感兴趣区域图像压缩与可见水印技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多媒体技术应用的快速发展,图像数据量日益庞大,需要大的存储容量和宽的传输信道,由于图像内部相邻像素之间存在大量的冗余信息,使得图像压缩得以实现,并成为当前的研究热点。为适应各种场合的应用需求,人们对当前的图像压缩系统提出了更高的要求,不仅要求它具有高的压缩性能,还需要增加更多新的功能。
     小波变换以及嵌入式编码已经成为当今图像压缩的主要技术,越来越受到人们的重视。为了提高图像编解码后感兴趣区域恢复的质量以及它的安全方面的性能,本文对彩色图像分割、感兴趣区域的提取、彩色图像压缩、感兴趣区域编码和可见水印技术进行了一些较有成效的研究,主要成果有:
     ⑴通过研究彩色空间变换后各色彩通道能量分布情况和传统嵌入式编码的量化方法,设计了一种基于新量化方案的彩色图像压缩算法。该方案根据图像小波分解后系数分布特点,结合SPIHT(Set Partitioning in Hierarchical Trees Algorithm)算法的基本原理,实现对各分量小波系数的统一编码。与原始量化方案相比,该方案实现的图像压缩性能更优,尤其是在较低码率下,重构图像能达到更好的压缩效果。
     ⑵结合人眼显著性特性和形态学分水岭算法,设计了一种彩色图像分割及感兴趣区域提取算法。该方法有效地改善了形态学分水岭算法的过分割现象,实现图像的良好分割,在背景简单的图像中能将感兴趣区域准确提取出来。
     ⑶将ROI提取方法与感兴趣区域图像压缩编码相结合,实验结果表明,在较低的压缩比下,恢复的图像中感兴趣部分能保持较好的质量。
     ⑷为更好地保护图像的版权信息,设计了一种感兴趣区域的自适应可见水印方案。水印的嵌入深度根据宿主图像纹理特性而定,在小波域内将可见水印嵌入在图像的感兴趣区域内,并将可见水印的嵌入过程融合在图像的编码过程中,结果表明,可见水印能半透明的呈现在宿主图像感兴趣区域内,使得感兴趣区域得到更好的保护,实现实时性高、安全性好、压缩比不减小的图像数字水印方案。
     基于以上四个方面的研究,可见水印自适应嵌入在图像的感兴趣区域内,且与彩色图像压缩过程同步实现,这不仅提高了彩色图像的压缩性能,且使图像的版权信息得到了更好的保护。
With rapid development of multimedia technology, the amount of image information became larger and larger, so it needs large storage capacity and a wide-band transportation channel. Image compression is achievable because of the redundant information between the adjacent pixels in an image, now it has become a hotspot. In order to satisfy all kinds of application requirement in different environment, the standard of image compression system has been improved, it not only requires a higher performance on compression, but also needs other new functions.
     At present, in the aspect of image compression, embedded coding algorithm based on wavelet transform is the key technology, and increasingly importance has been attached to it. In order to improve the quality and safty of ROI after image coding and decoding process, some research on image segmentation has been done, ROI extraction, such as color image compression, ROI coding and visual watermark technology, the achievements can be concluded as follows:
     ⑴By studying the energy distribution of the color channels in the transformed color space, and the quantitative method in the traditional embeded coding, a new quantitative method for color image compression was designed, which is based on the distributing of wavelet coefficients. Combined with the keystone of SPIHT (set partitioning in hierarchical trees algorithm), the wavelet coefficients in every color channel are quantized and coded in unity. In comparison with the original quantitative scheme, the new scheme gives better image compression performance, especially in the lower bit rate, the reconstructed image after impression has higher quality.
     ⑵Combined with the significant characteristic of human eyes and morphological watershed algorithm, this paper designed a new segmentation region-of-interest extraction algorithm used for the color image. After the segmentation process, the image retained a very fine edge of the targets, over-segmentation caused by watershed algorithm has been greatly improved, and ROI can be exactly extracted from simple background.
     ⑶The ROI extraction method can be applied in ROI coding, in large compression rate, the experiment result shows that the quality of ROI in reconstructed image is higher than BG (background).
     ⑷An adaptive visual watermark technical in ROI was designed, which can better protect the copyright of the image. The embedding depth is fixed by every pixel’s texture feature of host image. In wavelet domain, the visual watermark is embedded into the region of interest in the image adatively, and this step can be set during the image coding. Experimental results have shown that watermarked image meet the requirements of visible watermark quite well, watermark is translucently showing in the image and ROI does receive better protection, what’s more, it realizes the watermark timely, safty and no effect on compression rate.
     Based on the above studies, visual watermark adaptive embedded in the objects of the host image, which is realized synchronously with compression. It not only improves the performance of color image compression, but also better protects the image's copyright.
引文
[1] J.M.ShaPiro, Embedded image coding using zero trees of wavelet coefficients[J]. IEEE trans. Signal Process, 1993,41(12): 3445-3462
    [2] A said, W. A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. Circuits Systems Video Technol, 1996 6(3), 243-250
    [3]张春田.数字图像压缩编码[M].北京:清华大学出版社, 2006
    [4] P. C. Cosman, R. M. Gray, R. A. Olshen. Evaluating quality of compressed medical images: SNR, subjective rating and diagnostic accuracy. Proceeding of IEEE, 1994,82(6): 920-931
    [5] A. Tirkel, G. Rankin, R. van Schyndel, W. Ho, N. Mee, and C. Osborne, Electronic water mark, in Proc. DICTA 1993, Dec.1993, pp. 666-672
    [6]钮心忻.信息隐藏与数字水印[M].北京:北京邮电大学出版社, 2004
    [7]张晓红,周渤.可视ROI信息隐藏技术研究[J].计算机测量与控制, 2008,16(2): 248-251
    [8]黄俊炫,张吕伟.基于JPEG2000压缩域的图像信息隐藏方法[J].计算机研究应用, 2004,21(5): 189-191
    [9]崔得龙.基于小波变换的数字图像水印技术研究[D].西南交通大学硕士学位论文, 2005
    [10]薛河儒,麻硕士,裴喜春.一种基于数学形态学及融合技术的彩色图像分割方法[J].中国图象图形学报, 2006,11(12): 1764-1767
    [11] Cao Yongfeng, Zheng Jiansheng. Method of Image Segmentation with High Anti-noise Performance[J]. Infrared and laser Engineering. 2002, 31(3): 208-211
    [12] Lu Guanming, Li Shuhong. Multi-scale Morphological Gradient Algorithm and its Application in Image Segmentation[J]. Signal Processing. 2001,17(1): 37-41
    [13] Liu Yucheng, Liu Yubin, An Algorithm of Image Segmentation Based on Fuzzy Mathematical Morphology[C]. ifita, vol. 2, pp.517-520, 2009 International Forum on Information Technology and Applications, 2009
    [14] Yang C. K., Tsai W. H. Reduction of color space dimensionality by moment-preserving thresholding and its application for edge detection in color images[J]. Pattern Recognition Letters, 1996,17(5): 481-490
    [15] Kurugollu F, Sankur B, Harmanci A E. Color image segmentation using histogram multithresholding and fusion [J]. Image and Vision Computing, 2001,19(13): 915-928
    [16] Littmann E, Ritter H. Adaptive color segmentation - a comparison of neural and statistical methods. IEEE Trans. Neural Network, 1997,8(1): 175-185
    [17]王金甲,洪文学,李昕.一种K-均值脸谱图聚类新算法[J].仪器仪表学报, 2007,28(10): 1917-1920
    [18] Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981
    [19]林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报, 2005,10(1): 1-10
    [20] Tremeau A, Borel N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition, 1997,30(7): 1191-1203
    [21] Cheng H D, Sun Y. A hierarchical approach to color image segmentation using homogeneity[J]. IEEE Transactions on Image Processing, 2000,9(12): 2071-2082
    [22] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6): 583-598
    [23] Lezoray O, Cardot H. Cooperation of color pixel classification schemes and color watershed: a study for microscopic images[J]. IEEE Transactions on Image Processing, 2002,11(7): 783-789
    [24] Serra J. Image Analysis and Mathematical Morphology[M]. London: Academic Press, 1982
    [25] S. Batchelor. Watersheds of functions and picture segmentation[C]. In IEEE Int. Conf. on Acoustics, Speech and signal Processing, pp. 1928-1931 Paris, 1982
    [26] S. Beucher. Watershed hierarchical segmentation and waterfall algorithm[J]. In J. Serra and P. Soille, editors, Mathematical Morphology and its Application to Image Processing, pp. 69-76, Kluwer Academic Publisher, 1994
    [27] S. Beucher and F. Meyer. The morphological approach to segmengtation: the watershed transformation[J]. In E. Dougerty, editor, Mathematical Morphology in Image Processing, 1993,34(12): 433-481
    [28] P.Soille.王晓鹏译.形态学图像分析原理与应用[M].北京:清华大学出版社, 2008
    [29] L. Vincent and P. Soille. Watersheds on digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6): 583-598
    [30]崔屹.图象处理与分析:数学形态学方法及应用[M].北京:科学出版社, 2002
    [31]徐国保,尹怡欣,王骥.基于融合自适应形态滤波的分水岭分割新算法[J].计算机应用研究, 2009,26(8): 3143-3145
    [32] Gao Hai, Siu Wan-Chi, Hou Chao-Huan. Improved techniques for automatic image segmentation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11(12): 1273-1280
    [33] O’Callaghan R J, Bull D R. Combined morphological-spectral unsupervised image segmentation[J]. IEEE Transactions on Image Porcessing, 2005,14(1): 49-62
    [34]姚敏.数字图像处理[M].北京:机械工业出版社, 2006
    [35]尹星云,王峻.彩色图像形态学的研究及其应用[J].计算机工程, 2008,34(17): 271-273
    [36]章毓晋.图像处理和分析基础[M].北京:高等教育出版社, 2002
    [37]章毓晋.基于内容的视觉信息检索[M].北京:科学出版社, 2003
    [38]张鹏,王润生.静态图像中的感兴趣区域检测技术[J].中国图像图形学报, 2005,10(2): 142-148
    [39] I. Daubechies, Ten Lectures on Wavelets[M]. Philadelphia: SIAM Press, 1992
    [40]飞思科技产品研发中心. MATLAB 6.5辅助小波分析与应用[M].北京:电子科技出版社, 2003
    [41] S. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7): 674-693
    [42] S. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R)[J]. Transaction of the American Mathematical Society, 1989,315(1): 69-87
    [43] S. Mallat, S.Zhong. Characterization of Signals from Multiscale Edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(7): 710-732
    [44] Cohen A, Daubechies I, Feauvean J C. Biorthogonal Bases of Compactly Supported Wavelets[J]. Communications on Pure and Applied Mathematics, 1992,45(5): 485-560
    [45] Vetterli M, Herley C. Wavelets and Filter Banks: Theory and Design[J]. IEEE Trans. On Signal Processing, 1992,40(9): 2207-2232
    [46] W. Swelden. The lifting scheme: A construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1995, 29(2): 511-546
    [47]王晓芳,杨荣荣.整数小波变换和EZW编码在基于ROI图像渐进传输中应用研究[J].计算机应用与软件, 2007,24(1): 137-139
    [48] I. Daubechies and W. Sweldens, Factoring Wavelet Transform into Lifting Steps, Technical report, Bell Laboratories, Lucent Technologies, 1996
    [49] Taubman D. High Performance Scalable Image Compression with EBCOT[C]. Proc. IEEE Int. Conference Image Processing, Kobe, Japan, Oct. 1999,3: 343-348
    [50]张旭东,卢国栋,冯健.图像编码基础和小波压缩技术——原理、算法和标准[M].北京:清华大学出版社, 2004
    [51]郑继明,周大伟.基于视觉掩蔽特性的感兴趣区渐进图像传输[J].计算机工程与应用, 2008,44(7): 129-132
    [52] Yann Gaudeau and Jean-Marie Moureaux. Lossy compression of volumetric medical images with 3D dead-zone lattice vector quantization[J]. Annals of Telecommunications(S0003-4347), 2009, 64(5-6): 359-367
    [53]邹潇湘.多媒体数字水印技术研究[D].中国科学院计算技术研究所博士学位论文, 2003
    [54] Braudaway G, Magerlein K A, Mintzer F. Protecting publicly available images with a visible image watermark[C]. Proc SPIE, International Conference on Electronic Imaging, 1996,2659: 126-133
    [55]李振鹏.静态图像数字水印算法研究[D].西北工业大学硕士学位论文, 2006
    [56]杨善超,龚声蓉.基于视觉掩蔽特性的可见水印的设计与实现[J].计算机工程与应用, 2006,42(31): 164-167
    [57] Ingemar J.Cox等著.王颖,黄志蓓,译.数字水印[M].北京:电子工业出版社, 2003
    [58]胡永健,余英林.基于小波域的可见水印处理[J].电子学报, 2003,31(4): 605-607
    [59]赵友军,邸兰振.感兴趣区域的自适应可见水印技术[J].计算机工程, 2007,33(9): 180-181