东海海域自由表面多次波压制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多次波是地震记录中一种常见的相干噪音,尤其是在海洋地震记录中。如何有效地消除或压制各种类型的多次波,并最大限度地保留一次波信号是地震勘探中的一个重要课题。由于多次波的存在,使得地震资料的信噪比降低,干扰人们对有效波的识别,从而导致速度分析、叠前及叠后偏移的极大困难,影响地震成像的真实性和可靠性,并将导致假的成像,严重影响地震解释工作。因此,研究和压制多次波,具有重要的现实意义和发展前景。本学位论文依托导师刘怀山的国家高新技术研究发展计划(863计划)课题“浅海地震资料特殊干扰波形成机理与剔除方法(2006AA09Z339)”。
     自20世纪50年代以来,已研究实现了多种压制多次波的方法技术,它们分别基于不同标准来区分多次波和一次波。压制多次波的方法主要分为两大类:一类是基于有效波和多次波之间的可分离性和其他差异性(如多次波周期性、时差差异等)来预测与压制多次波。比较典型的方法有预测反褶积、正常时差变换叠加、f - k变换、τ-p变换、抛物线Radon变换和聚束滤波等,它们可以简称为基于几何地震学方法或“几何滤波类方法”;第二类主要是基于弹性波动理论的方法,通过模拟或反演方法来预测原始数据中多次波,继而从原始数据中匹配减去所预测的多次波。这类方法也称为波动预测减去法,主要有:波场外推法、反馈环法、反散射级数法。基于波动方程理论,压制和利用多次波是20世纪90年代发展起来的一种新思路,也是国外多次波研究的发展趋势。这种思路方法,综合考虑自由界面多次波传播的运动学特性和动力学特性,针对多次波产生的机理,有效避免了各种非波动方程方法解决问题所带来的局限性,使多次波研究发展步入了新的里程,标志着多次波理论与应研究进入了一个新的层次和水平。本人在上述背景下,开展博士学位论文工作。
     与其他方法相比,自由表面多次波压制(Surface-related Multiple Elimination,简称SRME)预测过程无需知道宏观速度场,从而增强了预测方法的适应性。这是SRME的最大优点。由于SRME推导过程中,做了四个假设:①震源子波不发生改变;②自由界面的反射系数为-1;③在数据采集过程中,检波器保持稳定;④地层是层状介质。如果假设条件不满足,多次波压制效果就会受到影响。另外,SRME是一种Kirchhoff频率域积分法,所以易受野外采集观测系统影响。
     为了克服原始数据驱动预测多次波过程受数据中子波和多次波的影响,本文采用反射率法实现了脉冲响应炮集记录。与其他正演方法(射线追踪、有限差分)相比,反射率法是f-k域实现的,计算速度较快。用反射率法可以在任何检波器位置模拟脉冲响应单炮,为了后续的SRME Kirchhoff积分提供了数据保障,同时在一定程度上克服了子波的影响。
     与原始数据相比,模拟出来的记录不含子波的影响,同时弥补了原始数据空间采样不足的问题。利用模拟出来的叠前脉冲响应炮集与原始数据相结合预测多次波模型,可以在一定程度上克服空间采样率不足和对多次波预测过头的问题。
     本文模拟出的叠前脉冲响应炮集,与实际地层介质难免存在差异,因此预测出的多次波也会受到残留子波的影响。在迭代去除多次波的过程中,需要进一步消除残留子波的影响。但是在实际操作过程中如何求准子波始终是数据匹配过程的一个难题。为了匹配准确,作者提出了Huber混合模构造目标函数,然后利用伪牛顿梯度算法求解匹配算子。与其他模相比,Huber混合模是一种有效的误差估计准则,它综合了L2模的优点(对小误差的平滑作用)和L1模的优点(对大的野值不敏感)。另外Huber模目标函数是可微的,所以可以利用梯度类优化方法最小化。多次波模型与实际多次波的匹配一个关键参数就是时窗位置的选取,如果选取不当的话,就会导致多次波向有效波靠拢,损害有效。根据水平地层多次波的周期性特点,本文利用多次波时距曲线约束时窗位置(在多数情况下,水平地层假设是可以适用的),提高了匹配滤波的准确度。利用时窗约束Huber模估算匹配算子克服了多次波与有效信号匹配不准的问题。
     模拟数据和东海实际资料处理均表明,本文所提出的方法能够有效地压制多次波。
In seismic prospecting especially on the sea, it is the multiple wave that causes the SNR of seismic data to reduce greatly, disturbs the identifiability of primary reflection, brings enormous difficulty on velocity analysis and excursion before and after stacking, and then affects the seismic imaging authenticity and reliability, sometimes may be false. Multiple may seriously influence seismic interpretation work also. So it is very important and necessary for multiple suppression. The research of this dissertation is funded by the Hi-tech research and development program of China (Grant No. 2006AA09Z339).
     Since the 20th century 50's, a lot of multiple suppressing methods have come out, which make use of different characteristics of multiple. methods that suppress multiples can be classified into two broad categories: One is based on the moveout between primary and multiples. Typical methods of the first class consist of predictive deconvolution, normal moveout stacking, f-k transformation, Tau-p transformation, parabola Radon transformation and beamforming. They can be called as seismography method based on the geometry. The second one is mainly based on wave equation, which predict, match it with the original data and then subtract multiples from the input data. The wave equation methods include Wavefield Extrapolated method, Iterative Feedback method and Inverse Scattering Series method. In this dissertation, a comprehensive study has been done on the wave equation-based methods.
     From the perspective of the acoustic wave equation theory, using the Kirchhoff Integral solution, we obtained the wave field extrapolation formula in the frequency-space domain. Regardless of surface reflection, the primary propagates downward, reflects at the subsurface reflector, and then propagates back. Taking the interface of seawater-to-air into account, the so-called surface-related multiple has been modeled. The surface-related multiple elimination can be treated as an inverse procedure of surface-related multiple modeling. Algorithms, formulas, program flowcharts for the surface-related multiple have been given in detail in this dissertation.
     A surface-related multiple-elimination method can be formulated as an iterative procedure: the output of one iteration step is used as input for the next iteration step. In this paper it is shown that the procedure can be made very efficient if a good initial estimate of the multiple-free data set can be provided in the first iteration, and in many situations, the synthetic method may provide such an estimate. It is also shown that for each iteration, the inverse source wavelet can be accurately estimated by a nonlinear (Huber norm) inversion process. The iterative multiple elimination process, together with the source wavelet estimation, are illustrated with numerical experiments as well as with field data examples. The results show that the surface related multiple-elimination process is very effective in time gates where the moveout properties of primaries and multiples are very similar.
     From the physical insight, surface multiple attenuation is to combining primary events to predict a multiple is similar to the diffraction-aperture problem of classical optics. Although the algorithm requires no assumptions or modeling regarding the positions and reflection coefficients of the multiple-causing reflectors, it does require complete internal physical consistency from the optical veiwpoint. SRMA also has several weaknesses. The wavelet in the data contaminates the multiple prediction operator and has to be removed in order to predict multiples accurately. Since the prediction operator is the data, it is only sampled for locations where shots were initiated, not in general the same as the locations were traces were recorded. The SRMA operator tends to overpredict higherorder multiples because it should be convolving with an operator containing only subsurface primaries and interbeds. As a result it must resort to some type of iterative scheme to drive this contamination down.
     To sidestep acquisition limitations, source wavelet contamination and overprediction of higher order multiples, we have developed a method which essentially models surface-related multiples by adding a synthetic shot to the data. More specifically, each input trace is convolved with a synthetically-generated shot record consisting of one or more key subsurface primary reflections. These records are impulse response of the beneath, which are generated by the so-called reflectivity method. The resulting operators have several appealing features. They are clean operators, having no source wavelet contamination and little or no aliasing. By construction they are available for any source-receiver combination desired. By modeling only primaries into the operator, we avoid the geometric overprediction of higherorder multiples that plagues SRMA. Because l 1norm adaptive filter is incorporated, we retain much of the ability of SRMA to honor lateral amplitude variations induced by these reflectors in the predicted multiples.
     The synthetic and real examples clearly justify the validity of the technology presented in this dissertation.
引文
[1]Sheriff, R. E., and Geldart, L. P.,初英等译.勘探地震学.北京:石油工业出版社,1999.
    [2]OZ Yilmaz.. Seismic Data Analysis,Society of Exploration Geophysicists, 1993.
    [3]Dragoset, B. Geophysical applications of adaptive-noise cancellation in 65th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1995. 1389~1392.
    [4]Dragoset, B., and MacKay, S.. Surface multiple attenuation and subsalt imaging in 63rd Ann. Internat. Mtg. Soc. of Expl. Geophys., 1993. 1099~1102.
    [5]Dragoset, B., Pattberg, D., Bell, J., and Vauthrin, R.. Surface multiple attenuation: A 3-D example in 70th Ann. Internat. Mtg. Soc. of Expl. Geophys., 2000.1957~1960.
    [6]Dragoset, W. H., and Jericevic, Z.. Some remarks on surface multiple attenuation: Geophysics, 1998, 63: 772~789.
    [7]Duijndam, A. J. W., Volker, A. W. F., and Zwartjes, P. M.. Acquisition footprint reduction- least squares migration versus reconstruction in 62nd Mtg. Eur. Assn. Geosci. Eng., 2000, Session: P0128.
    [8] Robinson, E. A., Principle of digital Wiener filtering. Geophysical Prospecting, 1967, 15(3): 311~333.
    [10]Weglein, A.B., Multiple attenuation: Recent advances and the road ahead in 65th Ann.Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1995. 1492~1495.
    [11]Backus, M. M., Water reverberation-their nature and elimination. Geophysics, 1959, 24(2): 233~261.
    [12]Taner, M. T.. Long period sea-floor multiples and their suppression. Geophys. Prosp., 1980, 28: 30~48
    [13]Thorson, R., and Claerbout, J.. Velocity-stack and slant-stack stochastic inversion. Geophysics,1985, 50(12): 2727~2741.
    [14]Hampson D.. Inverse velocity stacking for multiples estimation. Journal of Canadian Society of Exploration Geophysicists, 1986, 22(1): 44~55.
    [15]Foster, D. J., and Mosher, C. C.. Suppression of multiple reflection using the Radon transform. Geophysics, 1992, 57(3): 386~395.
    [16]Evgeny Landa.. Multiple attenuation in the Parabolicτ?p domain using wavefront characteristic of multiple generating primaries. Geophysics, 1999, 64(6): 1806~1816.
    [17] Yilmaz, O.Z. Velocity-stack processing. Geophysical Prospecting, 1989, 37(4): 357~382
    [18]Larner, K. L.. Optimum weight averaging of seismic data. Western Geophysical Company, 1975.
    [19]Hu, T., and White, R. E.. Robust multiple suppression using adaptive beamforming. Geophysical Prospecting, 1998, 46: 227~248.
    [20]胡天跃,王润秋,White, R. E..地震资料处理中的聚束滤波方法.地球物理学报, 2000, 43: 105~115.
    [21]胡天跃,王润秋,温书亮.聚束滤波方法消除海上地震资料的多次波.石油地球物理勘探, 2002, 37(1): 18~23.
    [22]王润秋,胡天跃.用三维聚束滤波方法消除相关噪音.石油地球物勘探, 2005, 40(1): 42~47.
    [23]洪菲,胡天跃,张文坡,刘东奇.用优化聚束滤波方法消除低信噪比地震资料中的多次波.地球物理学报, 2004, 47(6): 1106~1110.
    [24]Kennett, B. L. N.. The supression of surface multiples on seismic records: Geophys. Prosp., 1979, 27, (3) : 584–600.
    [25]Claerbout, J.. Fundamentals of Geophysical Data Processing: Blackwell Scientific Publications, 1976.
    [26]Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A.. Adaptive surface-related multiple elimination. Geophysics, 1992, 57: 1166~1177.
    [27]Verschuur, D. J., Berkhout, A. J., and Kelamis, P.G.. Estimation of multiple scattering by iterative inversion, PartⅡ: Examples on marine and land data in 65th Ann. Intermat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1995. 1470~1473.
    [28]Verschuur, D.J., and Berkhout, A.J.. Estimation of multiple scattering by iterative inversion, PartⅡ: Practical aspects and examples. Geophysics, 1997, 62: 1596~1611.
    [29]Berkhout, A. J.. Multiple removal based on the feedback model. The Leading Edge, 1999, 18(1): 127~131.
    [30]Wang, Y.. Multiple subtraction using an expanded multichannel matching filter. Geophysics, 2003, 68: 346~354.
    [31]Wang, Y.. Multiple prediction through inversion: A fully data-driven concept for surface-related multiple attenuation. Geophysics, 2003, 69: 547~553.
    [32]Wang, Y., and Levin, S. A.. An investigation into eliminating surface multiples. SEP. 1994, 80: 589~602.
    [33]Carvalho, F.M., Weglein, A.B., and Stolt, R.H.. Examples of a non-linear inversion method based on the T matrix of scattering theory: Application to multiple suppression in 61st Ann. Intermat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1991. 1319~1322.
    [34]Carvalho, F.M.. Nonlinear inverse scattering for multiple attenuation: Application to real data, PartⅠin Expanded Abstracts of 62th SEG Mtg., 1992. 1093~1095.
    [35]Weglein, A. B., Gasparotto, F. A ., Carvalho, P. M., and Stolt, R. H.. An inverse-scattering series method for attenuating multiples in seismic reflection data. Geophysics, 1997, 62: 1975~1989.
    [36]Hill, S., Dragoset, B., and Weglein, A. J.. An introduction: The new world of multiple attenuation. The Leading Edge, 1999, 18(1) : 38.
    [37]Matson, K. H., Paschal, D., and Weglein, A. B.. A comparison of three multipleattenuation methods applied to a hard water-bottom data set. The Leading Edge, 1999, 18: 120~126.
    [38]Weglein, A. B.. Multiple attenuation: an overview of recent advances and the road ahead (1999).The Leading Edge, 1999, 18: 40~44.
    [39]Weglein, A. B., Gasparotto, F. A. F., Carvalho, P. M., and Stolt, R. H.. An inversescattering series method for attenuating multiples in seismic refiection data. Geophysics, 1997, 62: 1975~1989.
    [40]Morley, L.. Predictive deconvolution in shot-receiver space. Geophysics, 1983, 48(5): 515~531.
    [41]Wiggins, J. W.. Attenuation of complex water-bottom multiples by wave-equation based prediction and subtraction. Geophysics, 1988, 53: 1527~1539.
    [42]张军华,吕宁,雷凌,田连玉,郭见乐.抛物线拉冬变换消除多次波的应用要素分析.石油地球物理勘探,2004,39(4): 398~405.
    [43]刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用.地球物理学进展,2004,19(1): 8~15.
    [44]牛滨华,孙春岩,张中杰.多项式Radon变换.地球物理学报, 2001,44(2): 263~271.
    [45]朱生旺,魏修成,李锋.用抛物线Radon变换稀疏解分离和压制多次波.石油地球物理勘探, 2002, 37(2):110~115.
    [46]武克奋.双向预测法压制线性干扰波和多次波.石油物探, 2005, 44(5):458~461.
    [47]顾建平.改进的Radon滤波压制多次波技术及应用效果.石油地球物理勘探,2003,38:38-41.
    [48]杨文采.非线性K--L滤波及其在地展资料处理中的应用.石油物探, 2006,35(2):17~26.
    [49]余波,黄中玉,谈大龙.径向道滤波法去线性干扰.石油物探,2005,44(2):109~112.
    [50]张金强,牟永光.多次波压制的自适应方法.石油地球物勘探, 2002, 37(3): 209~215.
    [51]曾友爱,许云.约束法分解P-L变换压制多次波.石油物探, 1999,38(2):36~43.
    [52]牛滨华,沈操,黄新武,孙春岩,罗小明,王玉学,吴亚东,李明娟.波动方程压制多次波的技术方法地学前缘. 2002, 9(2): 511~517.
    [53]王维红.叠前地震数据重建和多次波衰减:加权和结合多次波预测的Radon变换方法[博士学位论文].北京:中国科学院地质与地球物理研究所, 2005.
    [54]张素芳,徐义贤,雷栋.基于Curvelet变换的多次波去除技术.石油地球物理勘探,2006,41(3): 262~267.
    [55]范承亮,丁科,宋守根.逆散射成像算法研究.中南工业大学学报, 2001, 34: 50~56.
    [56]陆基孟.地震勘探原理.东营:石油大学出版社, 1993. 164~172.
    [57]董敏煜.地震勘探.东营:石油大学出版社, 2000. 48~64.
    [58]杨有发,张建祥.海洋地震勘探.长春:吉林科学技术出版社, 1997. 29~31.
    [59]罗小明,牛滨华,于延庆,黄新武.海上某区二维地震多次波的识别和压制.现代地质, 2003, 17: 474~478.
    [60]王汝珍.多次波识别与衰减.勘探地球物理进展,2003, 26(5-6): 423~432.
    [61]刘长辉,王建鹏,曹军.海洋多次波特征和压制方法初探.石油天然气学报,2005, 27(4): 608~609.
    [62]陈瑜,魏赟,葛勇.东海盆地L凹陷多次波分析与压制.中国海上油气,2004, 16(6): 373~376.
    [63]栾锡武.中国东海及邻近海域一条剖面的地壳速度结构研究.地球物理学进展,2001, 16(2):28~34.
    [64]金翔龙,陶普之.黄东海地质,北京:科学出版社.
    [65]周志武、赵金海、殷培龄.东海地质构造特征及含油气性.见:朱夏、徐汪主编.中国新生代沉积盆地.北京:石油工业出版社, 1990. 226~242.
    [66]林峰.东海陆架盆地沉积体系演化特征.海洋地质与第四纪地质, 1995,15(增刊), 22~26.
    [67]陈国达.东亚陆缘扩张带—一条离散式大陆边缘的成因探讨.大地构造与成矿,1997. 21(4): 285~293.
    [68]肖文交,李继亮,何海清.浙西北前陆褶皱冲断带初步研究.中国科学(D辑),1997,27(1):27~33.
    [70]吴有林,林舸,范蔚茗.弧后盆地的形成与演化探讨—以东亚陆缘区为例.海洋地质与第四纪地质, 1996, 16(4) : 63~69.
    [71]许浚远,张凌云. 1999.欧亚板块东缘新生代盆地成因:右行剪切拉分作用.石油与天然气地质, 17(4):187~191.
    [72]许浚远,张凌云.2000.西北太平洋边缘新生代盆地成因(上):成盆机制述评.石油与天然气地质,21(2): 93~98.
    [73]李维贤.东海陆架多旋回复合盆地的油气远景.石油实验地质,200l,23(2):18-23.
    [74]高名修.中国东部盆地系与美国西部盆地山脉构造对比及其成因机制探讨.见:朱夏主编.中国中新生代盆地构造和演化.北京:科学出版社, 1983. 65~77
    [75]李乃胜,姜丽丽,李常珍.冲绳海槽地壳结构的研究.海洋与湖沼, 1998,29(4): 441~450.
    [76]格里洛娃.东亚活动大陆边缘新生代沉积盆地类型.太平洋地质(俄),1992, 5.
    [77]刘怀山,周正云.用于研究东海天然气水合物的地震资料处理方法.青岛海洋大学学报(自然科学版), 2002, 3: 23~30.
    [78]Kimura,M.,T.Oomori,E.Izawa. Research results of the 284,286,287 and 366 dives in the Iheya depression and the 364 dive in the Izenda Hole by“SHINKAI 2000”. JAMSTECTR Deep Sea Research, 1991: 147-162.
    [79]Kimura.M.,Uyeda,S.,Kato,Y.. Active hydrothermal mounds in the Okinawa Trough backarc basin. Japan. Tectonophysics, 1988, 145: 319-324.
    [80]李乃胜.冲绳海槽的地质特征.海洋与湖沼, 1990,21(6):536~543.
    [81]刘建华.南冲绳海槽地震反射波特征及其地质解释.东海海洋, 2001,19(1),19~26.
    [82]Berkhout,A. J.. Seismic migration: Imaging of aeoustic energy by wavefield extrapolation,Elsevier Scienee Publ .Co.,Inc.,1982.
    [83]Berkhout,A. J.. Applied seismic wave theory. Elsevier Science Publ. co.,Inc.,1987.
    [84]Wapenaar C. P.,Berkhout,A. J.. Elastic Wave Field Extrapolation. Elsevier Science Publ. Co.,Inc.,1989.
    [85]Berkhout.地震偏移一波场外推法声波成像,马在田、张叔伦译.石油工业出版社,1983.
    [86]Claerbout, J. F., and Muir, F.. Robust modeling with erratic data. Geophysics, 1973, 38:826~ 844.
    [87]Taylor, H. L., Banks, S. C., and McCoy, J. F.. Deconvolution with the L1 norm. Geophysics, 1979, 44: 39~52.
    [88]Chapman, N. R., and Barrodale, I.. Deconvolution of marine seismic data using the l1 norm. Geophys. J. Roy. Astr. Soc., 1983, 72: 93~100.
    [89]Scales, J. A., and Gersztenkorn, A.. Robust methods in inverse theory, in Scales, J. A., Ed., Geophysical imaging, symposium of geophysical society of Tulsa. Soc. of Expl. Geophys, 1987. 25~50.
    [90] Scales, J. A.. Robust method in inverse theory. Inverse Problems, 1988, 4: 1071~1091.
    [91]Scales, J. A., Gersztenkorn, A., Treitel, S., and Lines, L. R.. Robust optimization methods in geophysical inverse theory in 58th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1988, Session: S7.1.
    [92]Bube, K. P., and Langan, R. T.. Hybrid lambda1/lambda2 minimization with applications to tomography. Geophysics, 1997, 62: 1183~1195.
    [93]Barrodale, I., and Roberts, F. D. K.. Algorithm 552 : Solution of the constrained 11 linear approximation problem. ACM Transactions on Mathematical Software, 1980, 6: 231~235.
    [94]Zhang, Z., Chunduru, R. K., and Jervis, M. A.. Determining bed boundaries from inversion of EM logging data using general measures of model structure and data misfit. Geophysics, 2000, 65: 76~82.
    [95]Huber, P. J.. Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Statist., 1973, 1: 799~821.
    [96]Gill, P. H., Murray, W., and Wright, M. H.. Practical Optimization. Academic Press, 1986.
    [97]Broyden, C. G.. A new double-rank minimization algorithm. AMS Notices, 1969, 16: 670.
    [98]Fletcher, R.. A new approach to variable metric methods. Comput. J., 1970, 13: 317~322.
    [99]Goldfarb, D.. A family of variable metric methods derived by variational means. Math. Comp.,1970, 24: 23~26.
    [100]Shanno, D. F.. Conditioning of quasi-Newton methods for function minimization. Math. Comp., 1970, 24: 647~657.
    [101]Nocedal, J.. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 1980, 95:339~353.
    [102]Darche, G.. Iterative l1 deconvolution. SEP Annual Report, 1989, 61: 281~301.
    [103]Liu, D. C., and Nocedal, J.. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 1989, 45: 503~528.
    [104]Ekblom, H., and Madsen, K.. Algorithms for non-linear huber estimation: BIT, 1989, 29: 60~76.
    [105]Li, W., and Swetist, J. J.. The linear l1 estimator and the Huber M-estimator: SIAM J. Optim., 1998, 8: 457~475.
    [106]Berkhout, A., and Verschuur, D.. Removal of internal multiples in 69th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1999. 1334~1337.
    [107]Berkhout, A. J., and Verschuur, D. J.. Multiple technology: Part 2, migration of multiple reflections in 64th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1994. 1497~1500.
    [108]Berkhout, A. J., and Verschuur, D. J... Estimation of multiple scattering by iterative inversion, part I: Theoretical considerations. Geophysics, 1997, 62: 1586~1595.
    [109] Berkhout, A. J.. Imaging multiple reflections: The concept in 74st Annual International Meeting, SEG, Expanded Astracts, 2004. 1273~1276.
    [110]Kelamis, P. G., and Verschuur, D. J.. Surface-related multiple elimination on land seismic data Strategies via case studies. Geophysics, 2000, 65: 719~734.
    [111]Verschuur, D. J., and Berkhout, A. J.. Estimation of multiple scattering by iterative inversion, part II: Practical aspects and examples. Geophysics, 1997, 62: 1596~1611.
    [112]Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A.. Adaptive surface-related multiple elimination. Geophysics, 1992, 57: 1166~1177.
    [113]Ikelle, L. T., Amundsen, L., Gangi, A., Wyatt, S. B.. Kirchhoff scattering series: Insight into the multiple attenuation method. 2003, 68(1): 16~28.
    [114]Guitton, A., Brown, M., Rickett, J., and Clapp, R.. Multiple attenuation using a tx pattern-based subtraction method in 71st Ann. Internat. Mtg. Soc. of Expl. Geophys., 2001.1305~1308.
    [115]Guitton, A., and Cambois, G.. Prestack elimination of complex multiples: A Gulf of Mexico subsalt example in 68th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1998. 1329~1332.
    [116]Dedem, E. J.. 3D surface-related multiple prediction: Ph.D. thesis, Delft University of Technology, 2002.
    [117]Hugonnet, P.. Partial surface related multiple elimination in 72nd Ann. Internat. Mtg. Soc. of Expl. Geophys., 2002. 2102~2105.
    [118]Ursin B. The plane-wave reflection and transmission response of a vertically inhomogeneous acoustic medium, Deconvolution and inversion. Blackwell Scientific Publications, Inc. 1987.
    [119]Kolb P. Collino F. Lailly P. Prestack inversion of a 1-D medium.Proc.IEEE, 1986, 74: 498~508.
    [120]Kennett BLN. Seismic wave propagation in stratified medium. Cambridge Univ. Press. 1983.
    [121]Kennett, B. L. N.. The effect of attenuation on seismograms. Bull., Seis. Sot. Am., 1975, 65: 1643-1651.
    [122]Kennett, B. L. N.. Theoretical reflection seismograms for an elastic medium. Geophys. Prosp., 1979, 27: 301-321.
    [123]Kennett, B. L. N.. Seismic waves in a stratified half-space II-Theoretical seismograms. Geophys. J. Roy. Astr. Sot., 1980. 61:1~10.
    [124] Kennett, B. L. N.. Seismic wave propagation in stratified media. Cambridge Univ. Press., 1983.
    [125]Kennett, B. L. N., and Clarke, T. J.. Seismic waves in a stratified half-space-IV P-SV wave decoupling and surface wave dispersion. Geophys. J. Roy. Astr. Sot., 1983, 72: 633~645.
    [126]Kennett, B. L. N., and lllingworth, M. R.. Seismic waves in a stratified half-space III-Piecewise smooth models: Geophys. J. Roy. Astr. Sot., 1981, 66: 633~675.
    [127]Kennett, B. L. N., and Kerry, N. J.. Seismic waves in a stratifed half-space. Geophys. J. Roy. Astr. Sot., 1979, 57: 557~583.
    [128]Assous F,Chalindar B,Collino F.Nonlinear elastic inversion of prestack marine seismic data,Proc. IEEE, 1989, 77: 877~890.
    [129]McAulay A D. Plane-layer prestack inversion in the presence of surface reverberaton. Geophysics, 1991, 51: 1789~1800.
    [130]Amundsen L, Ursin B. Frequency-wavenumber inversion of acoustic data. Geophysics, 1991, 56: 1027~1039.
    [131]Fryer G. J.. A slowness approach to the reflectivity method of seismogram synthesis. Geophysical Journal of Royal Astronomical Society, 1980,63(3):747~758.
    [132]Fuchs, K., and Müller. G.. Computation of synthetic seismograms with the reflectivity method and comparison of observations. Geophys. J. Roy. Astr. Sot., 1971, 23: 417~433.
    [133]崔树果,刘怀山,童思友.海域天然气水合物AVO特征研究.青岛海洋大学学报,2003, 33(130):79~86.
    [134]寻浩,董敏煜,牟永光.各向异性介质中反射率法波场模拟及体波辐射图案.石油地球物理劫探,1997,32(5): 605~614.
    [135]OSTRANDER W. J. Plane-wave reflection coefficients for gas sands at non-normal incidence. Geophysics, 1984, 49(10):1637~1648.
    [136]张繁昌,印兴耀.层状半空间叠前地震记录的波动方程正演模拟.石油大学学报(自然科学版), 2004, 28(3): 25~30.
    [137]张霖斌,姚振兴.层状介质的声波波动方程反演.地球物理学进展,2000,15(2): 22~29.
    [138]Mallick, S., Frazer, L. N.. Practical aspects of reflectivity modeling. Geophysics, 1987, 52(10): 1355~1364.
    [139]Stephen, R. A.. Synthetic seismograms for the case of the receiver wrthin the reflectivity zone. Geophys. J. Roy. Astr. Sot., 1977, 51: 169~181.
    [140]Spudich. P.. and Ascher, U.. Calculation of complete theoretical seismograms in vertically varying media using collocation methods: Geophys. .I. Roy. Astr. Sot.. 1983, 75: 101~124.
    [141]李庆忠.走向精确勘探的道路.北京:石油工业出版社,1994.