双顺反子真核表达载体pIRES2-EGFP-hBMP-2的构建及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建双顺反子真核表达载体PIRES2-EGFP-hBMP-2,检测其表达。
     方法:利用RT-PCR方法从人骨肉瘤组织中提取人骨形态发生蛋白hBMP-2基因,通过序列分析正确后,使之与PMD18-T载体连接,转化大肠杆菌JM109,选择阳性克隆载体,进行扩增,提取质粒。经酶切回收后,与目的载体pIRES2-EGFP连接。用PCR技术及基因序列分析技术鉴定构建结果。然后将构建好的载体转染HEK293,通过荧光显微镜及Western blot技术观测其表达。
     结果:成功扩增了hBMP-2基因,基因片段长度为1102bp; pIRES2-EGFP-hBMP-2质粒构建成功,转染HEK293细胞后可在荧光显微镜下观察到绿色荧光;提取的总蛋白行Western blot检测,可观察到hBMP-2基因所表达蛋白的显影条带。
     结论:重组HEK293细胞能成功表达EGFP及hBMP-2基因,并为pIRES2-EGFP-hBMP-2载体转染骨髓基质干细胞及应用于软骨及骨缺损治疗提供了前提基础。
Objective:To construct the eukaryotic vector pIRES2-EGFP-hBMP-2 and to observe its expression in HEK 293 cells.
     Methods:hMBP-2 gene was cloned from human osteosarcoma by RT-PCR and inserted into PMD18-T vector. Following the DNA sequence verification, it was then sub-cloned into the eukaryotic vector pIRES2-EGFP. After restriction enzyme analysis, the pIRES2-EGFP-BMP-2 was transfected into HEK 293 cells. Then its expression was observed with fluorescence microscope and Western Blot.
     Results:hBMP-2 gene was successfully cloned and identified by restriction enzyme analysis. Construction of pIRES2-EGFP-BMP-2 was verified, then the expression of EGFP and BMP-2 in HEK 293 cells was proved by fluorescence microscope and Western Blot.
     Conclusion:It validated that HEK 293cells could be transduced by Lipofectamime 2000 efficiency and the eukaryotic vector pIRES2-EGFP-hBMP-2 could successfully express target protein in it. The present study demonstrated that the two gene sequences encoding BMP-2 and EGFP could be translated in protein respectively. These HEK239 cells with pIRES2-EGFP-BMP-2 provides a promizing tool for the further investigating the repairing mechanism of BMP-2 in bony and cartilaginous diseases.
引文
1. Herrero-Beaumont G, Marcos ME, Sanchez-Pernaute O, et al. Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol 2008;154(4):843-51
    2. Zvi Schwartz, Maya Fisher, Christoph H. Lohmann, et al. Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates. Annals of Biomedical Engineering 2009; 37(3):437-444
    3. Gelse K, Muhle C, Franke O, Park J, et al. Cell-based resurfacing of large cartilage defects: long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis. Arthritis Rheum 2008; 58(2):475-88
    4. Kubo S, Cooper GM, Matsumoto T, et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 2009;60(1):155-65
    5. 许澍洽,许扬滨.BMSCs构建组织工程软骨的研究进展[J].中国修复重建外科杂志,2008;22(2):163-166.
    6. Matsumoto T, Cooper GM, Gharaibeh B, et al.Blocking VEGF as a potential approach to improve cartilage healing after osteoarthritis. J Musculoskelet Neuronal Interact 2008; 8(4):316-7
    7. 陈为坚,李贵涛.骨髓间充质干细胞结合骨形态发生蛋白促进兔椎间关节融合的实验研究[J].中国矫形外科杂志,2007;15(3):1012-1014
    8. J. Javcar, A. Slovikova, E. Amler, et al. Mechanical Response of Porous Scaffolds for Cartilage Engineering. Physiol. Res 2007;56(1):S17-S25
    9. Guo T, Zhao JN, Di Z, et al. Porous chitosan-gelatin scaffold ciontaining plasmid DNA encoding transforming growth factor-(31 for chondrocytes proliferation. Biomaterials 2006; 27(7):1095,1103.
    10. Ulici V, James CG, Hoenselaar KD, et al. Regulation of gene expression by PI3K in mouse growth plate chondrocytes. PloS One 2010;5(1):e8866
    11. Prochazkova M, Zanvit P, Dolezal T, et al. Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain. Physiol Res 2009;58(3):419-25
    12. Steinert AF, Noth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury 2008; 39(1):S97-113
    13. Ahmed MM, Huang TH, Xie QD. A sensitive and rapid assay for investigating vertical transmission of hepatitis B virus via male germ line using EGFP Vector as reporter. J Biomed Biotechnol 2008;2008(495436):1-6
    14. Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. J Exp Bot 2009;60(2):367-76
    15. Shitara H, Shimanuki M, Hayashi J. Global imaging of mitochondrial morphology in tissues using transgenic mice expressing mitochondrially targeted enhanced green fluorescent protein. ExpAnim 2010;59(1):99-103.
    16. A Hari Reddi. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development:noggin, chordin and DAN. Arthritis Res 2001;3 (1):1-5
    17. Avsian-Kretchmer O, Hsueh AJ. Comparative Genomic Analysis of the Eight-Membered Ring Cystine Knot-Containing Bone Morphogenetic Protein Antagonists. Mol Endocrinol, January 2004;18(1):1-12
    18. Lu L, Ma J, Wang X, Wang J, et al. Synergistic effect of TGF-beta superfamily members on the induction of Foxp3+Treg. Eur J Immunol 2010;40(1):142-52.
    19. Andriopoulos B Jr, Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 2009;41(4):482-7
    20. Kamiya N, Ye L, Kobayashi T, et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 2008;23(12):2007-17
    21. Samee M, Kasugai S, Kondo H, et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci 2008;108(1):18-31
    22. Wang H, Yang ZH, Liu DM, et al. Association between two polymorphisms of the bone morpho-genetic protein-2 gene with genetic susceptibility to ossification of the posterior longitudinal ligament of the cervical spine and its severity. Chin Med J (Engl) 2008; 121(18): 1806-10.
    23. Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122(5):716-26
    24. Liu F, Bloch N, Bhushan KR, et al. Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging 2008;7(4):175-86
    25. Kayani AR, Glister C, Knight PG Evidence for an inhibitory role of bone morphogenetic protein(s) in the follicular-luteal transition in cattle. Reproduction 2009;137(1):67-78.
    26. Smadja DM, Bieche I, Silvestre JS, et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 2008;28(12):2137-43.
    27. Mukhopadhyay P, Webb CL, Warner DR, et al. BMP signaling dynamics in embryonic orofacial tissue. J Cell Physiol 2008;216(3):771-9
    28. Zhou W, Edeman GM, Mauro VP. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells. Proc Natl Acad Sci USA 2001;98(4):1531-1536.
    29. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Molecular Biology Reports 2008;35(3):313-319
    30. Gong-Bo Li, Guang-Xiu Lu. Gene Delivery Efficiency in Bone Marrow-derived Dendritic Cells: Comparison of Four Methods and Optimization for Lentivirus Transduction. Mol Biotechnol 2009;Doi 10.1007/s 12033-009-9197-1
    31. Bergen JM, Park IK, Horner PJ, et al. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 2008;25(5):983-98
    32. Gao X, Kim KS, Liu D. Nonviral gene delivery:what we know and what is next. AAPS J 2007;9(1):E92-104
    33.詹玉林,白靖平PIRES2-EGFP-hBMP-2真核表达质粒的构建及其活性测定[J].新疆医科大学学报,2008;31(5):524-527
    34.邹德波,周东升,人骨形态发生蛋白-2基因转染兔骨髓基质干细胞及其表达[J].中华创伤骨科杂志,2006;8(2):148-152
    1. Herrero-Beaumont G, Marcos ME, Sanchez-Pernaute O. et al. Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol 2008;154(4):843-51
    2. Zvi Schwartz, Maya Fisher, Christoph H. Lohmann, et al. Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates. Annals of Biomedical Engineering 2009; 37(3):437-444
    3. Gelse K, Miihle C, Franke O, Park J, et al. Cell-based resurfacing of large cartilage defects: long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis. Arthritis Rheum 2008; 58(2):475-88
    4. Kubo S, Cooper GM, Matsumoto T, et al. Blocking vascular endothelial growth factor with soluble FIt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 2009;60(1):155-65
    5. 许澍洽,许扬滨.BMSCs构建组织工程软骨的研究进展[J].中国修复重建外科杂志,2008;22(2):163-166.
    6. Matsumoto T, Cooper GM, Gharaibeh B, et al. Blocking VEGF as a potential approach to improve cartilage healing after osteoarthritis. J Musculoskelet Neuronal Interact 2008; 8(4):316-7
    7. 陈为坚,李贵涛.骨髓间充质干细胞结合骨形态发生蛋白促进兔椎间关节融合的实验研究[J].中国矫形外科杂志,2007;15(3):1012-1014
    8. J. Javcar, A. Slovikova, E. Amler, et al. Mechanical Response of Porous Scaffolds for Cartilage Engineering. Physiol. Res 2007;56(1):S17-S25
    9. Guo T, Zhao JN, Di Z, et al. Porous chitosan-gelatin scaffold ciontaining plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials 2006; 27(7):1095-1103.
    10. Ulici V, James CG, Hoenselaar KD, et al. Regulation of gene expression by PI3K in mouse growth plate chondrocytes. PloS One 2010;5(1):e8866
    11. Prochazkova M, Zanvit P, Dolezal T, et al. Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain. Physiol Res 2009;58(3):419-25
    12. Steinert AF, Noth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury 2008; 39(1):S97-113
    13. Vacanti CA, LangerR, Schloo B, et. Synthetic polymers seeded with chondrocyted provide a template for new cartilage formation[J]. Plastic Reconstruct Surgery,1991,88:753—759.
    14.周广东,崔磊,刘伟,等.软骨组织工程的历史、现状与未来[J]整形再造外科杂志,2004,6(1):52-55.
    15.文立.陆爱云,曾凡辉.基因治疗与运动性关节损伤[J].体育科研,2001,22(1)31-2
    16. Kuettner KE, Cole A Articular cartilage and osteoarthritis research. Steinkopff Verlag 1998; 57(3):176
    17. Michael J. Pasquale R, Daniel A. The basic science of articular cartilage repair and response to injury. Sports Med Anhrosc Rev 2003; 11:168-81
    18. Wei X. Gao J. Messner K. Maturation-dependent repair of untreated osteoehondrM defects in the rabbit knee joint. J Biomed Mater Res 1997; 34(1):63-72
    19. Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow—derived mesenchymal progenitor cells. Exp Cell Res 1998; 238(1):265-72
    20. A Hari Reddi. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development:noggin, chordin and DAN. Arthritis Res 2001;3 (1):1-5
    21. Asian-Kretchmer O, Hsueh AJ. Comparative Genomic Analysis of the Eight-Membered Ring Cystine Knot-Containing Bone Morphogenetic Protein Antagonists. Mol Endocrinol, January 2004; 18(1):1-12
    22. L, Ma J, Wang X, Wang J, et al. Synergistic effect of TGF-beta superfamily members on the induction of Foxp3+ Treg. Eur J Immunol 2010;40(1):142-52.
    23. lAndriopoulos B Jr, Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin xpression and iron metabolism. Nat Genet 2009;41(4):482-7
    24. Kamiya N, Ye L, Kobayashi T, et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 2008;23(12):2007-17
    25. Samee M, Kasugai S, Kondo H, et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci 2008; 108(1):18-31
    26. Wang H, Yang ZH, Liu DM, et al. Association between two polymorphisms of the bone morpho-genetic protein-2 gene with genetic susceptibility to ossification of the posterior longitudinal ligament of the cervical spine and its severity. Chin Med J (Engl) 2008; 121(18): 1806-10.
    27. Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122(5):716-26
    28. Liu F, Bloch N, Bhushan KR, et al. Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging 2008;7(4):175-86
    29. Kayani AR, Glister C, Knight PG. Evidence for an inhibitory role of bone morphogenetic protein(s) in the follicular-luteal transition in cattle. Reproduction 2009;137(1):67-78.
    30. Smadja DM, Bieche I, Silvestre JS, et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vase Biol 2008;28(12):2137-43.
    31. Mukhopadhyay P, Webb CL, Warner DR, et al. BMP signaling dynamics in embryonic orofacial tissue. J Cell Physiol 2008;216(3):771-9
    32. Evans C H, Robbins P D. Genetically augmented tissue engineering of the musculoskeletal system[J]. Clin Orthop Relat Res,1999, (367 Suppl):S410—418.
    33. Zhou W, Edeman GM, Mauro VP. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells. Proc Natl Acad Sci USA 2001;98(4):1531-1536.
    34. Susa T, Kato T, Kato Y. Reproducible transfection in the presence of carrier DNA using FuGENE6 and Lipofectamine2000. Molecular Biology Reports 2008;35(3):313-319
    35. Gong-Bo Li, Guang-Xiu Lu. Gene Delivery Efficiency in Bone Marrow-derived Dendritic Cells: Comparison of Four Methods and Optimization for Lentivirus Transduction. Mol Biotechnol 2009;Doi 10.1007/s12033-009-9197-1
    36. Bergen JM, Park IK, Horner PJ, et al. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 2008;25(5):983-98
    37. Gao X, Kim KS, Liu D. Nonviral gene delivery:what we know and what is next. AAPS J
    38.[17]郭荣,陆华中,邹萍.聚酰胺一胺型纳米载体在基因治疗中的研究现状及展望[J].中华血液学杂志,2002,23(4):223—224.
    39. Ahmed MM, Huang TH, Xie QD. A sensitive and rapid assay for investigating vertical transmission of hepatitis B virus via male germ line using EGFP Vector as reporter. J Biomed Biotechnol 2008;2008(495436):1-6
    40. Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. J Exp Bot 2009;60(2):367-76
    41.]hitara H, Shimanuki M, Hayashi J. Global imaging of mitochondrial morphology in tissues using transgenic mice expressing mitochondrially targeted enhanced green fluorescent protein. Exp Anim 2010;59(1):99-103.
    42.詹玉林,白靖平.PIRES2-EGFP-hBMP-2真核表达质粒的构建及其活性测定[J].新疆医科大学学报,2008;31(5):524-527
    43.邹德波,周东升,人骨形态发生蛋白-2基因转染兔骨髓基质干细胞及其表达[J].中华创伤骨科杂志,2006;8(2):148-152