高压共轨喷油控制策略及共轨管优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电控共轨柴油机作为清洁节能环保型柴油机,在节能和环保意识日益增强的今天,已成为热力发动机的必然发展趋势。柴油机高压共轨喷油控制策略及共轨管的优化研究,对增强共轨系统运行稳定性、提高油量控制精确度、优化发动机整体性能、实现节能减排目标具有重要的现实意义。本文以“新一代轿车用节能环保高效内燃机研发”(国家“863”项目)和“清洁节能乘用车柴油动力系统的关键技术研发与应用”(国家科技支撑计划项目)等科研项目为依托,在广泛查阅相关文献的基础上,对高压共轨喷油控制策略及共轨管的多学科优化设计方面进行了较系统的研究,主要工作包括:
     (1)通过对现有的多次喷射协调控制进行分析,采用层次化结构分模块设计方法,将多次喷射协调控制分为环境层、限制层和设定层进行设计,基于自适应神经网络技术建立了多次喷射动态组合模型,并分起动、正常和关机三种工况对多次喷射动态组合模型进行了检验。
     (2)提出了两次喷射间最小时间间隔的定义和计算方法,并基于高压共轨燃油喷射实验台、开放式电控单元及高速摄影技术,研究了两次喷射间时间间隔对燃油喷射雾化状况的影响。
     (3)提出了基于神经网络的部分微分PID共轨压力控制方法,直接将发动机工况和所处环境状况与PID参数相关联,使共轨压力始终处于与发动机工况相对应的最佳状态,从而实现了对共轨压力的全工况实时动态控制,并有效降低了轨压波动。
     (4)根据共轨管内压力波动情况,结合喷油器和高压油泵的工作原理,运用上次喷射结束至下次喷射开始间时间间隔和每次喷射电控与液压之间的时间延迟两个物理量,建立了基于前次喷射的喷油量压力波动修正算法,实现了每次喷射油量的平衡与优化。
     (5)应用多学科设计优化方法,对共轨管多学科特性进行了分析,通过挖掘各种参数与最佳共轨容积间存在的理论关系,对共轨管进行了全局寻优,从而提高了共轨管运行的稳定性和经济性。
     本文的主要研究结论有:
     ●建立的多次喷射动态组合模型具有较好的适用性,可满足ECU控制的需要。
     ●两次喷射间时间间隔对燃油喷射雾化有重要影响,在本文的实验条件下,喷射频率为20Hz时燃油喷射雾化状况最佳。
     ●提出的基于神经网络部分微分PID的共轨压力控制方法,具有必要的精度;该方法不仅提供了共轨压力控制的新手段,同时也为PID参数整定提供了新的思路,因而具有一定的理论价值。
     ●基于前次喷射的压力波动修正算法,提供了喷油量补偿的一种新方法,对喷油量的调整具有较强的指导作用,可减少由于共轨压力波动导致的油量偏差,为控制参数的优化提供了依据。
     ●采用多学科设计优化方法,使共轨管容积减小了1.07%,压力波动下降了16.7%,总质量减少了6.8%,有利于提高高压共轨燃油喷射系统的整体性能。
     本文的研究成果已在GS-1000型高压共轨燃油喷射实验台上进行检验。结果表明,所开发的控制策略可以有效降低共轨压力波动和使各次喷射油量得到补偿,可使高压共轨燃油喷射系统的整体功能得到提升。
     总之,本文的研究为高压共轨燃油喷射系统研发探索了新思路,其成果不但具有一定的理论价值,而且具有较好的应用价值。
As a type of clean diesel engine, electronic control common rail diesel engine is one of the best choices in save energy and environments protect conception. The research of fuel injection control strategy and optimization of the rail for High Pressure Common Rail (HPCR) has a very important significance to strengthen the operation stability, to improve the fuel calculation precision, to optimize the engine performance, to save energy and decrease wastage. In this dissertation, the fuel injection control strategy and Multidisciplinary Design Optimization (MDO) for rail had been systematically studied by the support of "Development on New Generation Energy-saving and Environment-protect Efficient Internal Combustion Engine for Car" (the National High Technology Research and Development Program ("863"Program) of China) and "Development and Application on Key Technologies for Clean and Energy-save Diesel Power System Used on Passenger Car"(National Key Technology R&D Program).
     The main work in this dissertation is as follows:
     1. By fully demonstrating and comparing the multiply injection coordinate control strategies in existence, the control strategy had been designed as environment layer, limitation layer and setup layer, using hierarchical and module structure. By adapting fuzzy neural network technology, multiply injection dynamic combination model had been built. The model had been tested in starting, normal and after run working conditions.
     2. Put up the definition and calculate method for internals between two injections. Based on the high pressure common rail test pump bench, open ECU and high speed photography, the effect of fuel spraying and atomizing by internals between two injections had been researched.
     3. Based on neural network and portion differential PID, a new control strategy for rail pressure had been brought forward. This method associated engine working condition and the PID parameters together, achieved control the rail pressure in all the working conditions, obtained certain precision, and decreased rail pressure oscillation effectively.
     4. According to the fact of pressure oscillation in rail tube and the working principle for high pressure oil pump and electrical control injectors, with the intervals from the end of last injection to the start of next injection and the hysteresis between electronic control and hydraulic together, the backoff algorithms of pressure oscillation for injection quantity had been put forward. This method can make the injection quantity balancer and more homogenous.
     5. By MDO method, the multidisciplinary characteristics of rail tube had been analyzed. Optimization design for rail in whole situation had been achieved through winkling the relationship between kinds of parameters and the optimum rail volume. By doing this, the economy and stability for rail had been improved further.
     There are main conclusions in the dissertation:
     The applicability of multiply injection dynamic combination model is good enough to satisfy the demand of ECU.
     The internals between two injections have important effects on fuel spraying and atomizing. When the injection frequency is 20Hz, the fuel spraying and atomizing performance is the best on the condition of the equipments in this dissertation.
     The pressure control method with neural network and portion differential PID put forward by the author not only provides the new means to control common rail pressure, but also provides new thoughts to set PID parameters, therefore it has higher theoretic values.
     The backoff algorithms of pressure oscillation for injection quantity based on last injection inaugurate a new field to compensate injection quantity, and can instruct scientifically to adjust the injection quantity and decrease the deviation caused by pressure oscillation so as to optimize the operation parameters.
     By MDO method, the rail tube volume is decreased by 1.07%, pressure oscillation is decreased by 16.7%, and the mass of rail tube is decreased by 6.8%. The whole performance of HPCR system has been improved largely.
     The research work developed by author had been successfully used on HPCR test pump bench. The running practice showed the control strategy and optimization rail can decrease the pressure oscillation and compensate the injection quantity effectively, and can make the operation of HPCR stabilization and optimization so that can improve the running efficiency of HPCR.
     It can be said that the research work offers a new way to upgrade the HPCR. Thus the research results have higher theoretic and utility value, and can been extended to apply in the same HPCR in our country.
引文
[1]李幼鹏.柴油机原理[M].大连:大连理工大学出版社,1992.
    [2]江泽民.中国能源问题的思考[J].上海交通大学学报,2008,42(3):346-359。
    [3]马建民.柴油机高压共轨系统ECU的研究与设计[D].上海:上海交通大学,2008.
    [4]创历史新高后的现实回归[EB/OL]2009-01-08.http://www.nzfco.com/article/s/580891-307361-0.htm.
    [5]机构预测:2010年全球汽车保有量将突破10亿辆[EB/OL]2008-01-17.http://lnews.hexun.com/2008-01-17/102932407.html.
    [6]杨阳.高压共轨柴油机电控系统分析与研究[D]。上海:上海交通大学,2007.
    [7]张毅.传统能源汽车出路何在?[N].参考消息,2008-4-30.
    [8]王尚勇,杨青.柴油机电子控制技术[M].北京:北京机械工业出版社.2005.
    [9]胡军。柴油机电控燃油喷射系统产业化项目可行性研究报告[R].衡阳,湖南省衡阳汽车配件厂,2006.
    [10]Edward S P,Frankle G R,Binder K,et al.Strategic analysis of technologies for future truck engines[C].SAE 2000-01-3458.
    [11]蔡凤田.汽车排放污染物控制实用技术[M].北京:人民交通出版社,1999.
    [12]Bielaoye P.EurolII/EuroⅣ emissions-a study of cold start and warm up with a SI(Spark Ignition)engine[C].SAE 1999-01-1073.
    [13]徐家龙.柴油机电控喷油技术[M].北京:人民交通出版社,2005。
    [14]陈勇华译.柴油机共轨式喷油系统[J]。国外内燃机.1998(3):18-28。
    [15]钱大.博世(BOSCH)公司的共轨燃油喷射系统(一)-(七)[J].汽车与配件,2003.
    [16]秦朝举,刘建新,杜慧勇,等。Bosch公司高压共轨喷油系统的研究现状及发展前景[J]。拖拉机与农用运输车.2006,33(2):3-5.
    [17]贾志新,张全逾,吕云飞.BOSCH共轨柴油电控喷射系统原理及测试[J].汽车维修,2007(7):13-15.
    [18]江苏,敏瑞。德尔福柴油机电控高压共轨喷油系统(一)-(三)[J].汽车维修与保养,2008.
    [19]钱人一.日本电装公司的ECD-U2柴油机共轨燃油系统(一)-(五)[J].汽车与配件,2003.
    [20]江苏,敏瑞.西门子电控高压共轨喷射系统(上)(下)[J].汽车维修与保养,2008.
    [21]张煜盛,徐建新,徐波,等。共轨燃油系统高压油泵设计研究10。内燃机工程,2005,25(1):1-5.
    [22]胡志明,杨林,冒晓建,等.高压共轨式燃油喷射系统用高压油泵的分析与设计[J].柴油机,2004(4):16-19.
    [23]欧大生,刘振明,周加东,等。基于变形补偿技术提高共轨高压泵泵油能力的试验研究[J].内燃机工程,2008,29(3):1-5.
    [24]徐建新,张煜盛,徐波,等.共轨燃油系统高压油泵泄露与密封的研究[J].柴油机设计与制造,2004(4):5-8.
    [25]平涛,周玉成,方祖华,等。一种新型共轨用高压油泵性能特性试验研究[J]。现代车用动力,2004(2):15-18.
    [26]安士杰,欧阳光耀.高压共轨燃油系统主要部件特性分析[J]。小型内燃机与摩托车.2002,31(1):41-44.
    [27]严雪文.王忠。柴油机共轨喷油系统匹配与计算模型[J]。小型内燃机与摩托车,2006,35(1):31-37.
    [28]梁锋,杨林,谭文春,等.高压共轨式电控柴油机故障诊断策略仿真研究[J].内燃机学报,2004,22(6):532-537。
    [29]梁锋,谭文春,肖文雍,等.高压共轨式电控柴油机动态仿真研究[J].车用发动机,2003(6):21-23.
    [30]王尚勇,张才干.两级阀控制的高压共轨喷油系统的计算模拟分析[J]。内燃机工程,2003,294(4):23-27.
    [3]]王尚勇,张晓力,徐春龙.高压共轨电控喷油器的仿真模拟计算[J].车用发动机,2002(8):16-19.
    [32]许正伟,彭忆强,黎薇,等.天然气发动机高压共轨系统的建模与仿真研究[J]。车用发动机,2008(3):40-44。
    [33]李正帅,陆耀祖。高压共轨式电控燃油喷射系统的计算机仿真[J].长安大学学报(自然科学版),2002,22(1):66-69。
    [34]刘镇,常汉宝,邵利民。舰用高压共轨柴油机燃烧与择放的仿真计算[J]。武汉理工大学学报(交通科学与工程版),2006,30(1):17-20.
    [35]邵利民,安士杰,常汉宝。高压共轨柴油机燃烧与排放的仿真计算及分析[J]。内燃机工程,2005,26(3):1-4.
    [36]邵利民,常汉宝,安士杰。高压共轨柴油机燃烧与排放模型的研究[J].车用发动机,2005(12):28-31.
    [37]王好战,肖文雍.黄镇平,等。高压共轨电控柴油机稳态油压模拟计算及分析[J].内燃机工程,2002,23(6):9-11。
    [38]周升辉,费建国,张幽彤.高压共轨系统调压阀的设计仿真与试验研究[J].车辆与动力技术,2007(2):35-37.
    [39]欧大生,欧阳光耀,张剑平.高压共轨喷油泵漏泄量的有限元计算及试验研究[J].内燃机,2007(2);33-36。
    [40]虞金霞,郭海涛,卓斌.共轨式喷油系统数学模型[J].上海海运学院学报,2002,23(2):30-34.
    [41]董尧清,张万平,顾萌君.共轨喷射系统参数对柴油机性能影响的模拟计算[J]。车用发动机,200(5):23-25.
    [42]蔡珍辉,杨海青,杭勇,等.基于AMEShn的高压共轨喷油器的建模及分析[J].柴油机设计与制造,2008,15(1):4-9.
    [43]邓飞,高世伦,蒋方毅,等.柴油机高压共轨式燃油喷射系统的模拟系统和ECU的开发研究[J]。现代车用动力,2002(2):7-9.
    [44]刘少彦,张宗杰,胡昆鹏,等.基于Simulink的高压共轨柴油机喷有系统仿真计算[J].柴油机设计与制造,2003(1):20-24。
    [45]平涛,金江善,刘少彦,等.共轨燃油喷射系统高压容积的仿真优化[J].柴油机,2004(5):7-10.
    [46]李晓波,史镜海。柴油机高压共轨式燃油喷射系统的仿真研究[J]。哈尔滨工程大学学报,2008,29(5):465-468。
    [47]祝轲卿,王俊席,杨林,等.GD-1柴油机多次喷射协调控制策略研究[J].内燃机工程,2006,27(4):26-30.
    [48]冒晓建,肖文雍,杨林,等.GD-1高压共轨式电控柴油机的怠速控制策略研究[J].内燃机学报,2002,20(4):324-328.
    [49]肖文雍,冒晓建,杨林,等.GD-1高压共轨式电控柴油机的起动控制策略研究[J].内燃机学报,2003,21(2):97-100。
    [50]高献坤.柴油机高压共轨系统模拟计算与仿真[D]。郑州:河南农业大学,2005.
    [51]颜松.柴油机高压共轨系统压力动态性能模拟[D].杭州:浙江大学,2005。
    [52]江军,申立中,颜文胜,等.高压共轨系统预喷控制策略研究[J].车用发动机,2008增刊:98-101.
    [53]辽阳新风企业集团吉尔燃油喷射有限公司.宣传资料[R].2008.
    [54]范立云.新型电控柴油喷射系统的开发与性能研究[D].大连:大连理工大学,2008.
    [55]Imarisio R.Multiple injection.A cost effective solution for emission reduction of common rail DI diesel engines[J].Aacbener Kolloquium Fahrzeug-und Motorentechnik,2000(9):104%1062.
    [56]Mahr B.Future and potential of diesel injection systems[A].Thiesel 2002 Conference on Thermo and Fluid-Dynamic Process in Diesel Engine[C],2002:5-17.
    [57]杨林,卓斌,肖文雍,等.高压共轨电控柴油机燃油预喷射控制研究[J]。柴油机,2004(3):1-4。
    [58]郭海涛。高压共轨喷油系统喷油规律与控制策略的研究[D]。上海:上海交通大学,2001。
    [59]董伟,于秀敏,张斌.预喷射对高压共轨柴油机起动特性的影响[J].内燃机学报,2008,26(4):313-318。
    [60]周海涛.预喷射控制燃烧噪声的仿真计算与试验研究[D]。大连:大连理工大学,2006.
    [61]Manfred Durnholz,Helmut Endres,Peter Frisse.Pre-injection a measure to optimize the emission behavior of Dl-diesel engine[C],SAE 940674.
    [62]Toshitaka Minami,Kouichi Takeuchi,Naoki Shimazaki.Reduction of diesel engine NO_x using pilot-injection[C],SAE 950611.
    [63]Zhang L.A study of pilot-injection in a DI diesel engine[C].SAE 1999-01-3493.
    [64]Block B,Westphal H,Oppermann W,et al.Optical detection of the combustion produced by the pre-injected fuel in a DI diesel engine[C].SAE 2002-01-2667.
    [65]Christian Bartsch,Aktuell Entwiklung,Kropp M.新颖的菲亚特1.3L四气门共轨多次喷射柴油机[J].现代车用动力,2005(3):7-10.
    [66]李人宪.柴油机实现高EGR率方法的计算分析[J].内燃机工程,2004,25(3):27-32.
    [67]刘忠长,朱昌吉,张振东.车用柴油机排气再循环控制系统[J]。吉林大学学报(工学版).2004,34(3):337-341.
    [68]Hotta Y.Achieving lower exhaust emission and better performance in an HSDI diesel engine with multiple injection[J].R&D Review of Toyota CRDL,2002,37(3):9-16.
    [69]Liu Y,Rolf D,Reitz.Optimizing HSDI diesel combustion and emissions using multiple injection strategies[C].SAE 2005-01-0212.
    [70]Takeda Y,Niimura K.Characteristics of diesel combustion and emissions with a multi-injector system[C].SAE 952511.
    [71]Montgomery D T,Reitz R D.Six-mode cycle evaluation of the effect of EGR and multiple injections on particulate and NO_x emissions from a DI diesel engine[C].SAE 960316.
    [72]Han Z,Ulodogan A,Hampson G,et al.Mechanism of soot and NO_x emission reduction using multiple-injection in a diesel engine[C].SAE 960633.
    [73]Ngunlowo A S.Design modification and control for the operation of a single-cylinder air-oooled naturally-aspirated diesel engine on producer gas using pilot injection of diesel fuel[D],Davis:Department of Agricultural Engineering,University of California,1979.
    [74]祝轲卿,王俊席,卢成委,等.GD-1电控柴油机主预喷时间间隔的影响[J]。农业机械化学报,2007,38(1):52-55。
    [75]宋秦中,隆武强,杨水平.高压共轨柴油机共轨压力闭环控制算法的研究[J].内燃机,2007(5):12-14。
    [76]王好战,肖文雍,冒晓建,等。车用电控柴油机共轨油压模拟及其控制策略分析[J].柴油机。2002(5):17-20.
    [77]宋国民,刘学瑜.基于参数自调整PID控制的高压共轨数字调压系统[J]。柴油机,2002(5):25-27.
    [78]金江善,平涛,凌励逊。柴油机高压共轨燃油喷射系统共轨压力控制技术研究[J].柴油机,2006,28(3):5-7。
    [79]黄铁雄,高世伦.柴油机高压共轨系统自适应模糊滑模控制[J].车用发动机,2008(4):57-60.
    [80]赵福堂。宾科,冯国胜,等.共轨燃油压力模糊PID控制器的设计[J].北京理工大学学报,2003,23(3):293-397.
    [81]许海成,李育学,邹开凤.基于高压泵流量控制装置的共轨系统仿真研究[J]。航海工程,2008,38(4):39-42.
    [82]Masahiko Miyaki,Hideya Fujisawa.Development of new electronically controlled fuel injection system ECD-U2 for diesel engines[C].SAE 910252
    [83]Bosh Technical Instruction.Diesel accumulator fuel-injection system common rail[C].Bosh company,1999
    [84]王洪荣,张幽彤,王军,等。高压共轨柴油机喷油量修正及匹配[J].山东大学学报(工学版),2008,38(2):28-32.
    [85]于建国,梁超。变容变压条件下电控柴油机共轨管长径比对压力波动的影响[J].车辆与动力技术,2008(2):26-30.
    [86]张飞,费建国,王海军。柴油机高压共轨管特性分析[J].科技经济市场,2008(7):5-16.
    [87]李强,覃维献。柴油机高压油道压力波动特性的模拟计算[J].桂林航天工业高等专科学校学报,2006(4):31-32.
    [88]王立强,刘铭,李晓波,等。柴油机共轨管与高压油管结构参数对系统的影响[J].应用科技,2005,32(4):51-53。
    [89]Raymer D P.Aircraft Design:A conceptual approach[M].American Institute of Aeronautics and Astronautics,Inc.,Washington,D.C.,1989.
    [90]Kroo I M,Chopra I.Multidisciplinary optimization of aeronautical system[J],Journal of aircraft,1990,27(12):977-978.
    [91]sobieszczanski-Sobieski J.Multidisciplinary optimization for engineering systems:Achievements and potential[J],NASA-TM 101566.
    [92]Sobieski J.A linear decomposition method for optimization problems-blueprint for development [J].NASA Technical Memorandum 83248,1974.
    [93]AIAA Technical Committee on Multidisciplinary Design Optimization,White Paper on Current State of the Art in Multidisciplinary Design Optimization[R],1991.
    [94]AIAA Technical Committee on Multidisciplinary Design Optimization,White Paper on Industrial Experience with MDO[R],1998.
    [95]McAllister C D,Simpson T W.Multidisciplinary robust design optimization of an internal combustion engine[J],Journal of Mechanical Design,2003,125(1):124-130.
    [96]Sub M W,Shim M B,Kim M S.Multidisciplinary design optimization of engine mounts with consideration of the driveline[A].Proceedings of the institution of mechanical engineers part D-Journal of automobile engineering[C].2003:217(D2):107-114.
    [97]尹泽勇,韩旭。涡轮增压汽车发动机多学科设计优化技术研究及应用[R].长沙,湖南大学,2006.
    [98]尹泽勇.航空发动机多学科设计优化技术[A].中国工程院第八次院士大会学术报告文集[C](机械与运载工程学部).2006。
    [99]Cai X X,Mi D,Yin Z Y,et al.Multidisciplinary Design Optimization of Aero engine LA].2005's China-Russia Young Scientist Forum[C].2005.
    [100]吴立强,尹泽勇,蔡显新。航空发动机涡轮叶片的多学科优化设计[J]。航空动力学报,2005(10):795-803.
    [101]李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报,2006,21(1):13-18.
    [102]舒彪.基于多学科涡轮叶片气动设计优化[J].南京航空航天大学学报,2005,37(6):714-719.
    [103]陈琪锋.导弹总体参数优化设计的合作协同进化MDO算法[J].国防科技大学学报,2001,23(5):9-12.
    [104]李响.飞行器多学科设计优化的三种基本类型及协同设计方法[J],宇航学报,2005,26(6):693-697。
    [105]吴宝贵.汽车设计的多学科设计优化方法[J].应用科学学报,2005,23(4):420-423.
    [106]秦东晨.汽车车身的多学科优化设计(MDO)研究[J].现代机械,2004(5):4-6。
    [107]陈亮.多学科协同设计的约束网络模型研究[J].中国制造业信息化,2005,34(9):98-102。
    [108]赵英凯,李胜,林锦国,等.基于AFINS的锅炉蒸汽温度预测控制系统[J].基础自动化,2002,9(1):25-27.
    [109]黎洪生,卓祯雨.AFNIS模糊神经推理机在故障诊断中的应用[J]。控制工程,2003,10(2):153-155.
    [110]Axel Tuma,Hans-Dietrich Haasis,Otto Rentz.Development of emission orientated production control strategies using fuzzy expert system[J],Neural Networks and Neuron-Fuzzy approaches.Fuzzy Sets and System.1996,12(77):255-264.
    [111]丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.
    [112][美]张智星,孙春在,[日]水谷英二.神经一模糊和软计算[M]。张平安,高春华等译.西安:西安交通大学出版社,2000.
    [113]吴晓莉,林哲辉。MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002。
    [114]倪志伟,蔡庆生.基于知识发现技术的神经网络专家系统[J].厦门大学学报(自然科学版).2000,39(3):287-292.
    [115]虞和济,陈长征,张省,等.基于神经网络的智能诊断[M].北京:冶金工业出版社,2000.
    [116]Homik K,Stinchcombe M,White H.Muitiplayer feed-forward net-works are universal approximator[J].Neural Computing,1990(2):210-215.
    [117]Kosko B.Fuzzy systems as universal approximators[J].IEEE,Transactions on computers,1994,43(11):1329-1333.
    [118]Wang L,Mendel J.Fuzzy basis functions,approximation,and orthogonal least squares learning[J].IEEE,Transactions on Neural network,1992,3(5):807-814.
    [119]Yahia M E,Mahmod R,Sulaiman N,et al.Rough neural expert system[J].Expert systems with Application.2000(18):87-99.
    [120]Denso Corporation.Common rail system[R].AICHI.JAPAN.2005.
    [121]Nishida M,Nakahira T,Kormoria M.Observation of high pressure fuel sprays with laser light sheet method[C].SAE 920459.
    [122]Heywood J B.Internal combustion engine fundamental[M].McGraw-Hill,1988.
    [123]Farrell P V,Chang C T,Su T F.High pressure multiple injection spray characteristic[C].SAE 960860.
    [124]Naber J D,Siebers D L.Effects of gas density and vaporization on penetration and dispersion of diesel sprays[C].SAE 960034.
    [125]Su T F,Farrell P V,Nagarajan R T.Nozzle effect on high pressure diesel injection[C].SAE 950083.
    [126]解茂昭.内燃机计算燃烧学[M]。大连:大连理工大学出版社,2005。
    [127]Dodge L G,Ryan T W,Ryan M G.Effects of Different Injector Hole Shapes on Diesel Sprays[C].SAE 920623.
    [128]梁凤标,李德桃,刘久武,等。高压共轨式柴油机多次喷射的数值模拟[J].农业机械学报,2006,37(9):40-43。
    [129]Rumelhart D E,Mcclelland J L.Parallel distributed processing[M].The MIT Press,Cambridge,1986.
    [130]Aoyama T,Omatu S.Design ofa selfluning PID control system by neural networks[J].Trans of the Institute of Electrical Engineers of Japan,1996,1162C(11):1197.
    [131]鄂加强.铜精炼炉操作优化与智能控制应用研究[D]。长沙:中南大学,2004.
    [132]李钟慎.滞后过程的高鲁棒性控制方法的研究[D].泉州:华侨大学,2007.
    [133]Kfistina Ahlin.Modeling of pressure waves in the common rail diesel injection system[D].Link pings university,2000.
    [134]Sobieszczanski-Sobieski J.Sensitivity analysis and multidisciplinary optimization for aircraft design:Resect advances and results[J].Journal of aircraft,1990,27(12):993-1001.
    [135]Schuhmacher G,Murra I,Wang L.Multidisciplinary design optimization of a regional aircraft wing box[C],AIAA 2002-5406.
    [136]Kim Y S,Lee D H,Kim Y H.Multidisciplinary design optimization fo supersonic fighter wing wsing prsponse surface methodology[C].AIAA 2002-5408.
    [137]Shi G,Renaud G,Yang X.Integrated wing design with three disciplines[C],AIAA 2002-5405.
    [138]Alexandrov N M,Lewis R M.Analytical and computational properties of distributed approaches to MDO[C],AIAA 2000-4718.
    [139]夏人伟.工程数值优化方法研究进展[J].航空学报,2000,21(6):488-491。
    [140]Kamat M P.Structural optimization:status and promise[M].Published byAIAA,1992.
    [141]李响。多学科设计优化万法及其在 飞行器设计中的应用[D].西安:西北工业大字,2003.
    [142]余雄庆。多学科设计优化算法及其在飞机设计中的应用研究[D].南京:南京航空航天大学,1999.
    [143]余雄庆.多学科设计优化算法及其在飞机设计中的应用[J].航空学报,2000,219(1):1-6.
    [144]Vladimir O.Balabanov.Development of approximations for HSCT bending material weight using response surface methodology[D].Virginia:Virginia polytechnic institute and state university,1998.
    [145]Kroo I M,Steve Altus,Robert braun,et al.MuRidisciplinary optimization methods for aircraft preliminary design[C].AIAA 94-4325.
    [146]Braun R D,Kroo I M.Development and application of the collaborative optimization architecture in a multidisciplinary design environment[C],SIAM,1997.
    [147]Braun R D,MooreAA,Kroo I M.Collaborative architecture for launch vehicle design[J].Journal of spacecraft and rockets,1997,34(4):478-486.
    [148]虞跨海。航空发动机涡轮冷却叶片多学科设计优化技术研究[D].西安:西北工业大学,2006.
    [150]GB3077-88.合金结构钢技术条件[s]。
    [151]殷尔禧。材料力学[M].北京:科学技术文献出版社,1994。
    [152]钱桦,安静贤.65Mn钢的固有频率与热处理的实验研究[J].北京林业大学学报,1998,20(5):52-54.