对称正则长波方程的辛算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文考虑了对称正则长波(SRLW)方程的多辛算法。辛算法是从辛几何观点出发,利用变分原理构造的具有保持原Hamilton系统辛几何结构性质的一种算法。其基本思想:首先,利用正则变换,构造偏微分方程的多辛方程组。然后,利用多辛算法离散此多辛方程组,得到它的多辛格式,要求所得到的多辛格式满足离散形式的多辛守恒律。这是最为关键的一点。最后,通过数值实验检验算法的有效性与优越性。
     我们通过对SRLW方程作正则变换,得到了它的一个正则方程组及其几个守恒律。用多辛方法离散此方程组,得到了它的一些多辛格式,证明了它们具有离散形式的多辛守恒律,并且它的局部能量与动量守恒律的离散形式具有较高阶的误差精度。对中点格式,通过消去中间变量,得到不含中间变量的与原格式等价的多辛Preissman格式。通过对多辛中点格式分别作适当的不同的变化,我们分别得到了满足离散局部能量守恒律格式与离散局部动量守恒律格式,但这两格式除线性情形外均不是多辛格式,对这两格式我们也得到了它的等价格式。我们用大量数值实验验证了所构造的格式的有效性与长时间的数值稳定性,它们还能很好地模拟原孤立波的波形与具有较高的能量精度。
     最后,我们还简要介绍了多辛Fourier拟谱方法,然后把它应用到SRLW方程的多辛方程组得到了它的多辛Fourier拟谱格式。我们用数值实验验证了它的有效性。数值结果表明多辛Fourier拟谱格式较多辛中点格式具有较高的精度。
We consider some multi-symplectic schemes for SRLW equation in the paper. Symplectic algorithm sets forth symplectic geometry and makes use of variation principal. It requests that schemes should maintain symplectic geometric traits of the original Hamiltonian system. Its main idea is as follows: Firstly, we construct multi-symplectic equations for PDEs through canonical transformations. Secondly, we discrete multi-symplectic equations with multi-symplectic schemes which must preserve discretic multi-symplectic conservation law. This is one of the most key points. Lastly, we should perform numerical experiments to verify the validities and superiorities of the schemes we have established.
    Canconical equations for SRLW equation are presented which possess some conservation laws by canonical transformations in this paper. We present some multi-symplectic schemes for the equations. They preserve discretic multi-symplectic conservation law exactly. Errors orders of their local discretic energy and local discretic momentum conservation laws are very high. We eliminate middle variables and amount to a single variable multi-symplectic scheme for mid-point scheme. We call it Preissman scheme. We come up with preserving local discretic energy conservation law scheme if we act some proper transformations on mid-point scheme; Preserving local discrete momentum conservation law scheme is also presented here in a similar way. However, neither is these two schemes multi-symplectic scheme except linear case. We perform a lot of experiments. Experiments show that schemes we construct are available. They also verify that multi-symplectic scheme are capable of preserving original solitary wave shape. They also
     prove that multi-symplectic schemes have long time numerical behavior as well as high energy accurcy.
    We introduce multi-symplectic Fourier pseudo-spectral method simply in the end. Then we apply it to multi-symplectic equations of SRLW and get a multi-symplectic Fourier pseudo-spectral scheme for it. We also carry out some experiments to illustrate its validity. Numerical results show that multi-symplectic Fourier pseudo-spectral scheme has higher accuracy than multi-symplectic Preissman scheme, either.
引文
[1] K. Feng. On difference schemes and symplectic geometry, Prodceeding of the 1984 Beijing symposium on differential geometry and differential equations. Science Press,Beijing, 1985, 42-58.
    [2] K. Feng. Difference schemes for Hamilton formalism and symplectic geometry. J.C.M., 1986, 4(3), 279-289.
    [3] Ernst Hairer, Christian Lubich, Gerhard Wanner. Geometric numerical integration. Berlin: Springer Press, 2001.
    
    
    [4] 冯康,秦孟兆.哈密顿系统的辛几何算法.杭州:浙江科学技术出版社,2003。
    [5] K. Feng. H. M. Wu, M. Z. Qin, Wang D. L.. Construction of canonical difference schemes for Hamiltonianformaalism via generating functions. J.C.M., 1989, 7(1), 71-96.
    [6] K. Feng. Collected works of Feng Kang(Ⅱ). National Defence Industry Press, Beijing, 1995.
    [7] 秦孟兆.辛几何及计算哈密顿力学.力学与实践,1990,12(6),1-20.
    [8] M.Z. Qin, M.Q. Zhang. Multi-stage symplectic schemes of two kinds of Hamilton system for wave equations. Computers Math. Applic.. 1990, 19(10), 51-62.
    [9] 秦孟兆.任意阶精度的蛙跳格式的稳定性分析.计算数学,1992,14(1),1-9.
    [10] Z. J. Shang. On the construction of the preserving mapping an Hamilton-Jacobi equations for source free system. Science in China, 1994, 37(10), 1171-1188.
    [11] G. Sun. Construction fo higher order symplectic Runge-Kutta methods. J.C.M., 1993, 11(3), 250-260.
    [12] 曾文平.高阶Schr(?)dinger方程的哈密顿型蛙跳格式.高等学校计算数学学报,1995,17(4),305-317.
    [13] 曾文平.用Hyperbolic函数构造Schr(?)dinger方程的辛格式.应用数学学报,1996,19(3),424-430.
    [14] T. J. Bridges. Multi-symplectic structure and wave propagation. Math. Proc. Camb. Phil. Soc., 1997, 121(1), 147-190.
    [15] T. J. Bridges, S. Reich. Multi-symplectic integrators: Numerical schemes for Hamiltionian PDEs that conserve symplecticity. Physics Letters A, 2001, 284, 184-193.
    [16] S. Reich. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equation. J.C.P., 2000, 157, 473-499.
    [17] J. E. Marsden, G. P. Patrick and S.Shkoller. Multi-symplectic geometry variational integrators and nonlinear PDEs. Comm. Math. Phys., 1998, 199, 351-395.
    [18] J. E. Marsden and S.Shkoller. Mutil-symplectic geometry, covarinant Hamiltonians and water waves. Math. Proc. Camb. Phil. Soc., 1999, 125.
    [19] S. Reich. Finite volume methods for multi-symplectic PDEs. BIT, 2000, 40(3), 559-582.
    [20] T. J. Bridges, S. Reich. Multi-symplectic spectral discretization for the Zakharov-Kaznetsov and shallow water equation. Physica D, 2001, 491-504.
    [21] J. L. Hong and Y. Liu. A novel numerical approach to sumulating nonlinear Schr(?)dinger equation with variable coefficents. Appl. Math. Letters, 2002, 16, 759-765.
    [22] J. L. Hong and Y. Liu. Multi-symplecticity of the centred box discretizations for a class of Hamiltonian PDEs and an application to quasi-periodically solitary wave of qpkdv equation. preprint(2001).
    [23] J. L. Hong, M. Qin. Multi-symplecticity of the centred box discretizations for Hamiltonian PDEs with m≥2 space dimensions. Appl. Math. Letters, 2002, 15, 1005-1011.
    [24] J. L. Hong, Y. Liu, Hans Munthe-Kass, Antonella Zanna. Globality conservative properties and error estimation of a multi-sympletctc scheme for Schr(?)dinger equation with variable coefficents. Appl. Math. Letters, preprint(2003).
    [25] Jing-Bo Chen, Meng-Zhao Qin and Yi-Fa Tang. Symplectic and Multi-Symplectic Methods for the Schr(?)dinger Equation. Computers mathematics Appli., 43(2002).
    [26] Jing-bo Chen, Mengzhao Qin. Multi-symplectic Fourier pseudospectral method for the non
    
    linear Schr(?)dinger Equation. ET on numerical analysis, 2001.
    [27] W.P. Zeng, L.Y. Huang, M.Z. Qin. Multisymplectic scheme for "Good" Boussinesq equation. Applied Mathematics and Mechanics., 2002, 23(7), 743-748.
    [28] L.Y. Huang, W.P. Zeng, M.Z. Qin. Construct of multisymplectic scheme for "Good" Boussinesq equation. J.C.M., 2003, 25(6), 702-715.
    [29] 蒋长锦.二维Sine-Gordon方程的多辛格式.中国科学技术大学学报,2003,33(3),253-261.
    [30] 蒋长锦.二维非定常Sine-Gordon方程辛算法及其孤子数值模拟.计算物理,2003,20(4),321-325.
    [31] 蒋长锦.Schr(?)dinger方程辛格式的迭代解法.中国科学技术大学学报,2001,31(4),425-428.
    [32] P. F. Zhao, M. Z. Qin. Approximation for the Kdv equations as a Hamiltonian system. Computers Math. Applic., 2000, 39, 1-11.
    [33] P. F. Zhao, M. Z. Qin. Mutilsymplectic geometry and mutilsymplectic Preissman schemes for the Kdv equations. J. Phys. A Math. Gen., 2000, 33, 3613-3626.
    [34] 赵平福.KDV方程的多辛算法.博士论文(1999),中国科学院数学与系统科学院.
    [35] 王雨顺,王斌,秦孟兆.2+1维Sine-Gordon方程多辛格式的复合构造.中国科学(A),2003,33(3),272-281.
    [36] 王雨顺.孤立波方程的辛和多辛算法的构造和计算.博士论文(2001),中国科学院数学与系统科学院。
    [37] 陈景波.无穷维Hamilton系统保结构算法一些问题的研究.博士论文(2001),中国科学院数学与系统科学院。
    [38] 刘亭亭.2+1维非线性波动方程多辛格式的研究.博士论文(2002),中国科学院数学与系统科学院。
    [39] 陈景波,秦孟兆.辛几何算法在射线追踪中的应用.数值计算与计算机应用,2000,21(4),255-265。
    [40] 丁培柱,李延欣等.量子系统的辛算法.吉林大学自然科学学报,1993,4,75-82。
    [41] 刘林,赵长印等.辛算法在动力天文中的应用(Ⅲ).天文学报,1994,35(1)。
    [42] Seyler C. E., Fenstermmacler D. C. A symmetry regularized long wave equation. Physics Fluids, 1984, 27(1), 4-7.
    [43] B. L. Guo. The spectral method for symmetry regularized long wave equation. J.C.M., 1987, 5(4), 297-306.
    [44] 郑家栋、张汝芬、郭本瑜.SRLW方程的Fourier谱方法.应用数学与力学,1989,10(9),801-810.
    [45] 任宗修.SRLW方程的Chembyshev拟谱方法.工程数学学报,1995,12(2),34-40.
    [46] 尚亚东.几个非线性发展方程的精确显式孤立波解.陕西师范大学学报,1999,27(1),24-29.
    [47] 尚亚东.两类非线性波动方程的精确解.兰州大学学报,1999,35(1),11-17。
    [48] 李荣华,冯果忱编.微分方程数值解法.北京:高等教育出版社,1996。
    [49] 李立康等编.微分方程数值解法.上海:复旦大学出版社,1999。