脉进行常规超声检查,存储超声图像并测量管壁厚度、管腔内径、血流动力学参数等,记录临床资料。血流动力学参数包括收缩期峰值流速(PSV)、舒张末期流速(EDV)、阻力指数(RI)。根据年龄和性别的1:1匹配,收集同期58例正常人进行颈动脉超声检查作为对照。总结TA受累颈动脉的声像图特点,并比较TA组和对照组间各指标的差异。
     按照1994年美国国立研究院制定的TA活动性判定标准,将患者分为活动期和非活动期两组,比较两组间受累颈动脉管壁厚度的差异,绘制ROC曲线,评价以管壁厚度判定疾病活动状态的敏感性、特异性。
     结果
     1.病变节段的分布:58例TA患者共106条颈动脉受累,以双侧颈总动脉(CCA)受累为主,占82.7%(48/58)。81条(76.4%)CCA全程受累,22条为近心段受累,另外3条病变局限于CCA中段和远心段。分叉处和颈内外动脉受累的比例较小,分别占26.4%(28/106)和8.5%(9/106)。
     2.管壁增厚形式:76条(71.7%)CCA受累管壁呈弥漫性、均匀性增厚,横切面呈环状增厚。25条为不均匀性增厚,2条表现为局限性偏心性增厚。59条(55.7%)CCA受累节段与正常段分界清晰,病变段边缘呈渐进性增厚,以外层为著,中膜外侧出现“鼠尾状”增厚的中等(中低)回声带。
     3.管壁回声特点:受累管壁呈中等或中低回声(与甲状腺回声相似或略低),35条CCA增厚管壁内回声均匀一致,呈通心粉征。67条(63.2%)出现回声强度的分层状改变,纵切面表现为管壁由内向外呈“强-低-中-强”四种回声带相间排列,横切面呈“靶环”状,多以中等回声带最厚,内层强回声线最薄。
     15条CCA内膜表面光滑平整、强回声线连续,7条内壁出现钙化。
     靶环征在较厚的管壁中更易出现,靶环征阳性组管壁厚度大于阴性组(P<0.05)。该征象在不同疾病活动状态(活动期和非活动期)和不同病程(≥1年和<1年)中出现的比例无显著性差异(P值均>0.05),但病程3-6月的患者中未发现该征象。
     4.管壁厚度在各组间的差异:TA组管壁厚度明显大于对照组内中膜厚度(IMT)及管壁全层厚度(P值均<0.001),按照疾病活动状态及管腔狭窄情况进行分组后,活动期组管壁厚度要大于非活动期组,在管腔狭窄组和非狭窄组中,这一差异均具有统计学意义(P<0.05)。
     以管壁厚度来判断TA活动状态,最佳诊断阈值为2.25mm,敏感性为71%,特异性66%。而在狭窄组中,最佳诊断阈值为2.40mm,敏感性为90%,特异性为58%。在非狭窄组中,最佳诊断阈值为2.25mm,敏感性为55%,特异性81%。
     5.管径的变化及与管壁厚度的相关性:50条(47.1%)CCA出现了管腔狭窄(内径减少≥50%),其中9条闭塞。40%(20/50)为长节段性、均匀性狭窄。10条伴有管腔扩张,其中3条为窄后扩张,4条为动脉瘤或瘤样扩张(内径12.5mm-16.2mm)。
     受累CCA管腔内径并不随着管壁厚度的增加而减小,部分动脉管壁呈外向性或双向增厚。管腔内径与管壁厚度间无明显负相关性(r=-0.163,P=0.110)。
     6.血流动力学变化:不同狭窄组CCA的PSV、EDV、RI值均有所不同,差异有统计学意义(P<0.05),CCA的PSV平均值随狭窄程度的加重而增加,但重度狭窄(≥70%)时部分PSV降低。颈内动脉(ICA)的PSV和RI在各组间差异有显著性意义(P<0.05),重度狭窄时,两者均降低。
     32条重度狭窄或闭塞的CCA中,7条管壁内观察到细小血管的血流信号,9条伴ICA频谱静脉样改变,20条伴颈外动脉(ECA)血流反向。
     结论
     随着超声分辨力的提高,靶环征可能成为TA受累颈动脉的另一常见特异性超声征象,有助于TA的超声诊断和随访。本研究提示增厚管壁的中等(中低)回声带可能是内中外膜三层结构或中-外膜复合物。
     超声检查有助于TA颈动脉受累的早期诊断,使患者获得及时治疗。管壁厚度对于预测TA的疾病活动状态有一定帮助,也是随访检测的重要指标,而颈动脉的血流动力学改变对于脑组织缺血程度和侧支循环情况的评估有一定的临床价值。
     目的
     1.应用实时超声造影技术观察TA患者受累颈动脉管壁的增强情况
     2.根据时间-强度曲线定量分析受累管壁增强特点
     3.分析TA受累颈动脉管壁增强情况与管壁厚度、疾病活动状态的关系
     资料与方法
     对2012年1月至2013年3月在我院就诊的19例TA患者的38条颈动脉进行超声造影检查,观察受累管壁的增强情况,运用声学定量分析软件绘制管壁及管腔的时间-强度曲线(TIC),记录并计算造影剂到达时间(AT)、达峰时间(TTP)、增强强度(EI)和半洗出时间等指标。采用t检验、卡方检验和Pearson相关性分析,来比较管壁和管腔的增强特点,以及管壁增强情况与管壁厚度、疾病活动状态的关系。
     结果
     1.增强情况:19例TA患者的38条颈动脉中,35条受累。其中3条未受累颈动脉和11条受累颈动脉管壁无明显增强,其余24条管壁出现造影增强,表现为增厚的颈动脉管壁内弥漫点状、线状造影剂微泡填充,以外膜侧为著,其中4条颈动脉管壁出现呈条形造影增强的小血管。1条颈动脉管腔闭塞,管腔内无造影剂填充。
     2.增强特点:20条受累颈动脉管壁和管腔的TIC曲线分析显示,管壁在造影剂到达时间、达峰时间上均迟于造影剂到达管腔的时间和在管腔内的达峰时间,差异具有统计学意义(P值均<0.05)。同时,管壁及管腔AT、TTP具有正相关性(相关系数r分别为0.777和0.755,P值均<0.05),即管腔内造影剂到达时间和达峰时间较早的颈动脉,其管壁内造影剂到达和达峰时间也较早。同一颈动脉管壁的造影增强强度明显低于管腔的增强强度,但两者间无明显正相关性。
     3.增强模式:受累动脉管壁的增强模式呈“快进-快出”型。注射超声造影剂后,管壁很快出现造影增强(AT平均为9.83±1.44s),TIC曲线出现明显的增强高峰,其上升支和下降支较陡直,造影剂平均半洗出时间为22.73±4.86s,而管腔的增强模式呈“快进-慢出”型,管腔内造影剂廓清缓慢。
     4.增强特点与管壁厚度的关系:增强组管壁厚度明显大于非增强组,分别为2.42±0.63mm和1.76±0.46mm(P<0.05)。管壁厚度>2mm的23条颈动脉中,20条(87.0%)出现了造影增强。但是,管壁增强强度EI与管壁厚度之间无相关性。
     5.管壁造影增强与疾病活动状态和血沉(ESR)的关系:活动期组管壁出现增强现象的比例为76.9%(10/13),非活动期组为63.6%(14/22),两组间差异无显著性意义(P>0.05)。同样,ESR升高组和ESR正常组间也无明显差异(分别为75.0%和63.2%,P>0.05)。
     结论
     本研究初步探讨了TA受累颈动脉管壁增强情况与管壁厚度和疾病活动状态间可能存在的联系,为以后颈动脉超声造影在TA患者中的临床应用提供了研究基础。超声造影技术可用于TA患者受累颈动脉管壁内新生血管的评价,在疾病活动状态的评估和随访过程中可能具有潜在的应用价值。
Objective
     1. To investigate the ultrasonographic characteristics of involved carotid arteries in Takayasu's arteritis (TA) systematically
     2. To evaluate the usefulness of carotid wall thickness in the assessment of disease activity
     3. To analyze the hemodynamic changes in involved carotid arteries with different degrees of stenosis
     Materials and methods
     From October2011to March2013,58consecutive patients with TA in our hospital were examined by carotid ultrasonography. The sonographic features were investigated and various parameters were taken, mainly including wall thickness, inner diameter, peak systolic velocity (PSV), end diastolic velocity (EDV) and resistance index (RI).58healthy controls were also studied. The different parameters were compared between TA group and control group using Student t test, χ2test and Mann-Whitney-Wilcoxon test. Pearson and Spearman correlation analysis were performed to analyze the relationship between two variables.
     Activity was defined according to the National Institutes of Health criteria (1994). The wall thicknesses were compared between active group and inactive group, and the receiver operating characteristic (ROC) curve was performed to evaluate wall thickness of carotid artery as a marker of active inflammation.
     Results
     1. Of the116common carotid arteries (CCAs) in58patients, a total of106CCAs were affected. The CCAs in82.7%(48/58) patients were bilaterally involved.81CCAs were entirely involved and22CCAs were involved in the proximal section. Other3CCAs had only middle or distal sections involved. Carotid bifurcation and internal/external carotid artery (ICA/ECA) involvement were uncommonly seen, accounting for26.4%(28/106) and8.5%(9/106),respectively.
     2. A characteristic homogeneous, circumferential thickening was shown in76(71.7%) involved CCAs, while irregular thickening was shown in25CCAs. Other two CCAs showed a kind of local eccentric thickening. There was a clear boundary between involved and normal parts in59(55.7%) CCAs, and a gradual thickening was seen in the edge of the involved carotid walls with a rat-tail shaped, isoechoic layer outside the tunica media.
     3. The echogenicity of involved CCAs was equal to or slightly lower than that of the normal thyroid parenchyma, manifested as an isoechoic or hypoechoic thickening.35CCAs showed homogeneous echogenicity in the thicken walls with a "macaroni" sign. However, the echogenicity in67(63.2%) CCA walls showed quadri-layer changes, with strong echo, hypoecho, isoecho and strong echo from within in the longitudinal section, while the cross section showed a "target" sign. Usually the isoechoic layer was the thickest, and the inner echogenic line was the thinnest.15CCAs displayed a smooth, continuous bright line along the lumen, representing the lumen-intima interface. Calcification was found in7CCAs.
     The target sign was more likely seen in thicker walls. The artery wall in target sign positive group was thicker than that in negative group (P<0.05). There was no significant difference between different TA activity groups and between different TA courses (≥1year and<1year), but in patients with TA course of3months to6months, the target sign was not found.
     4. The CCA wall was distinctly thicker in TA patients than that in control group (P<0.001), and it was also thicker in active group than in inactive group, whenever stenosis existed (P<0.05).
     When the ROC analysis was performed with2.25mm taken as the cutoff value of wall thickness to evaluate TA activity, the sensitivity was71%and specificity was66%. In stenosis group, the sensitivity was90%and specificity was58%, using2.40mm as the cutoff value, while in non-stenosis group, the sensitivity was55%and specificity was81%, using2.25mm as the cutoff value.
     5.50stenotic CCAs with inner diameter decreased≥50%was diagnosed, accounting for47.1%, with9CCAs occluded. Among these CCAs,40%(20/50) showed a long-section, homogenous stenosis. Dilated lumen was found in10CCAs, including3CCAs dilated after stenosis and4aneurysms with inner diameter12.5mm-16.2mm.
     The inner diameter of involved CCAs was not reduced as the wall thickness increased. Some CCA walls were thickened outwards or both inwards and outwards. There was no negative correlation between inner diameter and wall thickness (r=-0.163, P=0.110).
     6. There were significant differences of CCA-PSV, CCA-EDV and CCA-RI between stenotic and non-stenotic groups (P<0.05). The average CCA-PSV increased as the stenotic degree increased, but when the CCA stenosis was≥70%, PSV of some CCAs would be decreased. Similarly, there were significant differences of ICA-PSV and ICA-RI between stenotic and non-stenotic groups (P<0.05), and when the CCA stenosis was≥70%, the ICA-PSV and ICA-RI were both decreased.
     Among the32severely stenotic (≥70%) or occluded CCAs, intramural arterioles were detected in7CCAs, while vein-like spectrum form detected in9ICAs, and reversed blood flow detected in20ECAs.
     Conclusion
     The target sign may become a new sonographic feature for the diagnosis of TA in carotid ultrasonography. Different from traditional concept, our research promoted that the isoechoic layer in thicken CCA walls may not be the intima-media complex but intima-media-externa complex or media-externa complex.
     Ultrasonography is helpful for the early diagnosis of TA and increased wall thickness may be a useful marker of active disease.
     Objective
     1. To investigate the enhancement features of carotid artery in Takayasu's arteritis (TA) with contrast-enhanced ultrasound.
     2. To evaluate the characteristics of carotid artery enhancement by drawing time-intensity curve (TIC).
     3. To analyze the correlation between carotid enhancement and wall thickness or disease activity.
     Materials and methods
     From January2012to March2013,19patients with TA in our hospital were recruited and examined by carotid contrast-enhanced ultrasound. The enhancement features of involved carotid arteries were observed and the TICs were drawn by acoustic quantitative analysis software (QLAB). Four parameters were recorded and calculated, including arrival time (AT), time to peak (TTP), enhanced intensity (EI) and wash-out time when El dropped to1/2EI (WT1/2).
     Student t test, χ2test and Pearson correlation analysis were used to compare AT, TTP and El between carotid wall and lumen, and also used to analyze the correlations between carotid enhancement and wall thickness or disease activity.
     Results
     1. Of the38common carotid arteries (CCAs) in19patients,35CCAs were involved. Contrast enhancement can be observed in24involved CCA walls, manifesting as a large amount of a contrast signal within the lesions, as visualized by moving bright spots and linear flow of microbubbles within the vascular walls, especially along the outer layer. The appearance can't be seen in the remaining3normal and11involved CCAs, which were classified into non-enhanced type.4CCAs showed intramural arterioles, appearing as small stripped enhanced signals in the thickened CCA walls. One CCA was occluded without enhanced signal in the lumen.
     2. According to the comparison of TICs between CCA walls and lumens in20arteries, the average AT and TTP of walls were longer than those of lumens (P<0.05), while the average EI of walls was smaller than that of lumens. Both AT and TTP between walls and lumens showed positive correlations (r=0.777and r=0.755, respectively, P<0.05), but there was no correlation of EI between walls and lumens (P>0.05).
     3. TICs displayed different enhanced patterns of CCA walls and lumens. The walls showed fast enhancement with average AT9.83±1.44s, and a single apex with steep ascending and descending branches was seen on TIC. The average WT1/2was22.73+4.86s. In contrast, the lumens showed fast enhancement, but then slowly washed out with a slow descending branch on TIC.
     4. The wall thicknesses in enhanced arteries were remarkable thicker than that in non-enhanced ones (2.42+0.63mm vs.1.76±0.46mm, respectively, P<0.05). Of the23arteries with wall thickness>2mm,20ones (87.0%) showed enhancement in the wall. However, there was no correlation between El and wall thickness.
     5. The enhancement rate in the active group was76.9%(10/13), while it is63.6%(14/22) in the inactive group. There is no significant difference between these two groups. Similarly, there is also no significant difference between ESR-elevated group and ESR-normal group, and the enhancement rate were75.0%and63.2%respectively (P>0.05).
     Conclusions
     Contrast-enhanced ultrasound can be used in the TA patients to evaluate the neovascularization in carotid arteries, and it may provide valuable information for assessing the disease activity and the response to immunosuppressive therapy.
引文
1. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis:a review. J Clin Pathol, 2002,55(7):481-6.
    2. Renker M, Baumgartner I, Diehm N. Takayasu arteritis presenting with extensive bilateral aneurysms of the common carotid arteries. Eur Heart J,2012,33(4):435.
    3. Caballero PE. Common carotid artery aneurysm revealing Takayasu's arteritis. J Stroke Cerebrovasc Dis,2011,20(6):556-8.
    4. Hofffman GS. Determinants of Vessel Targeting in Vasculitis. Ann N Y Acad Sci, 2005,1051:332-9.
    5. Inder SJ, Bobryshev YV, Cherian SM, et al. Immunophenotypic analysis of the aortic wall in Takayasu's arteritis:involvement of lymphocytes, dendritic cells and granulocytes in immuno-inflammatory reactions. Cardiovasc Surg,2000, 8(2):141-8.
    6. Han JW, Shimada K, Ma-Krupa W, et al. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ Res,2008, 102(5):546-53.
    7. Ralls PW. Takayasu arteritis. Ultrasound Q,2010,26(3):1334.
    8. Vaideeswar P, Deshpande JR. Pathology of Takayasu arteritis:A brief review. Ann Pediatr Card,2013,6(1):52-8.
    9. Strachan RW. The nature history of Takayasu's arteriopathy. Q J Med,1964, 33(129):57-69.
    10. Hofffman GS. Takayasu arteritis:lessons from the American National Institutes of Health experience. Int J Cardiol,1996,54:S99-102.
    11. Park J H. Conventional and CT angiographic diagnosis of Takayasu arteritis. Int J Cardiol,1996,54 (Suppl):S165-171.
    12. Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med, 1994,120(11):919-29.
    13. Jiang L, Li D, Yan F, et al. Evaluation of Takayasu arteritis activity by delayed contrast-enhanced magnetic resonance imaging. Int J Cardiol,2012,155(2):262-7.
    14.戚跃勇,邹利光,戴书华,等.大动脉炎的血管造影诊断与介入治疗.心肺血管病杂志,2004,23(2):74-9.
    15. Kissin EY, Merkel PA. Diagnostic imaging in Takayasu arteritis. Curr Opin Rheum,2004,16(1):31-7.
    16. Schmidt WA, Nerenheim A, Seipelt E, et al. Diagnosis of early Takayasu arteritis with sonography. Rheumatology (Oxford),2002,41(5):496-502.
    17. Park SH, Chung JW, Lee JW, Han MH, Park JH. Carotid artery involvement in Takayasu's arteritis:evaluation of the activity by ultrasonography. J Ultrasound Med,2001,20(4):371-8.
    18. Seth S, Goyal NK, Jagia P, et al. Carotid intima-medial thickness as a marker of disease activity in Takayasu's arteritis. Int J Cardiol,2006,108(3):385-90.
    19. Raj aram V, Pandhya S, Patel S, et al. Role of surrogate markers in assessing patients with diabetes mellitus and the metabolic syndrome and in evaluating lipid-lowering therapy. Am J Cardiol,2004,93(11):32-48.
    20. Coli S, Magnoni M, Sangiorgi G. et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries:correlation with histology and plaque echogenicity. J Am Coll Cardiol,2008,52(3):223-30.
    21. Shah F, Balan P, Weinberg M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization:a new surrogate marker of atherosclerosis. Vasc Med,2007,12(4):291-7.
    22. Magnoni M, Dagna L, Coli S, et al. Assessment of Takayasu arteritis activity by carotid contrast-enhanced ultrasound. Circ Cardiovasc Imagin,2011,4(2):e1-2.
    1. Ralls PW. Takayasu arteritis. Ultrasound Q,2010,26(3):133-4.
    2. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis:a review. J Clin Pathol, 2002,55(7):481-6.
    3. Eagle KA, De Sanctis RW. Diseases of the aorta. In:Braunwald E (ed). Heart Disease:A Textbook of Cardiovascular Medicine.4th ed. Philadelphia, PA:WB Saunders Co; 1992:1528-53.
    4. Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med,1994, 120(11):919-29.
    5. Lefebvre C, Rance A, Paul JF, et al. The role of B-mode ultrasonography and electron beam computed tomography in evaluation of Takayasu's arteritis:a study of 43 patients. Semin Arthritis Rheum,2000,30(1):25-32.
    6. Kissin EY, Merkel PA. Diagnostic imaging in Takayasu arteritis. Curr Opin Rheum, 2004,16(1):31-7.
    7. Schmidt WA, Nerenheim A, Seipelt E, et al. Diagnosis of early Takayasu arteritis with sonography. Rheumatology (Oxford),2002,41(5):496-502.
    8. Park SH, Chung JW, Lee JW, et al. Carotid artery involvement in Takayasu's arteritis:evaluation of the activity by ultrasonography. J Ultrasound Med,2001, 20(4):371-8.
    9. Seth S, Goyal NK, Jagia P, et al. Carotid intima-medial thickness as a marker of disease activity in Takayasu's arteritis. Int J Cardiol,2006,108(3):385-90.
    10. Hoffman GS. Takayasu arteritis:lessons from the American National Institutes of Health experience. Int J Cardiol,1996,54:S99-102.
    11. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med,1991,325(7):445-53.
    12. European Carotid Surgery Trialists Collaborative Group. MRC European Carotid Surgery Trial:interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. Lancet,1991,337(8752):1235-43.
    13. Staikov IN, Arnold M, Mattle HP, et al. Comparison of the ECST, CC, and NASCET grading methods and ultrasound for assessing carotid stenosis. European Carotid Surgery Trial. North American Symptomatic Carotid Endarterectomy Trial. J Neurol,2000,247(9):681-6.
    14. Inder SJ, Bobryshev YV, Cherian SM, et al. Immunophenotypic analysis of the aortic wall in Takayasu's arteritis:involvement of lymphocytes, dendritic cells and granulocytes in immuno-inflammatory reactions. Cardiovasc Surg,2000, 8(2):141-8.
    15. Han JW, Shimada K, Ma-Krupa W, et al. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ Res,2008, 102(5):546-53.
    16. Lupi-Herrera E, Sanchez-Torres G, Marcushamer J, et al. Takayasu arteritis. Clinical study of 107 cases. Am Heart J,1977,93(1):94-103.
    17. Ishikawa K, Maetani S. Long term outcome for 120 Japanese patients with Takayasu's disease:clinical and statistical analyses of related prognostic factors. Circulation,1994,90(4):1855-60.
    18. Zielinski T, Wolkanin-Bartnik J, Makowiecka-Cicsla M, et al. Ultrasound examination of carotid arteries with intima media measurement:An underestimated tool in the diagnosis of Takayasu's disease. Int J Angiol,2002, 11 (3):153-7.
    19. Richards BL, March L, Gabriel SE. Epidemiology of large-vessel vasculitides. Best Pract Res Clin Rheumatol,2010,24(6):871-3.
    20. Hall S, Barr W, Lie JT, et al. Takayasu arteritis. A study of 32 North American patients. Medicine,1985,64(2):89-99.
    21. Moriwaki R, Noda M, Yajima M, et al. Clinical manifestations of Takayasu arteritis in India and Japan-new classification of angiographic findings. Angiology,1997,48(5):369-79.
    22. Hoffinan GS, Ahmed AE. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS). Int J Cardiol,1998,66(1):S191-4.
    23. Yamada I, Nakagawa T, Himeno Y, et al. Takayasu arteritis:diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging,2000, 11(5):481-7.
    24. Park JH, Chung JW, Lee KW, et al. CT angiography of Takayasu arteritis: comparison with conventional angiography. J Vasc Interv Radiol,1997, 8(3):393-400.
    25. Paul JF, Fiessinger JN, Sapoval M, et al. Follow-up electron beam CT for the management of early phase Takyasu arteritis. J Comput Assist Tomogr,2001,25 (6):924-31.
    26.徐建红,唐杰,李俊来,等.超声影像诊断多发性大动脉炎的价值.中国医学影像学杂志,2004,12(2):98-100.
    27.林玲,罗燕,文晓蓉.多发性大动脉炎的彩色多普勒超声诊断价值。华西医学,2006,21(2):283-4.
    28. Maeda H, Handa N, Matsumoto M, et al. Carotid lesions detected by B-mode ultrasonography in Takayasu's arteritis:"macaroni sign" as an indicator of the disease. Ultrasound Med Biol,1991,17(7):695-701.
    29. Sun Y, Yip PK, Jeng JS, et al. Ultrasonographic study and long-term follow-up of Takayasu's arteritis. Stroke,1996,27(12):2178-82.
    30. Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation,1993,87(3 suppl):1156-65.
    31. Jeng JS, Yip PK, Chen CC, et al. Extracranial carotid artery atherosclerosis in 1,014 physical check-up subjects (SCAN-III). J Med Ultrasound,1995,3:144-50.
    32. Vaideeswar P, Deshpande JR. Pathology of Takayasu arteritis:A brief review. Ann Pediatr Card,2013,6(1):52-8.
    33. Arnaud L, Haroche J, Toledano D, et al. Cluster analysis of arterial involvement in Takayasu arteritis reveals symmetric extension of the lesions in paired arterial beds. Arthritis Rheum,2011,63(4):1136-40.
    34. Seyahi E, Ugurlu S, Cumali R, et al. Atherosclerosis in Takayasu arteritis. Ann Rheum Dis,2006,65(9):1202-7.
    35. Pignoli P. Ultrasound B-mode imaging for arterial wall thickness measurement. Atheroscl Rev,1984,12:177-184.
    36. Kothari SS. Takayasu's arteritis in children-a review. Images Paediatr Cardiol, 2001,3(4):4-23.
    37. Geraldes R, Batista P, Pedro LM, et al. Takayasu arteritis presenting with internal carotid artery dissection. Cerebrovasc Dis,2012,33(4):408-9.
    38. Gravanis MB. Giant cell arteritis and Takayasu aortitis:morphologic, pathogenetic and etiologic factors. Int J Cardiol,2000,75(Suppl 1):S21-33.
    39. Nishimura S, Toubaru T, Ootaki E, Sumiyoshi T. Follow-up Study of Aortic-Valve Replacement Surgery in Patients With Takayasu's Disease Complicated by Aortic Regurgitation. Circ J,2002,66(6):564-6.
    40. Shikata H, Sakamoto S, Ueda Y, et al. Reconstruction of bilateral branch pulmonary artery stenosis caused by Takayasu's aortitis. Circ J,2004,68(8):791-4.
    41. Taniguchi N, Itoh K, Honda M, et al. Comparative ultrasonographic and angiographic study of carotid arterial lesions in Takayasu's arteritis. Angiology, 1997,48(1):9-20.
    42. Keo HH, Caliezi G, Baumgartner I, et al. Increasing echogenicity of diffuse circumferential thickening ("macaroni sign") of the carotid artery wall with decreasing inflammatory activity of takayasu arteritis. J Clin Ultrasound,2013, 41(1):59-62.
    43. Schmidt WA, Seipelt E, Krause A, et al. Carotidynia in Takayasu arteritis. J Rheumatol,2007,34(1):231-2.
    44. Maruotti N, Cantatore FP, Nico B, et al. Angiogenesis in vasculitides. Clin Exp Rheumatol,2008,26(3):476-83.
    45.韩红,丁红,王文平,等.多发性大动脉炎颈动脉病变的彩超特征.中国临床医学,2004,11(5):895-7.
    1. Numano F. Vasa vasoritis, vasculitis and atherosclerosis. Int J Cardiol,2000, 75(1):S1-8.
    2. Hotchi M. Pathological studies on Takayasu's arteritis. Heart Vessels,1992, 7:11-17.
    3. Maruotti N, Cantatore FP, Nico B, et al. Angiogenesis in vasculitides. Clin Exp Rheumatol,2008,26(3):476-83.
    4. Cid MC, Cebrian M, Font C, et al. Cell adhesion molecules in the development of inflammatory infiltrates in giant cell arteritis:inflammation-induced angiogenesis as the preferential site of leukocyte-endothelial cell interactions. Arthritis Rheum, 2000,43(1):184-94.
    5. Inder SJ, Bobryshev YV, Cherian SM, et al. Immunophenotypic analysis of the aortic wall in Takayasu's arteritis:involvement of lymphocytes, dendritic cells and granulocytes in immuno-inflammatory reactions. Cardiovasc Surg,2000, 8(2):141-8.
    6. Coli S, Magnoni M, Sangiorgi G, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries:correlation with histology and plaque echogenicity. J Am Coll Cardiol,2008,52(3):223-30.
    7. Feinstein SB. Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol,2006,48(2):236-43.
    8. Papaioannou TG, Vavuranakis M, Androulakis A, et al. In-vivo imaging of carotid plaque neoangiogenesis with contrast-enhanced harmonic ultrasound. Int J Cardiol, 2009,134(3):e110-2.
    9. Shah F, Balan P, Weinberg M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization:a new surrogate marker of atherosclerosis. Vasc Med,2007,12(4):291-7.
    10. Magnoni M, Dagna L, Coli S, et al. Assessment of Takayasu arteritis activity by carotid contrast-enhanced ultrasound. Circ Cardiovasc Imaging,2011,4(2):e1-2.
    11. Hoffman GS. Determinants of Vessel Targeting in Vasculitis. Ann N Y Acad Sci, 2005,1051:332-9.
    12. Ohkawara M, Kuroiwa T, Numano F. Immunohistochemical studies on annexin I and II in Takayasu arteritis. Ann N Y Acad Sci,2001,947:390-3.
    13. Cid MC, Segarra M, Garcia-Martinez A, Hernandez-Rodriguez J. Endothelial cells, antineutrophil cytoplasmic antibodies, and cytokines in the pathogenesis of systemic vasculitis. Curr Rheumatol Rep,2004,6(3):184-94.
    14. Ralls PW. Takayasu arteritis. Ultrasound Q,2010,26(3):133-4.
    15. Gravanis MB. Giant cell arteritis and Takayasu aortitis:morphologic, pathogenetic and etiologic factors. Int J Cardiol,2000,75(1):S21-33.
    16. Vaideeswar P, Deshpande JR. Pathology of Takayasu arteritis:A brief review. Ann Pediatr Card,2013,6(1):52-8.
    17. Kothari SS. Takayasu's arteritis in children-a review. Images Paediatr Cardiol, 2001,3(4):4-23.
    18. Buckley CD, Pilling D, Lord JM, et al. Fibroblasts regulate the switch from acute resolving to chronic persistent infl ammation. Trends Immunol,2001,22(4): 199-204.
    19. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis:a review. J Clin Pathol, 2002,55(7):481-6.
    20. Renker M, Baumgartner I, Diehm N. Takayasu arteritis presenting with extensive bilateral aneurysms of the common carotid arteries. Eur Heart J,2012,33(4):435.
    21. Caballero PE. Common carotid artery aneurysm revealing Takayasu's arteritis. J Stroke Cerebrovasc Dis,2011,20(6):556-8.
    22. Choe YH, Han BK, Koh EM, et al. Takayasu's arteritis:assessment of disease activity with contrast-enhanced MR imaging. AJR,2000,175(2):505-11.
    23. Desai MY, Stone JH, Foo TK, Hellmann DB, Lima JA, Bluemke DA. Delayed contrast-enhanced MRI of the aortic wall in Takayasu's arteritis:initial experience. AJR Am J Roentgenol,2005,184(5):1427-31.
    24. Lassau N, Koscielny S, Opolon P, et al. Evaluation of contrast enhanced color Doppler ultrasound for the quantification of angiogenesis in vivo. Invest Radiol, 2001,36(1):50-5.
    25. Wei L, Li ZX, Peng T, et al. Diagnostic value of contrast-enhanced ultrasonography in different pathological types and differentiated grades of primary liver carcinoma. Zhonghua Gan Zang Bing Za Zhi,2012,20(12):939-41.
    26. Coon PD, Pollard H, Furlong K, et al. Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol,2012,38(11):1853-8.
    27. Rajaram V, Pandhya S, Patel S, et al. Role of surrogate markers in assessing patients with diabetes mellitus and the metabolic syndrome and in evaluating lipid-lowering therapy. Am J Cardiol,2004,93(11):32-48.
    28. Deyama J, Nakamura T, Takishima I, et al. Contrast-Enhanced Ultrasound Imaging of Carotid Plaque Neovascularization Is Useful for Identifying High-Risk Patients With Coronary Artery Disease. Circ J,2013,77(6):1499-507.
    29. Zhou Y, Xing Y, Li Y, et al. An assessment of the vulnerability of carotid plaques: a comparative study between intraplaque neovascularization and plaque echogenicity. BMC Med Imaging,2013,13:13.
    30. Zhu Y, Deng YB, Liu YN, et al. Use of Carotid Plaque Neovascularization at Contrast-enhanced US to Predict Coronary Events in Patients with Coronary Artery Disease. Radiology,2013 Feb 25. [Epub ahead of print]
    31. Giordana P, Baque-Juston MC, Jeandel PY, et al. Contrast-Enhanced Ultrasound of Carotid Artery Wall in Takayasu Disease:First Evidence of Application in Diagnosis and Monitoring of Response to Treatment. Circulation,2011, 124(2):245-7.
    32.孙海燕,黄品同,黄福光,等.超声造影评价颈动脉粥样硬化斑块的初步研究.中华超声影像学杂志,2007,16(3):219-21.
    33.黄品同,黄福光,孙海燕,等.超声造影对颈动脉粥样硬化斑块内新生血管的血流动力学研究.中华超声影像学杂志,2007,16(1):40-2.
    34. Karser M, Younge B, Bjornsson J, et al. Formation of new vasa vasorum in vasculitis.Am J Pathol,1999,155(3):765-74.
    35. Rueda B, Lopez-Nevot MA, Lopez-diaz MJ, et al. A functional variant of vascular endothelial growth factor is associated with severe ischemic complications in giant cell arteritis. J Rheumatol,2005,32(9):1737-41.
    36. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature,2000, 407 (6801):249-57.
    37. Hoffman GS, Ahmed AE. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS). Int J Cardiol,1998,66:S191-4.
    38. Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med, 1994,120(11):919-29.
    39. Hoffman GS. Takayasu arteritis:lessons from the American National Institutes of Health experience. Int J Cardiol,1996,54:S99-102.
    40. Aydin SZ, Yilmaz N, Akar S, et al. Assessment of disease activity and progression in Takayasu's arteritis with Disease Extent Index-Takayasu. Rheumatology (Oxford),2010,49(10):1889-93.
    1. Eagle KA, De Sanctis RW. Diseases of the aorta. In:Braunwald E (ed). Heart Disease:A Textbook of Cardiovascular Medicine.4th ed. Philadelphia, PA:WB Saunders Co; 1992:1528-53.
    2. Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med,1994, 120(11):919-29.
    3. Lefebvre C, Rance A, Paul JF, et al. The role of B-mode ultrasonography and electron beam computed tomography in evaluation of Takayasu's arteritis:a study of 43 patients. Semin Arthritis Rheum,2000,30(1):25-32.
    4. Ishikawa K, Maetani S. Long term outcome for 120 Japanese patients with Takayasu's disease:clinical and statistical analyses of related prognostic factors. Circulation,1994,90(4):1855-60.
    5. Zielinski T, Wolkanin-Bartnik J, Makowiecka-Cicsla M, et al. Ultrasound examination of carotid arteries with intima media measurement:An underestimated tool in the diagnosis of Takayasu's disease. Int J Angiol,2002, 11(3):153-7.
    6. Richards BL, March L, Gabriel SE. Epidemiology of large-vessel vasculitides. Best Pract Res Clin Rheumatol,2010,24(6):871-3.
    7. Strachan RW. The nature history of Takayasu's arteriopathy. Q J Med,1964, 33(129):57-69.
    8. Ralls PW. Takayasu arteritis. Ultrasound Q,2010,26(3):133-4.
    9. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis:a review. J Clin Pathol, 2002,55(7):481-6.
    10. Kissin EY, Merkel PA. Diagnostic imaging in Takayasu arteritis. Curr Opin Rheum,2004,16(1):31-7.
    11. Schmidt WA, Nerenheim A, Seipelt E, et al. Diagnosis of early Takayasu arteritis with sonography. Rheumatology (Oxford),2002,41(5):496-502.
    12. Park SH, Chung JW, Lee JW, Han MH, Park JH. Carotid artery involvement in Takayasu's arteritis:evaluation of the activity by ultrasonography. J Ultrasound Med,2001,20(4):371-8.
    13. Sun Y, Yip PK, Jeng JS, et al. Ultrasonographic study and long-term follow-up of Takayasu's arteritis. Stroke,1996,27(12):2178-82.
    14. Maeda H, Handa N, Matsumoto M, et al. Carotid lesions detected by B-mode ultrasonography in Takayasu's arteritis:"macaroni sign" as an indicator of the disease. Ultrasound Med Biol,1991,17(7):695-701.
    15. Raninen RO, Kupari MM, Pamilo MS, et al. Arterial wall thickness measurements by B mode ultrasonography in patients with Takayasu's arteritis. Ann Rheum Dis, 1996,55(7):461-5.
    16. Schmidt WA, Blockmans D. Use of ultrasonography and positron emission tomography in the diagnosis and assessment of large-vessel vasculitis. Curr Opin Rheumatol,2005,17(1):9-15.
    17.陈文卫,耿丽娜,石华,等.多发性大动脉炎中颈总动脉炎损害的彩色多普勒显像研究.中国超声医学杂志,2003,19(6):436-8.
    18. Renker M, Baumgartner I, Diehm N. Takayasu arteritis presenting with extensive bilateral aneurysms of the common carotid arteries. Eur Heart J,2012,33(4):435.
    19. Caballero PE. Common carotid artery aneurysm revealing Takayasu's arteritis. J Stroke Cerebrovasc Dis,2011,20(6):556-8.
    20. Kawano H, Toyoda K, Otsubo R, et al. Tortuous carotid artery lumens in Takayasu's arteritis. J Stroke Cerebrovasc Dis,2009,18(5):403-4.
    21.徐建红,唐杰,李俊来,等.超声影像诊断多发性大动脉炎的价值.中国医学影像学杂志,2004,12(2):98-100.
    22. Raninen RO, Kupari MM, Pamilo MS, et al. Ultrasonography in the quantification of arterial involvement in Takayasu's arteritis. Scand J Rheumatol.2000,29 (1):56-61.
    23.韩红,丁红,王文平,等.多发性大动脉炎颈动脉病变的彩超特征.中国临床医学,2004,11(5):895-7.
    24. Li J, Shi D, Wei Y, et al. Blood flow in the internal carotid artery with common carotid artery-occluding lesions in Takayasu arteritis. J Ultrasound Med,2010, 29(11):1547-53.
    25. Raninen RO, Kupari MM, Hekali PE. Carotid and femoral artery stiffness in Takayasu's arteritis. An ultrasound study. Scand J Rheumatol,2002,31(2):85-8.
    26. Ng WF, Fantin F, Ng C, et al. Takayasu's arteritis:a cause of prolonged arterial stiffness. Rheumatology (Oxford),2006,45(6):741-5.
    27. Cho IJ, Shim CY, Yang WI, et al. Assessment of mechanical properties of common carotid artery in Takayasu's arteritis using velocity vector imaging. Circ J, 2010,74(7):1465-70.
    28. Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation,1993,87(3 suppl):Ⅱ56-65.
    29. Jeng JS, Yip PK, Chen CC, et al. Extracranial carotid artery atherosclerosis in 1,014 physical check-up subjects (SCAN-III). J Med Ultrasound,1995,3:144-50.
    30. Seyahi E, Ugurlu S, Cumali R, et al. Atherosclerosis in Takayasu arteritis. Ann Rheum Dis,2006,65(9):1202-7.
    31. Taniguchi N, Itoh K, Honda M, et al. Comparative ultrasonographic and angiographic study of carotid arterial lesions in Takayasu's arteritis. Angiology, 1997,48(1):9-20.
    32. Buckley A, Southwood T, Culham G, et al. The role of ultrasound in evaluation of Takayasu's arteritis. J Rheumatol,1991,18(7):1073-80.
    33. Seth S, Goyal NK, Jagia P, et al. Carotid intima-medial thickness as a marker of disease activity in Takayasu's arteritis. Int J Cardiol,2006,108(3):385-90.
    34. Keo HH, Caliezi G, Baumgartner I, et al. Increasing echogenicity of diffuse circumferential thickening ("macaroni sign") of the carotid artery wall with decreasing inflammatory activity of takayasu arteritis. J Clin Ultrasound,2013, 41(1):59-62.
    35. Schmidt WA, Seipelt E, Krause A, et al. Carotidynia in Takayasu arteritis. J Rheumatol,2007,34(1):231-2.
    36. Magnoni M, Dagna L, Coli S, et al. Assessment of Takayasu arteritis activity by carotid contrast-enhanced ultrasound. Circ Cardiovasc Imaging,2011,4(2):e1-2.
    37. Giordana P, Baque-Juston MC, Jeandel PY, et al. Contrast-Enhanced Ultrasound of Carotid Artery Wall in Takayasu Disease:First Evidence of Application in Diagnosis and Monitoring of Response to Treatment. Circulation,2011, 124(2):245-7.