高维仿生信息几何学研究及其在模式识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模式识别成为国内外人工智能研究的热点问题之一。由于样本的高维数据集呈现低维几何流形分布的特性,使得传统模式识别方法在很多问题上遇到了瓶颈。如何认识和利用高维数据的内部几何分布特性,探索人类对事物认识的方式是解决模式识别问题的新方向。高维仿生信息几何学正是从几何学的角度来认识和分析数据分布,试图通过模拟人类形象思维来解决模式识别中的实际问题。
     我们从高维仿生信息几何学在模式识别的应用中发现以下问题:首先,如何对高维数据集进行合理的覆盖,也就是怎样提取高维数据集的“核”来构造覆盖区域;其次,在样本数量比较大的情况下,怎样提高识别效率?怎样构造半监督分类器?等等。
     针对以上一些问题,本文试图将高维仿生信息学理论和流形学习、机器学习等方法结合起来找到答案,本文研究工作主要包括以下几方面:
     研究了传统仿生模式识别的超香肠神经元模型和网络学习算法,针对其不足提出了多自由度神经元模型和网络学习算法,通过人脸识别实验比较了两种神经元模型的优劣,与SVM算法的比较证明了仿生模式识别的覆盖型神经元识别算法在“小样本”数据库的识别问题上更具优势。
     针对邻近样本点误识问题,提出了核邻近点Fisher判别分析,这一算法的目的在于使最近的异类数据点和最远的同类样本点在投影子空间的距离尽量扩大,从而减少误识率,并通过人脸识别实验验证了算法的有效性。
     针对传统的仿生模式识别算法的不足之处,结合流形学习的理论提出了基于流形距离的仿生识别算法(主要包括基于局部PCA主流形的求取和切距离的求取两部分),并通过实验证明了基于流形距离的仿生识别算法比传统仿生模式识别算法更适合“大样本”数据库的识别问题。传统仿生模式识别方法是通过单纯形神经元覆盖来逼近样本的分布流形,而基于流形距离的仿生识别算法是通过将数据集投影“主流形”上来寻找样本的分布流形,是解决同一个问题的两种方法。因为都需要预知样本的类别,它们都属于有监督的模式识别方法。
     另外我们还研究一种无监督的聚类算法。基于高维仿生信息几何学的“同源连续性原理”改进了谱聚类算法中的相似性量度,提出了基于路径相对相似度的谱聚类算法,改善了谱聚类算法对高斯函数中尺度参数的敏感性。
     最后,是对高维仿生信息学方法的应用研究。基于高维仿生信息学形象思维方法提出了适用于图像检索和图像配准的特征提取方法,给出了图像检索和图像配准的原型系统,实验证明了提取特征的有效性。
Pattern recognition becomes to the hot issues of artificial telligence research at home and abroad.The traditional method of pattern recognition encounters a bottleneck when it is used to deal with high-dimensional data set with low-dimensional geometry structure. Recognizing and utilizing the internal geometry distribution characteristics of high dimensional data, simulating the way of human's recognition are the new directions to solve the problem of pattern recognition. The High-dimension biomimetic information geometric recognizes and analyzes the data distribution from the view of geometric, and attempts to solve practical problems in artificial intelligence and pattern recognition by simulating the human thinking in images.
     Through the research on High-dimension biomimetic information geometric in the application of pattern recognition, we have found the following problems that have not been solved, such as how to cover the high-dimensional data set and how to extra the'CORE" of the data set? In the case of relatively large number of samples how to improve the recognition efficiency, and how to construct semi-supervised classification?
     For solving the above problems, we try to find the answers by combining the High-dimension biomimetic information geometric with the manifold learning and machine learning. Our contribution includes the following works:
     We have studied on the Hyper Sausage Neuron model and network learning algorithm of biomimetic patter recognition, and proposed the Multi-degree of Freedom Neurons Model and network learning algorithm. Further more we compared the advantages and disadvantage of the two kinds of neuron model through the face recognition experiments. And comparing with the SVM we improved that the biomimetic pattern recognition algorithm based on the neurons coverage is more suitable for the recognition problems of the'small sample' database.
     We have also proposed an algorithm of kernel near point Fisher discriminant analysis combining with the manifold learning and linear dimensionality reduction for reducing the error of the near sample points. The algorithm aims at maximizing the distance of the heterogeneous data points in the projection subspace. And its effectiveness has been improved by the face recognition experiments.
     Combining with the theory of manifold learning, we proposed the biomimetic recognition algorithm based on the manifold distance (including two algorithms: principal manifold based on local PCA and tangent distance) for the inadequacies of the traditional biomimetic pattern recognition algorithm. And the manifold distance algorithm is proved more suitable for recognition problem of the'large sample" database than the traditional biomimetic pattern recognition algorithm by experiments. The traditional biomimetic pattern recognition algorithm approximates the sample distribution manifold by the simplex neuron covering while the manifold distance algorithm looks for the sample distribution manifold by dataset projecting to the "principal manifold". They are the two algorithms to solve the same problem. And they both belong to the supervised pattern recognition because the types of the samples are needed to be known.
     In further research, we find that the machine learning can get some illumination in High-dimension biomimetic information geometric. We proposed the relative Similarity'Path-based Spectral clustering algorithms. And it improves the sensitivity of the spectral clustering algorithm on the scale parameter in the Gaussian function.
     We also studied the application of the High-dimension biomimetic information geometric method, and which has been used in the feature extraction of image retrieval and image registration. The prototype systems for image retrieval and image registration are given in this paper. And the effectiveness of feature extraction methods is verified by the experiments.
引文
[1]王守觉著,多维空间仿生信息学入门,国防工业出版社,2008.1
    [2]孙即祥著,现代模式识别,国防科技大学出版社,2002.1
    [3]McCulloch, W.S. and W.H.Pitts, "A logical calculus of ideas immanent in nervous activity".Bulletin of Math. Biophysics, vol.5,1943,115-133.
    [4]Wiener, Principle of Cybernetices, New York,1940.
    [5]Hebb D.O., The Organization of Behavior[M],Wiley, New York,1949
    [6]Rosenblatt,F., Principles of Neurodynamics, Spartan, New York,1962
    [7]Widrow, B.,M.E.Hoff,WESCON Convention Record, Part4,1960,99
    [8]Grossberg,S..Adaptive Pattern Classification and Universal Recording.Biol.Cybernet,vol.23, 1976.121-134
    [9]Kohonen. T.k..Self-orgnization and Associative Memory, New York. Spring-Verlag.1988.
    [10]Seung H.S.,Daniel D.L..The Manifold Ways of Perception. Science,,2000,12:2268-2269
    [11]Tenenbaum J.B., Silva V.D., Langford J.C., A global geometric framework for nonlinear dimensionality reduction [J]. Science.2000,290(5500):2319-2323
    [12]Roweis S.T.. Saul L.K., Nonlinear dimensionality reduction by locally linear embedding.Science,2000.290(5500):2323-2326
    [13]Silva V. D., Tenenbaum J.B., Global versus local methods in nonlinear dimensionality reduction [G], In:Advances in NIP151. Cambridge, MA:MIT Press,2002,705-712
    [14]Balasubramanian M., Schwartz E. L., Tenenbaum J.B., Silva V. D., Langford JC. The 1SOMAP algorithm and topological stability. Science,2002.295 (5552):7
    [15]Saul L.K., Roweis S.T., Think globally, fit locally:Unsupervised Learning of low dimensional manifolds [J]. Journal of Machine Learning Research,2003,4(6):119-155
    [16]Belkin M. Niyogi P., Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation, June 2003.15(6):1373-1396
    [17]Belkin M. Niyogi P., Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [Jj.Neural Information Processing Systems14.,2002,585-591
    [18]Z.Y. Zhang, H.Y. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J]. SIAM J. Sci. Comput.2005,26(1):313-338
    [19]杨剑,李伏欣,王珏.一种改进的切空间排列算法[J].软件学报,2005,16(9):1584-1590
    [20]王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,2002,10(10):1417-1420
    [21]王守觉等.人工神经网络的多维空间几何分析及其理论[J].电子学报,2002,30(1):1-4
    [22]王守觉.多值和多阈值神经元及其网络组合与应用[J].电子学报,1996,24(05):1-6
    [23]陈向东.通用高阶神经元网络模型的构造及其应用程序[D],博士论文,北京:中国科学院 半导体研究所,2000
    [24]王守觉.通用前馈网络及排序学习前向掩蔽模型在模式识别中的应用,电子学报,1998,,26(8):1-6
    [25]Wang Shoujue, Priority Ordered Neural Networks with BetterSimilarity to Human Knowledge Representation[J].Chinese Journal of Electronics, Jan,1999.8(1):1-4
    [26]Shoujue Wang, Jingpu Shi, Chuan Chen, Yujian Li.Direction-Basis-Function (DBF) neural networks[C]. IJCNN'99,,1999,1251-1254
    [27]王守觉,李兆洲,陈向东,王柏南.通用神经网络硬件中神经元基本数学模型的讨论[J].电子学报,2001,29(5):577-580
    [28]Wang Shoujue, Chen Xu, Li Weijun, Object-Recognition with Oblique Observation Directions Based on Biomimetic Pattern Recognition[C].International Conference on Neural Networks & Brain, Beijing, China,2005, Vol.3,1498-1502
    [29]Hong Qin, Shoujue Wang, Hua Sun, Biomimetic Pattern Recognition for Speaker-Independent Speech Recognition[C].International Conference on Neural Networks (ICNN'05),2005,1920-1294
    [30]王守觉,曲延锋,李卫军,覃鸿,基于仿生模式识别的人脸识别系统与传统模式方法的识别效果的比较研究[J],电子学报,2004,32(7):1057-1061
    [31]Shoujue Wang. A New Development on ANN in China—Biomimetic Pattern Recongnition and Multi Weight Vector Neurons, Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),2003,35-43
    [32]来疆亮,模式识别中高维空间点分布几何分析方法的研究[D],博士论文,中国科学院半导体研究所,2005.5
    [33]戴雷,基于仿生模式识别的手掌特征识别研究[D],博士论文,中国科学院半导体研究所,2009.5
    [34]W. Bledsoe. Man-machine facial recognition. Panoramic Research Inc. Palo Alto, CA,1966. Rep PRI:22
    [35]T. Kanade. Picture processing system by computer complex and recognition of human faces. Ph.D. thesis, Kyoto University,1973
    [36]David Beymer, Vectorizing Face 1m ages by Interleaving Shape and Texture Computation. A.I.Memo No.1537,1995.9
    [37]M.Lades, J.C.Vorbruggen, J.Buhmann, J.Lange, C.v.d.Malsburg, R.P.Wurtz. W. Konen. Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE Trans. On Computers,42(3),1993,300-311
    [38]T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, Active Shape Models - Their Training and Application [J]. Computer Vision and Image Understanding, Vol.61,No.1, January,1995,38-59
    [39]M. Turk and A. Pentland. Face recognition using eigenfaces[C]. In:Proc. of IEEE Conf. On CVPR,1991:586-591
    [40]R. Brunelli and T. Poggio. Face Recognition through Geometrical Features[C]. Proceedings of ECCV '92,792-800
    [41]Z.Hong. Algebraic feature extraction of image for recognition[J]. Pattern Recognition,24(3), 1991,211-219
    [42]M.S.Bartlett, H.M.Lades and T.J.Sejnowski. Independent Component Representations for Face Recognition[C]. Proc. of SPIE,1998,528-539
    [43]J. Lampinen and E. Oja. Distortion tolerant pattern recognition based on self-organizing feature extraction. IEEE Transactions on Neural Networks,1995,6(3):539-547
    [44]H.A.Rowley, S.Baluja, and T. Kanade. Neural network-based face detection, IEEE-PAMI, 1998,20(1):23-38
    [45]Steve Lawrence. Lee Giles, Ah Chung Tsoi, Andrew D. Back. Face Recognition:A Convolutional Neural-Network Approach, IEEE Trans. On Neural Network, Vol.8, No.1, Jun. 1997
    [46]P. J. Phillips. Support vector machines applied to face recognition. In Advances in Neural Information Processing Systems. Editors:M.C.Mozer, M.I.Jordan, and T. Petsche, MIT Press. 1998
    [47]苏煜,山世光,陈熙霖,高文.基于全局和局部特征集成的人脸识别[J].软件学报.2010,21(8):849-1862
    [48]卢桂馥,林忠,金忠.基于核化图嵌入的最佳鉴别分析与人脸识别[J.软件学报].2011,22(7):1561-1570
    [49]杨利平,,龚卫国,辜小花.,李伟红,杜兴.完备鉴别保局投影人脸识别算法[J].软件学报.2010,21(6):1277-1286
    [50]张国印,楼宋江.无关性判别保局算法及其在人脸识别中的应用[J].中国图象图形学报,2011,16(1):66-71
    [51]杨万扣,王建国,任明武,杨静宇.模糊逆Fisher鉴别分析及其在人脸识别中的应用[J].中国图象图形学报,2009,14(1):88-93
    [52]http://www.shef.ac.uk/eee/research/vie/research/face.html
    [53]http://www.uk.resaearch.att.com/facedatabase.html
    [54]http://cvc.yale.edu/projects/yalefaces/yalefaces.html
    [55]Hastie T., Principal Curves and Surface. Laboratory for Computational Statistics Stanford University, Dept.of Statistics Technical Report 11,1984
    [56]Hastie T., W. Stuetzle.Principal Curves [J]. Journal of the American Statistical Association.. 1988,84(406):502-516
    [57]Vapnik, V.N., Statistical learning theory.1998:Wiley New York.
    [58]Muller, K.R., S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-based learning algorithms[J]. Neural Networks, IEEE Transactions on,2001,12(2):181-201
    [59]Scholkopf, B., Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation.1998.10:1299-1319
    [60]Baudat, G.,F. Anouar. Generalized Discriminant Analysis Using a Kernel Approach [J]. Neural computation,2000.12(10):2385-2404
    [61]Jackson, J.E., J. Wiley, W. InterScience, A User's Guide to Principal Components.1991
    [62]Mika, S., G. Ralscb, J. Weston, B. Scholkopf, K.R. Mullers. Fisher discriminant analysis with kemels[C]. In Neural Networks for Signal Processing IX.1999. Proceeding of the 1999 IEEE Signal Processing Society Workshop.1999
    [63]Cox, T.F., M.A. Cox, Multidimensional Scaling.2001:Chapman & Hall/CRC
    [64]Saul, L.K., S.T. Roweis, Think Globally, Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J]. Journal of Machine Learning Research.2004.4(2):119-155
    [65]Chang. H., D.Y. Yeung, Robust Locally Linear Embedding [J]. Pattern recognition,2006. 39(6):1053-1065
    [66]Kouropteva, O., O.Okun, M. Pietikainen. Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine[C]. in Proc. Of the 11th European Symp. On Artificial Neural Networks. Bruges, Belgium.2003
    [67]Blkin M., N.P. Towards a Theoretical Foundation for Laplacian-Bascd Manifold Methods[C], In:Proc.18th Annual Conf. Learning Theory.2005:LNCS, Berlin:Springer-Verlag
    [68]Brand, M. Continuous nonlinear dimensionaiity reduction by kernel eigenmaps[C]. In Int. Joint Conf. Artif. Intel.2003
    [69]He, X., P. Niyogi. Locality preserving projctions[C]. In Advances in Neural Information Processing Systems.2003
    [70]张军平,王珏,主曲线综述[J].计算机学报,2003,26(2):1-18
    [71]He X., Cai D., Yan S. Zhang H., Neighborhood preserving embedding[C]. International Conference on Computer Vision. vol2:1208-1213,2005
    [72]Chen H. T., Chang H. W., Liu T. L. Local Discriminant Embedding and Its Variants[C]. In. Proceeding of International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25,2005,846-853
    [73]Yan S., Xu D., Zhang B., Zhang H., Graph Embedding:A General Framework for Dimensionality Reduction[C]. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, June 20-25,2005,830-837
    [74]Wang F., Zhang C., Feature Extraction by Maximizing the Average Neighborhood Margin[C]. In Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota. June 18-23,2007, 1-8
    [75]张振跃,查宏远.线性低秩与非线性降维.中国科学A辑2005,35(3):272-285
    [76]MNIST Database. http://yann.lecun.com/exdb/mnist/
    [77]COIT Database:Columbia University Image Library. http://www.cs.columbia.edu/CAVE
    [78]Wang F., Zhang C., Label Propagation through Linear Neighborhoods[C]. In International Conference on Machine Learning, Pittsburgh, June,2006
    [79]Fischer B., Buhmann J. M., Bagging for Path-Based Clustering[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.25, no.11,2003,1411-1415
    [80]Fischer B., Buhmann J. M., Path-Based Clustering for Grouping Smooth Curves and Texture Segmentation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.25, no.4,2003,513-518
    [81]Chang H., Yeung D. Y., Robust path-based spectral clustering [J]. Pattern Recognition.2008, 41:191-203
    [82]潘晓英,刘芳,焦李成.密度敏感的多智能体进化聚类算法[J].软件学报,2010,21(10):2420-2431
    [83]孔万增,孙昌思,张建海,胡三清,杨灿.近邻自适应局部尺度的谱聚类算法[J].中国图象图形学报,2012,17(4):523-529
    [84]Andrew Y. N., Jordan M., Weiss Y., On Spectral Clustering Analysis and an algorithm[C]. In NIPS.2002
    [85]J.D. Fo ley, A.van, Dam, S.K. Feiner, J.F. Hughes.Computer graphics:principles and practice [M]. New York:A ddison-Weslev Publishing,1998
    [86]章毓晋,图像处理和分析[M],北京:清华大学出版社,1999
    [87]Swain. M J and Ballard, D. H. Color indexing [J]. International Journal of Computer Vision. 1991,7(1):11-32
    [88]Pass, G. and Zabih, R. Histogram refinement for content-based image retrieval.In Proc.of WACV'96, Sarasota, Florida[C], Dec 1996,96-102
    [89]Mostafa, T., Abbas, H.M. and Wahdan, A.A. On the use of hierarchical color moments for image indexing and retrieval. In Proc.of IEEE International Conference on Systems, Man and Cybernetics[C], Hammamet, Tunisia, Oct.2002
    [90]Robert M.Haralick, K. Shamnugam, and Its'hak Dinstein.Texture features for image classification [J]. IEEE Trans. On Sys. Man, and Cyb,1973, SMC-3 (6):610-621
    [91]Calvin C. Gotlieb and Herbert E. Kreyszig. Texture descriptors based on co-occurrence matrices [J]. Comput. Vis., Graphics, and Image Proc.1990,51:70-86
    [92]H. Tamura, S. Mori, and T.Yamawaki.Texture features corresponding to visual perception [J]. IEEE Trans. On Systems, Man, and Cybernetics, June 1978, Smc-8(6):460-473
    [93]Choen F S, Fan A, Patel M. Classification of rotated and scaled textured image using gaussian markov random field models [J]. IEEE trans. PAMI,1991,13:192-202
    [94]Kashyap R.I, Khotanzad A. A model based method for rotation invariant texture classification[J]. IEEE trans. PAMI,1986,8:472-481
    [95]B.S.Manjunath and W. Y. Ma.Texture features for browsing and retrieval of large image data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (Special Issue on Digital Libraries). August 1996.18(8):837-842
    [96]Dengsheng Zhang, Aylwin Wong. Maria Indrawan et al. Content-based Image Retrieval Using Gabor Texture Features[C]. In Proc.of the First IEEE Pacific-Rim Conference on Multimedia. Sydney, Australia,2000,392-395
    [97]Bao, P. and Xianjun Zhang. Image retrieval based on multi-scale edge model[C]. In Proc.of IEEE Int'l. Conf.on Multimedia and Expo. L ausanne, Switzerland.2002,417-420
    [98]Abdel-Mottaleb M. Image retrieval based on edge representation[C]. In Proc. of Int'I. On Image Proc. Vancouver, Canada,2000,734-737
    [99]He X.. Ma W.-Y., Zhang H.-J. Learning an image manifold for retrieval[C]. Proceedings of the ACM International Conference on Multimedia,2004
    [100]Wang J.Z., Li J., and Wiederhold G. SIMPLIcity:semantics-sensitive integrate matching for picture libraries [J]. IEEE Trans. Pattern Anal. Mach. Intell.2001,23(9):947-963
    [101]KO B., Byun H. Integrated region-based image retrieval using region's spatial relationships[C]. Proceedings of the IEEE International Conference on Pattern Recognition (ICPR).2002
    [102]J. R. Smith and S-F. Chang. Automated binary texture feature sets for image retrieval. In Proc. of IEEE International Conference on Acoustics. Speech, and Signal Processing, Atlanta, GA,1996,2239-2242
    [103]A. Kundu and J. L. Chen. Texture classification using qmf bank-based subband decomposition [J]. Graphical Models and Image Processing,1992,54(5):369-384
    [104]Hoare, F. and de Jager. G. Neural networks for extracting features of objects in images as a pre-processing stage to patern classification. In Proc. of the South African Symposium on Communications and Signal Processing [C]. Johannesburg, South Africa,Sep.1992,239-242
    [105]Sung-Bae Cho and Joo-Young Lee. A human-oriented image retrieval system using interactive genetic algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, May 2002,32(3):452-458
    [106]Kulkami, S. and Verma, B. Fuzzy logic based texture queries for CBIR. In Proc. of 5th Int'1. Conf. on Computational Intelligence and Multimedia Applications[C], Xi'an, China,2003, 223-228
    [107]J. Z. Wang, J. Li, and G. Wiederhold, SIMPLIcity:semantics-sensitive integrated matching for picture libraries [J] IEEE Trans. Pattern Anal. Mach. Intell,vol.23, no.9,2001,947-963
    [108]庄凌,庄越挺,吴江琴,叶振超,吴飞[J].一种基于稀疏典型性相关分析的图像检索方法.软件学报,2012,23(5):1295-1304
    [109]贺广南,杨育彬.基于视觉一致性的图像检索[J].中国图象图形学报,2011,16(4):503-509
    [110]Duchenne, O. Joulin, A.; Ponce, J. A graph-matching kernel for object categorization[C]. IEEE International Conference on Computer Vision (ICCV),2011,1792-1799
    [111]Krapac, J. Verbeek, J.; Jurie, F. Modeling spatial layout with fisher vectors for image categorization[C]. IEEE International Conference on Computer Vision (ICCV),2011.1487-1494
    [112]Yimeng Zhang, Zhaoyin Jia. Yimeng Zhang, Zhaoyin Jia Image retrieval with geometry-preserving visual phrases. [C]. IEEE Conference on Computer Vision and Pattern Recognition2011,809-816
    [113]A. Rosenfeld and A. C. Kak, Digital Picture Processing. Vol. Ⅰ and Ⅱ, Academic Press. Orlando, FL,1982.
    [114]D. I. Barnea and H. ESilvcrman, A Class of Algorithms for Fast Digital Registration. IEEE Trans, on Computers,1972. c-21:179-186
    [115]P. A. Viola and W. M. WellslⅡ. Alignment by maximization of mutual information[C]. Proc. 5th Int. Conf. Computer Vision, Boston, MA, June,1995,16-23
    [116]C. D Kugain and D. C. Hines.The Phase Correlation Image Alignment Method[C]. IEEE 1975 Int. Conf. Cybernetics and Society. September 1975,163-165
    [117]S. Alliney and C. Morandi. Digital Image Registration using Projection [J]. IEEE Trans. On pattern Analysis and Machine Intelligence, PAMI-8, No.2,1986,222-233
    [118]S. Affmey, Spatial registration of multispectral and multitemporal digital imagery using fast-Fourier transform techniques[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence.1993,15(5):499-504
    [119]YC. Hsieh, D. M. McKeown, EP. Pedant. Performance evaluation of scene egistation and stereo matching for cartographic feature extraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992. No.14,214-237
    [120]B. Likar, E Pemus. Automatic extraction of corresponding points for the registration of medical images[J]. Medical Physics.1999, No.26,1678-1686
    [121]S. Growe, R. Tonjes. A knowledge based approach to automatic image registration[C]. Proceedings of the IEEE International Conference on Image Processing ICIP'97. California, 1997,228-231
    [122]C.Y. Wang, H. Sun. S. Yadas, A. Rosenfeld. Some experiments in relaxation image matching using corner features[J]. Pattern Recognition.1983, No.16,167-182
    [123]S. Moss, E. R. Hancock. Multiple line-templates matching with EM algorithm [J]. Pattern Recognition,1977, No.18,1283-1292
    [124]J. B. A. Maintz, P. A. Van den Elsen, M. A. Viergecer. Comparison of edge-based and ridge-based registration of CT and MR brain images[J]. Medical Image Analysis.1996, No. 1.151-161
    [125]朱佳丽,李士进,万定生,冯钧.基于特征选择和半监督学习的遥感图像检索[J].中国图象图形学报,2011,16(8):1482-1488
    [126]张少敏,赵大哲,,赵宏,林树宽.互信息启发的相似度组合图像检索算法[J].中国图象图形学报,2011,16(10):1857-1863
    [127]支力佳,张少敏,赵大哲,赵宏.融合多种特征点信息的最小生成树医学图像配准[J].计算机研究与发展2011(3):501-507