面向超精定位系统无铁心直流直线电机精确建模与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无铁心直流直线电机(Coreless Direct Current Linear Motor,CLDCLM)也称为音圈电机,具有结构简单、近零推力波动、高动态响应及高可靠性等优点,与压电陶瓷、超磁致伸缩等短行程、高精度的执行器相比,具有非接触传动和长行程的特点,广泛应用在超精密定位伺服系统中。超精密定位伺服系统对执行器的要求主要包括:高推力密度、近零散热(电机与外界几乎无热交换)、高动态响应及严格外形、质量约束等。这无疑对无铁心直流直线电机提出了更为苛刻的设计要求,本文针对以上需求开展电机拓扑结构、电磁和温度特性参数解析表达式及多物理场多目标优化设计方法等问题的研究。
     首先,针对推力密度高、推力波动低的需求提出了一种Halbach阵列、串并联磁路结合的次级结构,具有超薄冷却结构的无铁心初级结构的直流直线电机。Halbach阵列及串、并联磁路结构有效地减小了电机轭板厚度,提高了直流直线电机的推力密度;采用增添冷却结构的方式可提高无铁心电机绕组电流,进一步提高电机推力密度,并且可有效抑制电机温升,从而实现电机与外界环境无热交换。
     基于无铁心直流直线电机电磁边界简单的特点,采用镜像法与等效磁荷法结合的方式建立起无铁心直流直线电机的气隙磁场的三维数学模型。在磁场模型中,通过等效磁路法搭建起电机导磁材料的饱和系数模型,有效地提高了该类电机磁场模型的精度,为电机精确推力计算奠定理论基础。通过有限元仿真软件证明了该模型具有更为广泛的尺寸通用性,并且该模型与有限元三维场计算相比大幅度地削减了计算时间,为无铁心直流直线电机甚至无铁心电机的全局性优化提供了充分的理论依据。在此基础上,推导出电机推力密度、推力波动、电机常数等重要性能指标的关系式以及电阻、电感的解析表达式。
     在精确的气隙磁场数学模型基础上,分析了绕组端部对无铁心直流直线电机出力的影响机理,推导出绕组直边、端部产生推力在X、Y和Z方向分量的解析表达式,并通过分析给出了非驱动方向寄生力的抑制方法。首次提出了推力系数刚度这一概念描述推力系数随电机初级、次级相对位置变化时的衰减规律,从而作为评价该类电机性能优劣的标准。首次提出了反接串联感应电动势方法从根源上抑制冷却结构的电涡流阻尼力,得到了一种新型抑制电涡流阻尼力的超薄型冷却结构,并推导了阻尼系数的数学模型。通过实验证明了上述模型的准确性。打破了视电机为同一刚体的模型束缚,揭示了无铁心直流直线电机机械结构振荡引发的推力波动的产生机理,并建立电机初级的多刚体多自由度动力学模型。在以上电机推力及扰动力的分析及数学模型指导下,建立了高精度的无铁心直流直线电机动力学模型,为其控制系统的前馈补偿模型奠定了理论基础,通过系统仿真证明了前馈补偿方法的可行性。
     搭建无铁心直流直线电机热网络法数学模型,并成功预测了电机初级侧表面的高温区,提出了增加导热支路方法降低无铁心直流直线电机初级的侧表面温度,通过温度场仿真及冷却实验验证了该方法的可行性。冷却结构不仅提高了绕组持续电流的密度,满足电机高推力密度的需求,同时突破了超精定位系统中电机近零散热的技术瓶颈。通过热网络模型及有限元模型得到了冷却板的热特性规律,为后续电机多物理场综合优化奠定了理论基础。
     最后,定义七个尺寸比例系数,结合无铁心直流直线电机设计尺寸输入条件对其电磁结构、冷却结构尺寸进行了完整的参数化建模。以无铁心直流直线电机的电磁模型、散热功率模型及尺寸参数化模型为基础,采用遗传算法构建该电机多目标优化函数,以电机行程、表面温升和外形尺寸等为约束条件,对无铁心直流直线电机进行多物理场综合设计、优化研究。该方法实现了电磁性能、冷却性能及外形尺寸的兼顾设计,解决了无铁心直流直线电机的多物理场耦合、多目标优化的复杂性设计,实现了无铁心直流直线电机高推力密度、低推力波动及近零散热等电机性能的共存。
Coreless Direct Current Linear Motor (CLDCLM) has some advantages such as a simple structure, less thrust fluctuation, high dynamic response and high reliability. The CLDCLM has larger stroke than traditional ultra-precision actuators (such as piezoelectric and giant magnetostrictive actuators), and do not use contact transmission principle for having higher positioning accuracy to be adopted in nanopositioning system. In nanopositioning system, the requirements of actuator are very strict, including high thrust density, no heat exchange, high dynamic response and strict shape constraints. In this thesis, the topology of CLDCLM is proposed; and the electromagnetic and temperature fields of CLDCLM are analyzed; and the electromagnetic and thermal analytical models are established; and the method of multi-object optimization is researched.
     Firstly, the topology of CLDCLM is proposed, which adopts Halbach array and series-parallel combination magnetic circuit, and has thin cooling structure. Halbach array and series-parallel combination magnetic circuit can reduce the height of yokes for improving the thrust density; cooling structure suppresses the temperature rise of CLDCLM for keeping no heat exchange, and improves the thrust density which is lower due to having air-core structure.
     Based on the simple boundary of CLDCLM, the electromagnetic model is established by the image method and surface magnetic charge model. And then the saturation coefficient is added in the analytical model to describe the nonlinear magnetic circuit by equivalent electromagnetic circuit approach. This electromagnetic model of CLDCLM is proved by finite element method (Comsol software), so this model has the versatility to lay the theory basis of the CLDCLM optimization design. Then, the analytical expressions of thrust density, thrust fluctuation and motor constant are obtained. And the method of CLDCLM’s resistance and inductance are proposed.
     Based on the electromagnetic model of CLDCLM, the part of CLDCLM thrust is researched, which is produced by winding end. The parasitic force of CLDCLM is non-driving direction force, and is produced by straight and end of windings. The suppression method of the parasitic force is obtained by the analysis. The relationship of thrust and position is like stiffness, which is a concept in mechanics, so the relationship is defined ‘thrust stiffness’ firstly. The thrust stiffness can describes the variation of the thrust with the position to be as the evaluation standard of motor performance. Then, a new method is introduced to suppress eddy current by offsetting back EMF in cooling plates. Based on the electromagnetic theory, the analytical model of new cooling plate is established. The Structural deformation and vibration would bring thrust fluctuation, and the model of this thrust fluctuation could be is discribed by multi-rigid-body and multi-degree-of-freedom model of CLDCLM primacy. By using above models, the accuracy of CLDCLM dynamic model is improved. The work lays theoretical foundation for feedforward control system of CLDCLM.
     The thermal model of CLDCLM is established by thermal network method, and then the high temperature region of CLDCLM primary side surface is predicted by this thermal model. Cooling structure not only improves the winding continuous current density to realize higher thrust density for meeting the needs of the ultra-precision positioning system, but also breaks technology bottleneck of the ultra-precision positioning system which is no heat exchange between motor and environment. The thermal conductivity branch is added to suppress the surface temperature of CLDCLM, which is proved by the FEM and testing. Some important parameters is calculated by FEM to lay the theory basis of the CLDCLM optimization design.
     Finally, the whole parameterized model of CLDCLM is established by seven dimension ratio parameters which are defined in this thesis. Based on the above electromagnetic and thermal models, the analysis and optimization of CLDCLM is researched by Genetic algorithm (GA) when stroke, surface temperature and sharp of CLDCLM are constrains. The electromagnetic performance, cooling capability and sharp of CLDCLM are designed at the same time, so the optimization of CLDCLM based on Multi-physical Fields is achieved. Finally, the CLDCLM, which is designed by this design method, has high thrust density, little thrust fluctuation and no heat exchange for meeting the needs of the ultra-precision positioning system.
引文
[1]王国彪.纳米制造前沿综述[M],北京:科学出版社,2010:1-15.
    [2] Sung-Q Lee and Dae-Gab Gweon, A new3-DOF z-tilts micropositioningsystem using electromagnetic actuators and air bearings[J], PrecisionEngineering,24, pp.24-31,2000.
    [3] Du C, Xie L, Zhang J. Compensation of VCM actuator pivot friction basedon an operator modeling method[J]. IEEE Transactions on Control SystemsTechnology.2009,18(4):918-926.
    [4] Liu Y T, Li B J. Precision positioning device using the combinedpiezo-VCM actuator with frictional constraint[J]. Precision Engineering.2009,34(3):534-545.
    [5] Takahashi M, Wakui S, Makinouchi S. Wide bandwidth by usingmulti-VCM for isolation device[J]. Nihon Kikai Gakkai Ronbunshu, CHen/Transactions of the Japan Society of Mechanical Engineers, Part C.2009,76(763):550-556.
    [6] Youm W, Jung J, Park K. Vibration reduction control of a Voice Coil Motor(VCM) nano scanner[Z]. Hong Kong, China:2007520-523.
    [7] Neal B. Hubbard,Martin L. Culpepper and Larry L. Howell. Actuators forMicropositioners and Nanopositioners[J], Transactions of the ASME,2006,59:324-334.
    [8] G. Jager, T. Hausotte, E. Manske, H. J. Büchner, et al. Nanomeasuring andnanopositioning engineering[J], Measurement2010,43:1099–1105.
    [9] Song Y, Wang J, Yang K, et al. A dual-stage control system for high-speed,ultra-precise linear motion[J]. International Journal of AdvancedManufacturing Technology.2009,48(5-8):633-643.
    [10] Kawashima K, Arai T, Tadano K, et al. Development of coarse/fine dualstage using pneumatically driven bellows actuator and cylinder with airbearings[J]. Precision Engineering.2009,34(3):526-533.
    [11] Iamratanakul D, Jordan B, Leang K K, et al. Optimal output transitions fordual-stage systems[J]. IEEE Transactions on Control Systems Technology.2008,16(5):869-881.
    [12] Abe H, Umeda Y, Takyu O, et al. Wideband, fast, and wide-dynamic-rangespectrum sensing using dual-stage spectrum detection[Z]. New Orleans, LA,United states:2009,284-287.
    [13] Lee S H. Optimal sliding mode dual-stage actuator control in computer diskdrives[J]. Journal of Dynamic Systems, Measurement and Control,Transactions of the ASME.2009,132(4):1-9.
    [14] Lei Jin, Luo Xin; Chen Xuedong. Modeling and analysis of a3-DOFLorentz-force-driven planar motion stage for nanopositioning Source[J].Mechatronics,201020(5):553-565.
    [15] K. H. Kim, Guseong Dong, Yuseong gu ME, et al. Design of a bidirectionalactuator for a nanopositioning system with a permanent magnet and anelectromagnet[J]. Review of Scientific Instruments,2005,76(12):1-8.
    [16]罗敢,王岳环,张彪.光刻机光头调焦音圈电机的结构设计[J].微特电机.1998(06):7-11.
    [17]杨光.基于三维磁场计算的永磁音圈电机结构优化设计[D].天津大学,2004:1-3.
    [18]陈幼平,杜志强,艾武,周祖德.一种短行程直线电机的数学模型及其实验研究[J].中国电机工程学报,2005,25(7):131-136.
    [19]杜志强.高响应短行程直线直流电机的建模、控制与实验研究[D].华中科技大学博士学位论文,2006:17-20.
    [20]邹继斌,王骞.音圈电机的电磁场计算与分析[J].微特电机,2008,2:4-6.
    [21] Mikhail Godkin, Jack Kimible and Rancho Santa Fe. Moving Coil LinearActurtor with Interleaved Magnetic Circuits[P]. Pub. No.:US4808955, Feb.28,1989.
    [22] Anthony C. Morcos. Moving Coil Actuator Utilizing Flux-FocusedInterleaved Magnetic Circuit[P]. Pub. No.:US5345206, Sep.6,1994.
    [23] H. Yajima, H. Wakiwaka, K. Minegishi, N. Fujiwara and K. Tamura. Designof linear DC motor for high-speed positioning[J]. Sensors and Actuators,vol.81:281–284,2000.
    [24] M. Nirei, Y. Tang, T. Mizuno, H. Yamamoto, K. Shibuya and H. Yamada.Iron loss analysis of moving-coil-type linear DC motor[J]. Sensors andActuators, vol.81:305–308,2000.
    [25] M. Norhisam, A. N. Azita and J. I. Syed, et al. Thrust DensityCharacteristics of Linear DC Motor[C]. Proceedings of2005InternationalConference on Power Electronics and Drives Systems,2005,(2):1408-1412.
    [26] J. H. Cho, B. I. Kwon, K. I. Woo, and Y. M. You. Optimal design ofextremely small thrust VCM for nanoindenter[J]. The Transactions of theKIEE, Vol.53, No.2:69-75,2004.
    [27] Dong-Ju Lee, Ki-Suk Woo, No-Cheol Park and Young-Pil Park, Design andOptimization of a Linear Actuator for Subminiature Optical StorageDevices[J], IEEE Transactions on Magnetics, vol.41, no.2, pp.1055-1057,February2005.
    [28] Wang W, Shin D, Han C, et al. Modeling and simulation for dual stagesystem using bond graph theory[Z]. Istanbul, Turkey:2009197-202.
    [29] Liu Y T, Wang C C. One-DOF precision position control using thecombined piezo-VCM actuator[J]. Proceedings of World Academy ofScience, Engineering and Technology.2009,56:570-575.
    [30] Boettcher U, Raeymaekers B, De Callafon R A, et al. Dynamic modelingand control of a piezoelectric dual-stage tape servo actuator[Z]. Haifa,Israel:2009495-500.
    [31] Zheng J, Fu M, Wang Y, et al. Nonlinear tracking control for a hard diskdrive dual-stage actuator system[J]. IEEE/ASME Transactions onMechatronics.2008,13(5):510-518.
    [32]朱涛.极紫外光刻机工件台精密机械及控制相关技术[D].北京:中国科学院电工研究所,2006:7-11.
    [33]滕伟,周云飞,朱庆杰.直线驱动系统中前馈质量与电机常数校准研究[J].电气传动.2009(05):43-46.
    [34]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2008:37-50.
    [35]王秀和.永磁电机[M].北京:中国电力出版社,2008:55-61.
    [36] Joon H P, Yoon S B, Young-Pil P. Design and analysis of a mini-linearactuator for optical disk drive[J]. IEEE Transactions on Magnetics.2003,39(5):3337-3339.
    [37] Okonkwo R C. Design and performance of permanent-magnet DC linearmotors[J]. IEEE Transactions on Magnetics.2006,42(9):2179-2183.
    [38] Hsing-Cheng Y, Tzung-Yuan L, Shyh-Jier W, et al. Design of a voice coilmotor used in the focusing system of a digital video camera[J]. IEEETransactions on Magnetics.2005,41(10):3979-3981.
    [39] Kazan E, Onat A. Modeling of Air Core Permanent-Magnet Linear MotorsWith a Simplified Nonlinear Magnetic Analysis[J]. IEEE Transactions onMagnetics.2011,47(6):1753-1762.
    [40]王群京,倪有源,张学,等.基于三维等效磁网络法计算混合励磁爪极发电机负载特性[J].电工技术学报.2006(6):96-100.
    [41]乔德治.基于等效磁网络法改进Halbach阵列的研究[D].北京工业大学,2010:4-7.
    [42] Chayopitak N, Taylor D G. Performance Assessment of Air-Core LinearPermanent-Magnet Synchronous Motors[J]. IEEE Transactions onMagnetics.2008,44(10):2310-2316.
    [43] Yuqiu Z, Zilong Y, Minghu Y, et al. Analysis and Design of Double-SidedAir Core Linear Servo Motor With Trapezoidal Permanent Magnets[J].IEEE Transactions on Magnetics.2011,47(10):3236-3239.
    [44] Murata H, Ohye T, Shimoyama H. High accuracy calculation of magneticfield by improved3-D boundary magnetic charge method[J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment.2004,519(1–2):175-183.
    [45]蒋浩,周赣,黄学良.基于磁荷法的环形Halbach永磁阵列三维磁场计算[J].微特电机.2010(9):1-2.
    [46] Compter J C, Lomonova E A, Makarovic J. Direct3-D method forperformance prediction of a linear moving coil actuator with varioustopologies[J]. Science, Measurement and Technology, IEE Proceedings-.2003,150(4):183-191.
    [47] Rovers J M M, Jansen J W, Lomonova E A. Analytical Calculation of theForce Between a Rectangular Coil and a Cuboidal Permanent Magnet[J].IEEE Transactions on Magnetics.2010,46(6):1656-1659.
    [48]张晓晨,李伟力,邱洪波,等.超高速永磁同步发电机的多复合结构电磁场及温度场计算[J].中国电机工程学报.2011(30):85-92.
    [49]李伟力,陈婷婷,曲凤波,等.高压永磁同步电动机实心转子三维温度场分析[J].中国电机工程学报.2011(18):55-60.
    [50]迟玉伦,李郝林,孙栋.非标准环境温度下机床热误差测量结果修正方法研究[J].现代制造工程.2010(2):74-76.
    [51] Jinxin F, Chengning Z, Zhifu W, et al. Thermal Analysis of PermanentMagnet Motor for the Electric Vehicle Application Considering DrivingDuty Cycle[J]. IEEE Transactions on Magnetics.2010,46(6):2493-2496.
    [52]刘日明,胡旭晓,何卫,等.基于热网络的中腰导轨移动式立柱热流强度的反求研究[J].中国机械工程.2011(23):2817-2821.
    [53]康芹,李世武,郭建利.热网络法概论[J].工业加热.2006(5):15-18.
    [54]刘昌华,骆广进,何卫,等.基于热网络的某主轴系统稳态热分析[J].中国机械工程.2010(6):631-635.
    [55] Driesen J, Deliege G, Belmans R, et al. Coupled thermo-magnetic simulationof a foil-winding transformer connected to a nonlinear load[J]. IEEETransactions on Magnetics.2000,36(4):1381-1385.
    [56]邰永,刘赵淼.感应电机全域三维瞬态温度场分析[J].中国电机工程学报.2010(30):114-120.
    [57] Jansen J W. Magnetically levitated planar actuator with moving magnets-Electromechanical analysis and design[D]. Eindhoven: EindhovenUniversity of Technology,2007:106-111.
    [58] Jeroen D B. Multi-Level Contactless Motion System[D]. Eindhoven:Eindhoven University of Technology,2009:35-41.
    [59] Boglietti A, Cavagnino A, Staton D, et al. Evolution and ModernApproaches for Thermal Analysis of Electrical Machines[J]. IEEETransactions on Industrial Electronics.2009,56(3):871-882.
    [60] Shumei C, Weiduo Z, Shaopeng W. Research on the Thermal Field andActive Water Cooling System Design of an Air-Core Compulsator[J]. IEEETransactions on Plasma Science.2011,39(1):257-262.
    [61] Buis E J. Cooling of voice coil motors in lithographic projectionapparatus[P]. Pub. No.: US20040079898, Apr.29,2004.
    [62] Novak W T. Electro-magnetic motor cooling system[P]. Pub. No.: US5998889, Dec.7,1999.
    [63]周庆生,黄苏融,张琪,等.新型冷却结构超高精度平面电机定子温度场分析[J].中国电机工程学报.2012(15):134-139.
    [64]刘红忠,卢秉恒,丁玉成,等.超高精度定位系统及线性补偿研究[J].西安交通大学学报.2003(3):277-281.
    [65]赵兴玉,张胜泉,张大卫.基于音圈电机精密定位平台的控制系统设计与仿真[J].天津大学学报.2007(2):127-132.
    [66]武志鹏,陈兴林,刘川.光刻机工件台宏微系统的滑模变结构控制[J].光电工程.2011(9):50-54.
    [67]李鑫,杨开明,朱煜,等.平面电机自适应加速度前馈运动控制[J].电机与控制学报.2012(9):95-102.
    [68] Henry A S, Bae J S. Eddy current damping in structures[J]. The Shock andVibration Digest.2004:469-478.
    [69] Hor P J, Zhu Z Q, Howe D. Eddy current loss in a moving-coil tubularpermanent magnet motor [J]. IEEE Transactions on Magnetics.1999,35(5):3601-3603.
    [70] Tsuchimoto M, Miya K, Yamashita A, et al. An analysis of eddy current andLorentz force of thin plates under moving magnets[J]. IEEE Transactionson Magnetics.1992,28(2):1434-1437.
    [71] Johan Hol S A. Lithographic actuator mechanism, lithographic apparatus,and device manufacturing method[P]. Pub. No.: US797618, Nov.4,2004.
    [72] Dong-Ju Lee, Kang-Nyung Lee, No-Cheol Park and Young-Pil Park, et al.Development of3-axis Nano Stage for Precision Positioning in LithographySystem[C]. Proceedings of International Conference on Mechatronics andAutomation, Canada, July2005, pp.1598-1603.
    [73]李娟,刘延杰,孙立宁,等.新型2-DOF高加速定位平台的动态性能[J].光学精密工程,2008,16(5):851-855.
    [74]孙立宁,李娟,刘延杰.2-DOF精密定位平台的几何误差分布辨识方法[J].纳米技术与精密工程,2008,6(3):202-206.
    [75] Chih-Hsien L, Hung S K, Chen M Y, et al. A novel high precisionelectromagnetic flexure-suspended positioning stage with an eddy currentdamper[C]. Proceedings of International Conference on Control,Automation and Systems, Seoul, Korea,2008:771-776.
    [76]李恒,朱煜,胡金春,等.平面3-DOF电磁微动台设计及其解耦控制[J].科学技术与工程.2008(6):1427-1431.
    [77]曹家勇,朱煜,尹文生.具有方形线圈的平动音圈电动机的设计[J].电机与控制应用.2009(6):1-4.
    [78]于力.基于遗传算法的中小型同步电机优化设计[D].湖南大学,2007,1-5.
    [79]刘爱民,张红奎,张小玲,等.基于多目标粒子群算法的直线感应电机机构优化设计[J].组合机床与自动化加工技术.2010(9):15-19.
    [80] Wang L, Lowther D A. Selection of approximation models forelectromagnetic device optimization[J]. IEEE Transactions on Magnetics.2006,42(4):1227-1230.
    [81]黄迪西,崔群,房菁.基于有限元分析的永磁无刷直流电动机优化设计[J].微特电机.2012(40):8-11.
    [82]凌志鹏,李晋川,黄学进,等.改进型音圈式直线电动机有限元优化设计[J].微电机.2007(10):18-20.
    [83] Sadegh V, Isfahani A H. Multiobjective design optimization of air-corelinear permanent-magnet synchronous motors for improved thrust and lowmagnet consumption[J]. IEEE Transactions on Magnetics.2006,42(3):446-452.
    [84] Jiabin W, Howe D, Jewell G W. Analysis and design optimization of animproved axially magnetized tubular permanent-magnet machine[J]. IEEETransactions on Energy Conversion.2004,19(2):289-295.
    [85] Koh C S, Mohammed O A, Kim J X, et al. Optimum design of voice coilmotor with constant torque coefficients using evolution strategy[J]. Journalof Applied Physics.1994,75(10):6045-6047.
    [86] Sven A J H. Design and Optimization of a Magnetic GravityCompensator[D]. Eindhoven: Eindhoven University of Technology,2004:109-121.
    [87]汤蕴璆.电机电磁场的分析与计算[M],北京:机械工业出版社,2010:19-27.
    [88]汤双清,沈洁,陈习坤,等.基于磁荷模型的永磁体空间磁场的有限元分析与计算[J].三峡大学学报(自然科学版).2003(5):452-455.
    [89] E. P. Furlani. Permanent magnet and electromechanical devices[M]. NewYork: Academic press,2001:207-212.
    [90] Trumper D L, Won-Jong K, Williams M E. Design and analysis frameworkfor linear permanent-magnet machines [J]. IEEE Transactions on IndustryApplications.1996,32(2):371-379.
    [91] Ebrahimi B, Khamesee M B, Golnaraghi F. A novel eddy current damper:theory and experiment[J]. Journal of Physics D: Applied Physics.2009,42(7):1-6.
    [92] Babak E, Mir B K, Farid G. A novel eddy current damper: theory andexperiment[J]. Journal of Physics D.2009(42):1-6.
    [93]任明章.机械振动分析与控制以及计算方法[M],北京:机械工业出版社,2011:5-20.
    [94]杨世铭.传热学[M],高等教育出版社.1998:138-155.
    [95]李志信.对流传热优化的场协同理论[M].2010:30-34.
    [96] Staton D, Boglietti A, Cavagnino A. Solving the More Difficult Aspects ofElectric Motor Thermal Analysis in Small and Medium Size IndustrialInduction Motors[J]. IEEE Transactions on Energy Conversion.2005,20(3):620-628.
    [97] Markovic M, Saunders L, Perriard Y. Determination of the ThermalConvection Coefficient for a Small Electric Motor[C]. Proceedings ofIndustry Applications Conference,2006:58-61.
    [98]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究[D].湖南大学,2008:38-45.
    [99]李俊玲.遗传算法在圆筒型直线电机优化设计中的应用[D].沈阳工业大学,2008:7-13.
    [100] Sheng L. Finite element analysis and genetic algorithm optimization designfor the actuator placement on a large adaptive structure[D]. VirginiaPolytechnic Institute and State University,2004:156-168.
    [101]周建淞,陈益,张晓丽,等.基于向量评估遗传算法的多目标优化效果评价及程序测试[J].中国卫生统计.2012(2):181-186.
    [102]王瑾.基于遗传算法的汽车永磁发电机多目标优化设计[J].自动化应用.2010(6):2-5.
    [103]雷英杰. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:149-155.