气体分子在过度金属催化剂上吸附行为的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化剂具有良好的催化活性、稳定性和选择性,其中铂、镍等过渡金属催化剂尤为重要,被广泛应用于有机催化加氢和脱氢反应、消除汽车尾气污染、电催化氧化和还原过程等,具有重要的工业价值。氢催化过程中,氢在金属表面的吸附活化和氢原子的脱附是催化反应的重要步骤。对原子或分子氢在过渡金属团簇或其单晶模型上吸附行为的微观理论研究,可以获得氢的表面吸附和扩散动力学信息,有助于我们理解吸附物与催化剂之间相互作用的本质,加深对相应催化过程的理解,并为解决实际工业催化问题提供有益的理论支撑。本论文采用密度泛函理论方法,应用更加贴近实际情况的催化剂模型和处理方法,系统研究了氢在过渡金属Pt单晶表面连续解离吸附行为;研究了饱和氢气氛下的Pt和Pt-Ru合金团簇模型上吸附的CO通过氧化或还原反应而被除去的反应热力学和动力学;研究了氧化铝负载的Pt团簇模型连续解离吸附氢的反应性能:进一步研究了氢在非贵金属Ni团簇催化剂上的解离吸附行为。确定了过渡金属Pt、Ni催化剂模型的活性与表面吸附物覆盖度、团簇构型和尺度大小的依赖关系以及载体效应等参数,并对吸附物与催化剂之间相互作用的本质进行了探讨。
     论文先研究了氢在贵金属Pt的不同活性单晶表面连续解离吸附行为,以Pt团簇模型解离吸附氢的研究方式为基础,确定了H_2在单晶模型表面的连续解离吸附能和H原子的脱附能以及饱和吸附态时形成的金属氢化物的几何结构和电子结构。研究结果表明,Pt(111),Pt(100)和Pt(531)三种表面不同吸附位对氢的反应活性不同,Pt(111)表面顶点位、桥位和fcc空洞位对H的吸附能相差无几,而Pt(100)表面桥位对H的吸附活性明显高于顶点位和空洞位,Pt(531)表面缺陷明显而尤以最外层桥位和顶点位吸附活性最大。各表面最稳定吸附位比较,Pt(531)表面桥位比Pt(100)面桥位吸附能高0.06 eV,比Pt(111)面的顶点位或桥位高了约0.15 eV。随着表面H原子覆盖率增加,对H_2的连续解离吸附能和对H原子的脱附能逐渐降低。在饱和吸附态时,三种不同活性的Pt单晶表面对H_2分子的解离吸附能分别降到0.60~0.88 eV的微小范围内,比Pt小团簇模型对氢气的解离吸附能稍低;而对H原子的脱附能为2.08~2.84 eV,与团簇模型对H原子脱附能接近。电荷布局分析表明,H_2在Pt单晶表面能够发生稳定地解离吸附,是由于金属Pt和H原子间发生了明显的电荷转移,并且随着H原子覆盖度增大,由Pt原子向H原子平均转移电子逐渐减小。随着金属氢化物的形成,体系由金属键向共价键转变。另外,在饱和吸附态时单晶模型较团簇模型相比,表面容纳H原子的数量少得多。
     在已确定的Pt团簇模型吸附大量氢的结构的基础上,论文进一步研究了催化剂模型上吸附的少量CO选择性氧化或还原反应的热力学和动力学。研究表明,当催化剂模型表面覆盖少量氢时,纯Pt_6团簇催化剂模型表面吸附的CO被临近的活性氧原子(O_2的解离吸附)氧化形成类CO_2的反应是吸热的,反应热和活化能较高。CO_2进一步从催化剂模型表面脱除的反应也是强吸热的。从化学反应动力学角度而言,该反应过程也需要克服较高的活化能垒。故催化剂表面少量氢覆盖时,CO的氧化和脱除反应不容易发生。当催化剂模型上有大量氢覆盖时,CO被临近的活性O氧化形成类CO_2的反应是放热性的,且活化能也大大降低。研究还表明,饱和吸附氢状态下的纯Pt_6团簇催化剂模型上吸附的CO被临近的活性O氧化的反应在低温下仍较难发生,因为该反应仍需要克服较大的活化能,若适当升高反应温度,将容易克服反应活化能垒,反应变得容易发生。这与实际工艺中升高燃料电池的操作温度可提高Pt电极的抗CO中毒的事实相吻合。另外,许多实验研究表明如果Pt催化剂中掺入Ru后其抗CO能力会显著提高,为了揭示CO被氧化成CO_2及除去的反应过程中Ru所起的作用,计算了CO在饱和吸附氢状态的Pt/Ru合金团簇催化剂模型上氧化的反应热化学能和动力学能。研究表明,氧源(氧原子)在Pt-Ru键之间的吸附强于在Pt-Pt键之间的吸附:Pt催化剂中掺杂了Ru使CO的氧化反应放热性增大。依据进攻CO的活性O吸附位置不同,该氧化反应活化能有可能被适当减弱或适当增加。CO在合金团簇的Ru位吸附比Pt位吸附能量上更大,此时通过氧化反应去除CO则变得更加困难。同时,进一步研究了饱和吸附氢状态的纯Pt团簇催化剂模型上吸附的CO被临近的H原子还原形成类甲醛基团的反应和类甲醛基团进一步脱附的反应可行性。研究过程中只允许与CO紧邻的两个H原子相继进攻CO。研究发现,每一步反应过程都是较吸热的,而反应的活化能也相对氧化反应高,即使在500K温度下的MD也未发现有甲醛分子生成。这些结果表明,没有氧化剂存在下大量氢覆盖的纯Pt_6团簇上吸附的CO被临近的H原子还原的反应在热力学和动力学上都是难发生的。虽然所使用的催化剂模型过于简单,但是从催化剂表面吸附物覆盖度不同的角度出发,对认识实际催化反应中CO在Pt电极催化剂上吸附和除去的反应机理以及设计更高效的抗CO中毒催化剂是非常有益的。
     氧化物负载的过渡金属纳米颗粒在许多异相催化反应中起着非常重要的作用。将贵金属Pt团簇负载于γ-Al_2O_3载体上,建立了负载Pt团簇催化剂模型,研究了不同尺度和构型的Pt小团簇与载体之间相互作用强度以及氢在负载Pt团簇催化剂模型上连续解离吸附行为。负载Pt团簇催化剂的活性与团簇的大小、结构以及分散度密切相关。研究结果表明:(1)Pt小团簇能够在γ-Al_2O_3(001)面上稳定吸附。Pt与表面O原子的作用强于与表面Al的作用,缘于Pt团簇向基底O原子转移了电子而使Pt显正电性。Pt和Al同是正电性的,二者之间存在排斥作用,只能形成较弱的键。吸附过程伴随着团簇结构和基底变形和松弛。随着金属团簇粒径增大,与载体之间的相互作用减弱。由于Pt-Pt之间相互作用强于Pt-O和Pt-Al的作用,γ-Al_2O_3(001)面上Pt团簇担载量较高的情况下,团簇均匀平铺相对较难,而团聚则很容易发生:(2)γ-Al_2O_3负载Pt金属粒子增加了氢在Pt团簇的桥位活化而降低了在顶端位的活化。负载型Pt团簇上随着氢覆盖率增大,对H_2的解离吸附能逐渐降低。氢高覆盖情况下,随着负载金属团簇粒径大小和结构的变化,金属团簇和基底发生变形和松弛程度大。对于较大尺度的Pt_4~Pt_6团簇负载于γ-Al_2O_3(001)面时,对H_2的解离吸附能和对H原子的脱附能基本在1.00~1.10 eV,2.46~2.80 eV微小范围内变化。与无载体时相比,团簇的Pt原子数与吸附的H原子数之比(Pt:H)降低到将近1:3,这是由于与H相互作用的Pt原子需要调整部分取向与基底成键作用。电荷布局分析表明,由于Pt团簇向吸附的H原子转移了电子而削弱了与载体的相互作用。
     本文研究了氢在非贵金属Ni团簇催化剂模型上的吸附行为,并与贵金属Pt团簇对H_2解离吸附性质对比分析。研究结果表明,H在Ni团簇上最稳定吸附位是棱位和空洞位,而与Pt团簇的最稳定吸附位不同。氢在Ni团簇上解离吸附反应在热力学上是放热反应,反应活化能小,但总体上比H_2在Pt团簇上的解离吸附能略低。随着Ni团簇上H原子覆盖度增大,H_2分子在团簇上连续解离吸附能和H原子的脱附能呈下降的趋势。饱和吸附态时不同尺度和构型的Ni团簇对H_2分子的解离吸附能和对H原子的脱附能分别降到0.71~1.0eV和2.08~2.73 eV微小范围内。团簇对H_2的解离吸附能比Pt(0.91~1.10 eV)稍低,而对H原子的脱附能与Pt(2.02~2.70eV)的接近。金属的HOMO和氢的LUMO能够达到最大程度重叠,解离吸附过程中伴随着电子转移。Hirshfeld电荷布局分析表明,随着H原子覆盖度增加,金属原子向H原子转移电子数逐渐减少。随着金属氢化物的形成,体系由金属键向共价键化合物转变。但与Pt团簇不同的是,个别Ni团簇在饱和吸附态时形成的金属氢化物仍保持着磁性特征,如Ni_8和Ni_(13)。除了团簇内核心的金属原子不容易直接接触H原子外,在饱和吸附态时表面金属原子数和吸附的H原子数之比值几乎保持常数为1:2,但只有Pt团簇表面容纳氢的量的一半。虽然本论文研究的亚纳米级尺度的团簇较实际异相催化反应体系中应用的纳米催化剂颗粒尺寸小得多,而且实际催化剂颗粒也绝非少数单一的单晶模型表面可以描述,但论文总结出团簇模型的催化性质并不随一定范围内的团簇大小和构型的变化而发生明显的改变的结论是非常重要的,在原子/分子水平上为研究过渡金属吸附解离氢的真实反应过程及催化剂的活性提出了有价值的信息,为真正理解异相催化反应提供了非常有益的帮助。
Transition metals have been shown to be the most effective catalysts in heterogeneous catalysis due to their highly catalytic reactivity, stability and selectivity. Among which, platinum (Pt) and nickel (Ni) have been received the most attention and already applied in many industrial chemical processes such as hydrogenation and dehydrogenation in organic and petrochemical productions, toxic gas reduction of automobile exhausts, oxidation and reduction in electrolysis reactions. For a hydrogen involved reaction, the H_2 molecular adsorption with the successive activation and the H atoms desorption were regarded as the most important steps in the catalytic processes. A detailed knowledge of the dissociative Chemisorption of hydrogen molecules on the transition metal clusters or crystalline surfaces at an atomistic/molecular level would be very important to gain useful insight into the dynamic behaviors of surface adsorption and migration, and the nature of the interaction between the adsorbates and substrates, and consequently to understand the underlying catalytic mechanisms. Such an understanding would be benefit on finding appropriate solutions towards specific industrial catalytic problems. In this thesis, we present a systematic density functional theory (DFT) study of hydrogen dissociative Chemisorption on Pt crystalline surfaces and the alumina supported Pt clusters using a more realistic model which is capable of describing the catalytic processes. To address the CO poisoning issue, we further adopted a hydrogen-saturated subnano Pt and Pt/Ru cluster model to explore the CO removal mechanisms via O_2 oxidation and/or hydrogenation. We further present the comparably study of hydrogen sequential dissociative Chemisorption on Ni and Pt clusters. The structural characteristics, energetics and electronic structures of the hydrogen+catalyst complex systems were thoroughly calculated and analyzed by considering the H coverage dependence. The nature of the interaction between the adsorbates and substrate had also been discussed.
     Hydrogen sequential dissociative Chemisorption on precious metal Pt crystalline surfaces was first studied using DFT-based methods according to the study of hydrogen adsorption behaviors on Pt clusters models. Successive H_2 decomposition and sequential H desorption and the geometric and electronic structures of metal hydrides at full H saturation were identified. The results indicate that the difference is the preferred sites for H atom loading on Pt(111), Pt(100) and Pt(531) surfaces. The energies are very close for H adsorption on the top, bridge and fee hollow sites of Pt(111) surface, while the bridge site is more preferable than on-top and hollow sites of Pt(100) surface. The first bridge and top sites are energetically the most favorable for H dissociation on Pt(531) surface. In contrast to the most stable adsorption energy, the first bridge site of Pt(531) is about 0.06 eV higher than that of Pt(lOO) surface, and about 0.15 eV higher than the on-top and bridge sites of Pt(111) surface. We further found that dissociative Chemisorption energy of H_2 and desorption energy of H atom in general decline with H coverage. For the three Pt crystalline surfaces at the threshold of saturation, the H_2 Chemisorption energies fall within a narrow range of 0.60-0.88 eV, which are slightly lower than the values 0.90-1.1 eV of Pt cluster models at high coverages. The calculated thresholds of H desorption energy vary in a range of 2.08-2.84 eV, which are comparable to the values of 2.02-2.70 eV on Pt cluster models. H_2 dissociative Chemisorption is largely controlled by charge transfer from metal atoms to H atoms. Bader charge population analysis indicates that charge transfer increases with H loading, resulting in sequential change of metallic bonds to covalent bonds in the metal hydrides. Moreover, our calculations suggest that the capacity of Pt crystalline surfaces to adsorb H atoms is essentially much lower than what was found for Pt clusters at full saturation.
     Based on the studies of sequential H_2 dissociative Chemisorption on small Pt clusters, we attempt to investigate different CO mitigation techniques by employing a small Pt subnano cluster as model to understand the hydrogenation and oxidation of CO poison in the presence of H atoms. At low H coverage, CO oxidation by oxygen to form CO_2 on the selected Pt_6 cluster was found to be endothermic with moderate overall thermochemical energy. However, the subsequent CO_2 desorption from the cluster is highly endothermic. Kinetically, the oxidation process is also unfavorable and needs to overcome a significant activation barrier. The unfavorable energetics makes the CO oxidation at low H-coverage unlikely to occur. Upon saturation of the Pt_6 cluster by H atoms, the activation energy required to form a transition state that leads to the formation of surface CO_2 is reduced substantially and, thermochemically, the oxidation reaction becomes exothermic. Our results suggest that CO oxidation by oxygen on the H-saturated Pt_6 cluster would be difficult at low temperatures due to the moderate activation energy in spite of the favorable thermochemical energy. However, at an elevated temperature, the relatively moderate barrier can be readily overcome and thus the reaction can become facile. This conclusion is consistent with experimental observations. Many experimental results suggest that CO tolerance can be signifieantly improved by doping the Pt catalysts with Ru. To reveal the role of Ru in the CO_2 removal process, we calculated the thermochemical energies and activation barriers for the CO oxidation on a Pt_5Ru cluster fully covered by H atoms. Our results indicate that O atoms are chemisorbed on the Pt-Ru bond more strongly than on the Pt-Pt bond. As a consequence, the oxidation process becomes much more exothermic. Depending on where the attacking O atom resides, the associated activation barrier can be moderately reduced or slightly increased. CO occupation on Ru was found to be energetically more favorable than on Pt, and thus makes the CO removal via oxidation at this site more difficult. We further investigated the feasibility of removing CO from the H-saturated Pt_6 cluster by considering CO reduction by H atoms to form formaldehyde. This was done by allowing two H atoms adsorbed nearby the active site to sequentially attack the CO molecule. It was found that each reaction step is moderately endothermic. However, the calculated activation barriers are relatively high. Even at 500K, no formaldehyde formation was observed in our ab initio MD simulations. The results suggest that CO reduction by H atoms on the Pt_6 cluster is energetically difficult. The present study utilizes an exceedingly small Pt cluster to represent the catalyst particles for exploration of CO removal mechanisms. However the catalyst model is undoubtedly oversimplified, we catch an eye on the dependency of CO poison and removal mechanisms on the size of Pt clusters.
     Oxide supported precious metals play an important role in many heterogeneous catalytic reactions. We present a systematic study using the DFT method to understand the adhesion of small Pt_n clusters for n up to 6 on theγ-Al_2O_3 (001) surface and the catalytic behaviors of Pt_n/γ-Al_2O_3 system with respect to H coverage. Our calculations indicate that the catalytic performance of supported Pt subnano-catalyst is dependent upon the size and shape of metal particles. Results show that (1). The Pt clusters can be stably anchored on the surface. Energetically the most favorable adsorption sites were identified and substantial structural relaxation upon adsorption was observed. The significantly higher adsorption energy at the O site is largely attributed to the face that the charge transfer from the Pt atoms to the O atoms makes the Pt atom positively charged. The Al atom underneath Pt atom is also positively charged. The repulsion between the two positively charged atoms, Pt and Al, leads to much weaker bonds. The calculated average adhesion energies were found to be size and shape dependent. The adhesion energy of Pt atoms in general decrease with the size of cluster increases. Since the Pt-Pt interaction would become stronger than Pt-O and Pt-Al at large cluster size, the formation of metal cluster would be strongly preferred upon high Pt loading, consequently, the growth of metal films on theγ-Al_2O_3(001) surface is unlikely to be smooth and agglomeration could occur under certain conditions; (2). The support changes the site preference of H_2 adsorption, increasing H_2 activation for bridge sites but decreases it for on-top sites. Our results also indicate that H_2 dissociative Chemisorption on supported small Pt clusters in general decrease with the coverage of H atoms. At H high coverage, the structural distortion and relaxation of metal clusters and substrate occur with the selected cluster size and shape, the H_2 dissociative Chemisorption energy and H desorption energy fluctuate in the range of 1.00-1.10 eV, 2.46-2.80 eV for larger clusters, respectively. The capacity of Pt clusters on support at full saturation decreases to be 1:3(Pt:H ratio) compared with that of bare Pt clusters to absorb H atoms due to the fact that some of the possible orientations of the Pt atoms toward H were occupied by the Pt-substrate bonding. Bader charge analysis indicates that charge transfer from Pt clusters to H atoms increases with H loading, resulting in the interaction between Pt clusters and the substrate decreases.
     For purpose of comparison, we also studied the hydrogen sequential dissociative Chemisorption on subnano Ni clusters using the same computational scheme, together with our previous results on small Pt clusters to discuss the difference of Chemisorption/desorption behaviors between Pt and Ni. Our results show that at H low coverage, the edge and hollow sites are energetically the most favorable for H_2 dissociation, which are different to the Pt clusters. Dissociative Chemisorption of H_2 on the Ni clusters is facile with exothermic reaction energies and small activation barriers. However, the Chemisorption energy is generally lower than that of on Pt clusters. H_2 dissociative Chemisorption energies and H desorption energies are strongly coverage dependent. These energies in general decline with H coverage and for various sizes and shapes of Ni clusters at the threshold of saturation, the H_2 Chemisorption energies each fall within a narrow range of 0.71-1.00 eV, which are slightly lower than the values of 0.91-1.10 eV of Pt clusters at a high coverage. The calculated threshold values of H desorption vary in a range of 2.08-2.73 eV, which are comparable to the values of 2.02-2.70 eV on Pt clusters. The favorable orbital overlaps between the HOMO of metal clusters and the LUMO of H_2. Hirshfeld population analysis indicates that charge transfer from Pt clusters to H atoms increases with H loading, resulting in sequential change of metallic bonds to covalent bonds in the metal hydrides. However, the difference is that some of Ni metal hydrides still remain the magnetic characters, such as Ni_8 and Ni_(13) clusers. Our calculations also suggest that the capacity of Ni clusters to adsorb H atoms is nearly constant at full saturation, except when some of the metal atoms residing at the core of the clusters are not accessible to H atoms. However, the H capacity on Ni clusters is essentially half of what was found for Pt clusters. Despite the relatively smaller size of the Ni clusters chosen in the present study compared with the size of catalyst particle size used in practice, some of the properties may not change significantly with the particle size and shape of catalysts. Useful insight into the catalytic activity of transition metal catalyst toward H_2 can be gained at atom and molecule levels. It will be very helpful in understanding real heterogeneous catalytic processes.
引文
1.Das D,Veziroglu T N.Hydrogen Production by Biologieal Proeesses:A Survey of Literature.Int.J.Hydrogen Energy,2001,26:13-28.
    2.农宝廉,燃料电池——原理·技术·应用.北京,化学工业出版社,2003.
    3.Steele B C H,Heinzel A.Materials for fuel-cell technologies.Nature,2001,414(6861):345-352.
    4.Ni M,Leung M K H,Leung D Y C,Sunlathy K.An overview of hydrogen Produetion from biomass.Fuel Proeess Technol.,2006,87:461-472.
    5.Carrette L,Friedrich K A,Stimming U.Fuel Cells:Principles,Types,Fuels,and Applications.Chem.Phys.Chem,2000,1(4):162-193.
    6.Alayoglu S,Nilekar A U,Mavrikakis M,Eichhorn B.Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.Nature Materials,2008,7:333-338.
    7.Dino W A,Kasaiji H,Okiji A.Orientational effects in dissociative/associative desorption dynamics of H2(D2) on Cu and Pd.Prog.Surf Sci.,2000,63(3-5):63-134.
    8.Ito T,Umezawa K,Nakanishi S.Hydrogen adsorption site on the Ni{111}-(2x2)-H:a TOF-LERS study.Appl.Surf Sci.,1999,147(1-4):146-152.
    9.Vincent J K,Oisen R A,Kroes G J,Baerends E J.Dissociative chemisorption of H_2 on Pt(111):isotope effect and effects of the rotational distribution and energy dispersion.Surf.Sci.,2004,573:433-445.
    10.Okamoto Y.Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces:A study from density-functional calculations.Chem.Phys.Lett.,2006,429:209-213.
    11.Liu X,Dilger H,Eichel R A,Kunstmann J,Roduner E.A Small Paramagnetic Platinum Cluster in an NaY Zeolite:Characterization and Hydrogen Adsorption and Desorption.J.Phys.Chem.B,2006,110:2013-2023.
    12.Swart I,de Groot F M F,Weckhuysen B M,Gruene P,Meijer G,Fielicke A.H_2 Adsorption on 3d Transition Metal Clusters:A Combined Infrared Spectroscopy and Density Functional Study.J.Phys.Chem.A,2008,112(6):1139-1149.
    13.侯中军,俞红梅,农宝廉,韩明.质子交换膜燃料电池阳极抗CO催化剂的研究进展.电化学,2000,6(4):379-387.
    14.邹汉波,陈胜洲,林维明.铂金催化剂上CO选择性氧化机理研究进展.化学反应工程与工艺,2007,23(5):462-469.
    15.周桂林,谢红梅,邱发礼.富氢气中CO氧化脱除研究.化学进展,2007,19(6):1041-1048.
    16.Cheng X,Shi Z,Glass N,Zhang L,Zhang J,Song D,Liu Z-S,Wang H,Shen J.A review of PEM hydrogen fuel cell contamination:Impacts,mechanisms,and mitigation.J.Power Sources,2007,165:739-756.
    17.Morse M D.Clusters of Transition-Metal Atoms.Chem.Rev.,1986,86:1049-1109.
    18.Alonso J A.Electronic and Atomic Structure,and Magnetism of Transition-Metal Clusters.Chem.Rev.,2000,100(2):637-678.
    19.王广厚,团簇物理学.上海科学技术出版社,2003.
    20.Majetich S A,Jin Y.Magnetization Directions of Individual Nanoparticles.Science,1999,284:470-473.
    21.Gambardella P,Rusponi S,Veronese M,Dhesi S S,Grazioli C,Dallmeyer A,Cabria I,Zeller R,Dederichs P H,Kern K,Carbone C,Brune H.Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles.Science,2003,300:1130-1133.
    22.Pappas D P,Popov A P,Anisimov A N,Reddy B V,Khanna S N.Spin Configuration of Gd_(13)Clusters Phys.Rev.Lett.,1996,76:4332-4335.
    23.Lee K,Callaway J,Dhar S.Electronic structure of small iron clusters Phys.Rev.B,1984,30:1724-1730.
    24.Lee K,Callaway J,Kwong K,Tang R,Ziegler A.Electronic structure of small clusters of nickel and iron.Phys.Rev.B,1985,31:1796-1803.
    25.Castro M,Jamorski C,Salahub D R.Structure,bonding,and magnetism of small Fe,,,Co,,and Ni_n clusters,n≤5.Chem.Phys.Lett.,1997,271(1-3):133-142.
    26.Jellinek(Ed.) J.Theory of Atomic and Molecular Clusters.Springer Berlin,1999:277-308.
    27.Martin(Ed.) T P.Large Clusters of Atoms and Molecules.Kluwer.Dordrecht,1996:131-200.
    28.Valentino R C,Alexie M K,Yashar Y,Andrew M R.Supported metal electronic structure:Implications for molecular adsorption.Phys.Rev.B,2005,72(8):081409.
    29.Ishimoto R,Jung C,Tsuboi H,Koyama M,Endou A,Kubo M,Del Carpio C A,Miyamoto A.Periodic density functional and tight-binding quantum chemical molecular dynamics study of catalytic properties on γ-Al_2O_3 supported Pt catalysts.Appl.Catal.A:General,2006,305(1):64-69.
    30.Sasahara A,Pang C L,Onishi H.Local Work Function of Pt Clusters Vacuum-Deposited on a TiO_2 Surface.J.Phys.Chem.B,2006,110(35):17584-17588.
    31.Kang J H,Menard L D,Nuzzo R G,Frenkel A I.Unusual Non-Bulk Properties in Nanoscale Materials:Thermal Metal-Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts.J.Am.Chem.Soc.,2006,128(37):12068-12069.
    32.Wallin M,Gronbeck H,Spetz A L,Eriksson M,Skoglundh M.Vibrational Analysis of H_2 and D_2Adsorption on Pt/SiO_2.J.Phys.Chem.B,2005,109(19):9581-9588.
    33.Sun M,Croiset E B,Hudgins R R,Silveston P L,Menzinger M.Steady-State Multiplicity and Superadiabatic Extinction Waves in the Oxidation of CO/H_2 Mixtures over a Pt/Al_2O_3-Coated Monolith.Ind.Eng.Chem.Res.,2003,42(1):37-45.
    34.OIsson L,Westerberg B,Persson H,Fridell E,Skoglundh M,Andersson B.A Kinetic Study of Oxygen Adsorption/Desorption and NO Oxidation over Pt/Al_2O_3 Catalysts.J.Phys.Chem.B,1999,103(47):10433-10439.
    35.Cheng D,Wang W,Huang S.Thermal Evolution of Pd and Pd-Pt Clusters Supported on MgO(100).J.Phys.Chem.C,2007,111(22):8037-8042.
    36.Ngo L T,Xu L,Grant A W,Campbell C T.Benzene Adsorption and Dehydrogenation on Pt/ZnO(0001)-O Model Catalysts.J.Phys.Chem.B,2003,107(5):1174-1179.
    37.Park J B,Conner S F,Chen D A.Bimetallic Pt-Au Clusters on TiO_2(110):Growth,Surface Composition,and Metal-Support Interactions.J.Phys.Chem.C,2008,112(14):5490-5500.
    38.Dilara P A,Vohs J M.Interaction of CO with Pt Supported on ZrO_2(100):Evidence for CO Adsorbed at the Pt-ZrO_2 Interface.J.Phys.Chem.,1995,99(47):17259-17264.
    39.Newuwenhuys B E.Influence of the surface structure on the adsorption of hydrogen on platinum,as studied by field emission probe-hole microscopy.Surf Sci.,1976,59:430-446.
    40.Christmann K.Interaction of hydrogen with solid surfaces.Surf Sci.Rep.,1988,9(1-3):1-163.
    41.Godbey D J,Somorjai G A.The adsorption and desorption of hydrogen and carbon monoxide on bimetallic Re-Pt(111) surfaces.Surf Sci.,1988,204:301-318.
    42.B(?)descu S C,Salo P,Ala-Nissila T,Ying S C,Jacobi K,Wang Y,Bed(u|¨)ftig K,Ertl G.Energetics and Vibrational States for Hydrogen on Pt(111).Phys.Rev.Lett.,2002,88(13):136101.
    43.Christmann K,Ertl G,Schober O.LEED intensities from clean and hydrogen covered Ni(100)and Pd(111) surfaces.Surf Sci,1973,40(1):61-70.
    44.Watson G W,Wells R P K,Willock D J,Hutchings G J.A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni,Pd,and Pt from Density Functional Theory Calculations.J.Phys.Chem.B,2001,105:4889-4894.
    45.Papoian G,Norskov J K,Hoffmann R.A Comparative Theoretical Study of the Hydrogen,Methyl,and Ethyl Chemisorption on the Pt(111) Surface.J.Am.Chem.Soc.,2000,122(17):4129-4144.
    46.Kresse G,Hafner J.First-principles study of the adsorption of atomic H on Ni(111),(100) and (110).Surf Sci.,2000,459(3):287-302.
    47.周鲁,孙本繁,滕礼坚,唐向阳,吕日吕.氢分子在Fe、W、Pd和Ni单晶(110)表面吸附的位能面研究.自然科学展望-国家重点实验室通讯,1995,5(4):455-460.
    48.孙本繁,周鲁,唐向阳,滕礼坚,吕日晶.氢在钯单晶表面的解离和在体相中的扩散.催化学报,1995,16(1):81-83.
    49.周鲁,孙本繁,吕日昌,唐向阳,滕礼坚.镍和钯单晶面(111)上氢解离的比较研究.催化学报,1994,15(4):321-323.
    50.王泽新,赫策,张积树.氢原子在Ni(100),Ni(111)和Ni(110)面上吸附扩散势能面的结构.化学学报,1993,51(5):417-423.
    51.王泽新,张积树,于晓安,郝策,陈宗洪.Ni(510)台阶面对氢分子解离吸附的影响.物理化学学报,1994,10(10):915-920.
    52.张秋树,张文霞,王泽新.氢在钯低指数表面上的吸附和扩散.物进化学学报,1996,12(9):773-779
    53.Poulain E,Benitez J I,Castillo S,Bertin V,Cruz A.A comparative theoretical study of the C_(2v)and C_(3v) reaction of H_2 with a Pt_4 cluster.J.Mol.Struct.:THEOCHEM,2004,709:67-72.
    54.Cruz A,Bertin V,Poulain E,Benitez J I,Castillo S.Theoretical study of the H_2 reaction with a Pt_4 (111) cluster.J.Chem.Phys.,2004,120 (13):6222-6228.
    55.Qiang C,Djamaladdin G M,Keiji M.Molecular orbital study of H_2 and CH_4 activation on small metal clusters.I.Pt,Pd,Pt_2and Pd_2.J.Chem.Phys.,1998,108:8418-8428.
    56.Balasubramanian K.Potential energy surfaces for the Pt_2+H_2reaction.J.Chem.Phys.,1991,94 (2):1253-1263.
    57.Dai D,Liao D W,Balasubramanian K.Potential energy surfaces for Pt_3+H_2 and Pd_3+H_2 systems../.Chem.Phys.,1995,102 (19):7530-7539.
    58.Ashman C,Khanna S N,Pederson M R.Hydrogen absorption and magnetic moment of Ni_n clusters.Chem.Phys.Lett.,2003,368 (3-4):257-261.
    59.Mark B K.Nickel clusters:The influence of adsorbates on magnetic moments.J.Chem.Phys.,2002,116 (22):9703-9711.
    60.Chen B,Gomez M A,Doll J D,David L F.Theoretical studies of the effect of hydrogen—hydrogen interactions on the structural and dynamical properties of metal/hydrogen clusters.J.Chem.Phys.,1998,108 (10):4031-4038.
    61.Igarashi H,Uchida H,Suzuki M,Sasaki Y,Watanabe M.Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite.Appl.Catal.A:General,1997,159(1-2):159-169.
    62.Pozdnyakova O,Teschner D,Wootsch A,Krohnert J,Steinhauer B,Sauer H,Toth L,Jentoft F C,Knop-Gericke A,Paal Z,Schlogl R.Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts,part Ⅰ:Oxidation state and surface species on Pt/CeO_2 under reaction conditions.J.Catal,2006,237 (1):1-16.
    63.Chin S Y,Alexeev O S,Amiridis M D.Preferential oxidation of CO under excess H_2 conditions over Ru catalysts.Appl.Catal.A:General,2005,286 (2):157-166.
    64.Bhatia K K,Wang C-Y.Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed.Electrochimica Acta,2004,49 (14):2333-2341.
    65.Xu G,Zhang Z-G.Preferential CO oxidation on Ru/Al_2O_3 catalyst:An investigation by considering the simultaneously involved methanation.J.Power Sources,2006,157 (1):64-77.
    66.Roberts G W,Chin P,Sun X,Spivey J J.Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts:interactions between external transport and the reverse water-gas-shift reaction.Appl.Catal.B:Environmental,2003,46 (3):601-611.
    67.Baschuk J J,Li X.Carbon monoxide poisoning of proton exchange membrane fuel cells.Int.J.Energy Res.,2001,25 (8):695-713.
    68.Watanabe M,Uchida H,Igarashi H,Suzuki M.Pt Catalyst Supported on Zeolite for Selective Oxidation of CO in Reformed Gases.Chem.Lett.,1995,24:21.
    69.Kahlich M J,Gasteiger H A,Behm R J.Kinetics of the Selective CO Oxidation in H_2-Rich Gas on Pt/Al_2O_3.J.Catal,1997,171 (1):93-105.
    70.Bellows R J,Marucchi-Soos E P,Buckley D T.Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation.Ind.Eng.Chem.Res.,1996,35(4):1235-1242.
    71.Divisek J,Oetjen H F,Peinecke V,Schmidt V M,Stimming U.Components for PEM fuel cell systems using hydrogen and CO containing fuels.Electrochim.Acta,1998,43(24):3811-3815.
    72.Li Q,He R,Gao J-A,Jensen J O,Bjerrum N J.The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200℃.J.Electrchem.Soc.,2003,150(12):A 1599-A 1605.
    73.Jiang R,Kunz H R,Fenton J M.Electrochemical Oxidation of H_2 and H_2/CO Mixtures in Higher Temperature(T_(cell)>100℃) Proton Exchange Membrane Fuel Cells:Electrochemical hnpedance Spectroscopy.J.Electrochem.Soc.,2005,152(7):Al329-Al340.
    74.Zhang J,Xie Z,Zhang J,Tang Y,Song C,Navessin T,Shi Z,Song D,Wang H,Wilkinson D P,Liu Z-S,Holdcroft S.High temperature PEM fuel cells.J.Power Sources,2006,160(2):872-891.
    75.Giorgi L,Pozio A,Bracchini C,Giorgi R,Turt(?) S.H_2 and H_2/CO oxidation mechanism on Pt/C,Ru/C and Pt-Ru/C electrocatalysts J.Appl.Electrochem.,2001,31(3):325-334.
    76.Christoffersen E,Liu P,Ruban A,Skriver H L,N(?)rskov J K.Anode Materials for Low-Temperature Fuel Cells:A Density Functional Theory Study.J.Catal.,2001,199(1):123-131.
    77.Ralph T R,Hogarth M P.Catalysis for low temperature fuel cells.Platinum Met.Rev.,2002,46(3):117-135.
    78.Lu C,Masel R I.The Effect of Ruthenium on the Binding of CO,H_2,and H_2O on Pt(110).J.Phys.Chem.B,2001,105(40):9793-9797.
    79.Waszczuk P,Lu G Q,Wieckowski A,Lu C,Rice C,Masel R I.UHV and electrochemical studies of CO and methanol adsorbed at platinuln/ruthenium surfaces,and reference to fuel cell catalysis.Electrochim.Acta,2002,47(22-23):3637-3652.
    80.Tong Y Y,Kim H S,Babu P K,Waszczuk P,Wieckowski A,Oldfield E.An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst.J.Am.Chem.Soc.,2002,124(3):468-473.
    81.Lakshmanan B,Huang W,Olmeijer D,Weidner J W.Polyetheretherketone Membranes for Elevated Temperature PEMFCs.Electroehem.Solid State Lett.,2003,6(12):A282-A285.
    82.隋静,卢进,李伟善.直接甲醇燃料电池阳极铂辅助催化剂.电池工业,2004,9:100-104.
    83.Hogarth W H J,Diniz da Costa J C,Lu G Q.Solid acid membranes for high temperature(>140℃) proton exchange membrane fuel cells.J.Power Sources,2005,142(1-2):223-237.
    84.Yeo Y Y,Vattuone L,King D A.Energetics and kinetics of CO and NO adsorption on Pt{100}:Restructuring and lateral interactions.J.Chem.Phys.,1996,104(10):3810-3821.
    85.Kostov K L,Jakob P,Menzel D.A new high density CO/oxygen coadsorbate layer on Pt(111)and its role in CO oxidation.Surf.Sci,1997,377-379:802-807.
    86.Bondino F,Comelli G,Esch F,Locatelli A,Baraldi A,Lizzit S,Paolucci G,Rosei R.Structural determination of molecules adsorbed in different sites by means of chemical shift photoelectron diffraction:c(4×2)-CO on Pt(111).Surf Sci,2000,459(1-2):L467-L474.
    87.Bergeld J,Kasemo B,Chakarov D V.CO oxidation on Pt(111) promoted by coadsorbed H_2O.2001,495(3):L815-L820.
    88.贾红英,王泽新.CO吸附在过渡金属铂表断的微观动力学研究.物理化学学报,2004,20(2):144-148.
    89.任云鹏,鲁玉祥,娄琦.CO在Pt低指数面上吸附行为的理论研究.物理化学学报,2007,23(11):1728-1732.
    90.Aizawa H,Tsuneyuki S.First-principles study of CO bonding to Pt(111):validity of the Blyholder model.Surf Sci,1998,399(2-3):L364-L370.
    91.Brako R,(?)okcevic D.Adsorbate interactions of CO chemisorbed on Pt(111).1998,401(1):L388-L394.
    92.Curulla D,Clotet A,Ricart J M.Adsorption of carbon monoxide on Pt{100} surfaces:dependence of the CO stretching vibrational frequency on surface coverage.2000,460(1-3):101-111.
    93.Lynch M,Hu P.A density funcrional theory study of CO and atomic oxygen chemisorption on Pt(111).Surf Sci.,2000,458:1-14.
    94.孙仁安,刘永东,王长生.CO吸附于过渡金属Ru,Rh,Pd体系的DFT理论研究(1).高等学校化学学报,2001,22(8):1891-1893.
    95.Liu P,Logadottir A,Norskov J K.Modeling the electro-oxidation of CO and H2/CO on Pt,Ru,PtRu and Pt3Sn.Electrochim.Acta,2003,48(25-26):3731-3742.
    96.Francesco P.Supported metal catalysts preparation.Catal.Today,1998,41(1-3):129-137.
    97.Gates B C.Supported Metal Clusters:Synthesis,Structure,and Catalysis.Chem.Rev.,1995,95(3):511-522.
    98.Gates B C.Supported metal cluster catalysts.J.Mol.Catal.A:Chem.,2000,163(1-2):55-65.
    99.Sartale S D,Shiu H W,Ten M H,Huang J Y,Luo M F.Scanning tunneling microscopy study of growth of Pt nanoclusters on thin film Al_2O_3/NiAl(100).Surf.Sci.,2006,600(22):4978-4985.
    100.Frenkel A I,Hills C W,Nuzzo R G.A View from the Inside:Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles.J.Phys.Chem.B,2001,105(51):12689-12703.
    101.Nellist P D,Pennycook S J.Direct Imaging of the Atomic Configuration of Ultradispersed Catalysts.Science,1996,274(5286):413-415.
    102.Sohlberg K,Zhuo S,Nellist P,Peng Y,Pennycook S.Evidence of High-Pressure Rhodium Sesquioxide in the Rhodium/γ-Alumina Catalytic System.J.Phys.Chem.C,2008,112(31):11831-11834.
    103.Nasluzov V A,Rivanenkov V V,Shot A M,Neyman K M,R(o|¨)sch N.Pd_3 and Pt_3 species on the α-Al_2O_3(0001) surface:cluster models embedded in an elastic polarizable environment.Chem.Phys.Lett.,2003,374(5-6):487-495.
    104.Gomes J R B,Lodziana Z,lllas F.Adsorption of Small Palladium Clusters on the Relaxed γ-Al_2O_3(0001) Surface.J.Phys.Chem.B,2003,107(26):6411-6424.
    105.M(?)rquez A M,Sanz J F.Adsorption of Pd atoms on γ-Al_2O_3:a density functional study of metal-support interactions.Appl.Surf Sci.,2004,238(1-4):82-85.
    106.Sohlberg K,Rashkeev S,Borisevich A Y,Pennycook S J,Pantelides S T.Origin of Anomalous Pt-Pt Distances in the Pt/Alumina Catalytic System.Chem.Phys.Chem.,2004,5(12):1893-1897.
    107.Zhou C,Wu J,Kumar T J D,Balakrishnan N,Forrey R C,Cheng H.Growth Pathway of Pt Clusters on γ-Al_2O_3(0001) Surface.J.Phys.Chem.C,2007,111(37):13786-13793.
    108.Alfredsson M,Catlow C R A.A comparison between metal supported c-ZrO_2 and CeO_2.Phys.Chem.Chem.Phys.,2002,4:6100-6108.
    109.Cai S,Sohlberg K.Adsorption of alcohols on γ-Al_2O_3(110 C).J.Mol.Catal.A:Chem.,2003,193(1-2):157-164.
    110.Cai S,Sohlberg K.Adsorption of 1-hexene on γ-alumina(110C).J.Mol.Catal.A:Chemical,2006,248(1-2):76-83.
    111.Cai S,Chihaia V,Sohlberg K.Interactions of methane,ethane and pentane with the(110C)surface of γ-alumina.J.Mol.Catal.A:Chemical,2007,275(1-2):63-71.
    112.Petersson M,Jonsson D,Persson H,Cruise N,Andersson B.Ozone promoted carbon monoxide oxidation on platinum/ γ-alumina catalyst.J.Catal.,2006,238(2):321-329.
    113.Hartree D R.The Wave Mechanics of an Atom with a Non-Coulomb Central Field.Part Ⅱ.Some Results and Discussion.Math.Proc.Camb.Phil.Sot.,1928,24(1):111-132.
    114.Fock V.N(a|¨)herungsmethoden zur L(o|¨)sung des Quantenmechanischen Mehrk(o|¨)rperproblems.Zeitschrift f(u|¨)r.Physik,1930,61:126-148.
    115.Roothaan C C J.New developments in Molecular Orbital Theoy.Rev.Mod Phys.,1951,23:69-89.
    116.Foresman J B,Head-Gordon M,Pople J A,Frisch M J.Toward a systematic molecular orbital theory for excited states.J.Phys.Chem.,1992,96:135-149.
    117.Hylleraas E A.Theory of Atoms.Zeit.Physik,1928,48(3):469-480.
    118.Moller C,Plesset M S.Note on an Approximation Treatment for Many-Electron Systems.Phys.Rev.,1934,46:618-622.
    119.Head-Gordon M,Pople J A,Frisch M J.MP2 energy evaluation by direct methods.Chem.Phys.Lett.,1988,153:503-506.
    120.Frisch M J,Head-Gordon M,Pople J A.Semi-direct algorithms for the MP2 energy and gradient.Chem.Phys.Left.,1990,166:281-289.
    121.Head-Gordon M,Head-Gordon T.Analytic MP2 frequencies without fifth-order storage.Theory and application to bifurcated hydrogen bonds in the water hexamer.Chem.Phys.Lett.,1994,220:122-128.
    122.Saebo S,Almlof J.Avoiding the integral storage bottleneck in LCAO calculations of electron correlation.Chem.Phys.Lett.,1989,154:83-89.
    123.Thomas H.The Calculation of Atomic Fields.Proc.Camb.Phil Soc.,1927,23:542-548.
    124.Fermi E.A Statistical Method for Determining Some Properties of the Atom.Atti Accad.Naz.Lincei Rend,1927,6:602-607.
    125.Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Phys.Rev.,1964,136(3B):B864-B871.
    126.Kohn W,Sham L J.Self-Consistent Equations Including Exchange and Correlation Effects.Phys. Rev.,1965,140(4A):A1133-A1138.
    127.Eyring H.The activated complex and the absolute rate of chemical reactions.Chem.Rev.,1935,(17):65-73.
    1.Poulain E,Benitez J I,Castillo S,Benin V,Cruz A.A comparative theoretical study of the C_(2v)and C_(3v) reaction of H_2 with a Pt_4 cluster.J.Mol.Struct.:THEOCHEM,2004,709:67-72.
    2.Noriko W,Shuhei O.Electronic structure of H adsorbed on Pt_(13) clusters.J.Chem.Phys.,1997,106(18):7531-7540.
    3.Liu X,Dilger H,Eichel R A,Kunstmann J,Roduner E.A Small Paramagnetic Platinum Cluster in an NaY Zeolite:Characterization and Hydrogen Adsorption and Desorption.J.Phys.Chem.B,2006,110:2013-2023.
    4.Zhou C,Wu J,Nie A,Forrey R C,Tachibana A,Cheng H.On the Sequential Hydrogen Dissociative Chemisorption on Small Platinum Clusters:A Density Functional Theory Study.J.Phys.Chem.C,2007,111:13768-13793.
    5.B(?)descu S C,Salo P,Ala-Nissila T,Ying S C,Jacobi K,Wang Y,Bed(u|¨)ftig K,Ertl G.Energetics and Vibrational States for Hydrogen on Pt(111).Phys.Rev.Lett.,2002,88(13):136101.
    6.B(?)descu S C,Jacobi K,Wang Y,Bed(u|¨)rftig K,Ertl G,Salo P,Ala-Nissila T,Ying S C.Vibrational states of a H monolayer on the Pt(111) surface.Phys.Rev.B,2003,68:205401.
    7.Watson G W,Wells R P K,Willock D J,Hutchings G J.A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni,Pd,and Pt from Density Functional Theory Calculations.J.Phys.Chem.B,2001,105:4889-4894.
    8.Papoian G,Norskov J K,Hoffmann R.A Comparative Theoretical Study of the Hydrogen,Methyl,and Ethyl Chemisorption on the Pt(111) Surface.J.Am.Chem.Soc.,2000,122(17):4129-4144.
    9.Drew A M,Roar A O,Evert Jan B.Mechanisms of H_z dissociative adsorption on the Pt(211)stepped surface.J.Chem.Phys.,2005,122(19):194708.
    10.Olsen R A,Kroes G J,Baerends E J.Atomic and molecular hydrogen interacting with Pt(111).J.Chem.Phys.,1999,111:11155-11163.
    11.L(?)gar(?) P.A theoretical study of H surface and subsurface species on Pt(111).Surf Sci.,2004,559(2-3):169-178.
    12.Okamoto Y.Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces:A study from density-functional calculations.Chem.Phys.Lett.,2006,429:209-213.
    13.Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules.J.Chem.Phys.,1990,92(1):508-517.
    14.Delley B.Fast Calculation of Electrostatics in Crystals and Large Molecules.J.Phys.Chem.A.,1996,100:6107-6110.
    15.Delley B.From molecules to solids with the DMol~3 approach.J.Chem.Phys.,2000,113(18):7756-7764.
    16.Delley B.DMol3 DFT studies:from molecules and molecular environments to surfaces and solids.Comput.Mater.Sci.,2000,17:122-126.
    17.Halgren T A,Lipscomb W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states.Chem.Phys.Lett.,1977,49:225-232.
    18.Kresse G,Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B,1996,54(16):11169.
    19.Kresse G,Furthm(u|¨)ller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mater.Sci.,1996,6(1):15-50.
    20.Bl(o|¨)chl P E.Projector augmented-wave method.Phys.Rev.B,1994,50(24):17953.
    21.Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B,1999,59(3):1758.
    22.Perdew J P,Chevary J A,Vosko S H,Jackson K A,Pederson M R,Singh D J,Fiolhais C.Atoms,Molecules,Solids,and Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation.Phys.Rev.B,,1992,46:6671-6687.
    23.Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations.Phys.Rev.B,1976,13(12):5188.
    24.Nie A,Wu J,Zhou C,YAO S,LUO C,C.FORREY R,CHENG H.Structural Evolution of Subnano Platinum Clusters.Int.J.Ouan.Chem.,2007,107:219-224.
    25.彭红建,谢佑卿,陶辉锦.金属Pt的电子结构和物理性质.材料导报,2005,19(9):121-123.
    26.Chert L,Cooper A C,Pez G P,Cheng H.Density Functional Study of Sequential H_2 Dissociative Chemisorption on a Pt_6 Cluster.J.Phys.Chem.C,2007,111(14):5514-5519.
    27.Verheij L K,Hugenschmidt M B,Anton A B,Poelsema B,Comsa G.A molecular beam study of the interaction between hydrogen and the Pt(111) surface.Surf.Sci.,1989,210:1-26.
    28.Verheij L K,Hugenschmidt M B.Hydrogen adsorption on oxygen covered Pt(111).Surf.Sci.,1995,324:185-201.
    29.Christlnann K.Interaction of hydrogen with solid surfaces.Surf Sci.Rep.,1988,9(1-3):1-163.
    30.Godbey D J,Somorjai G A.The adsorption and desorption of hydrogen and carbon monoxide on bimetallic Re-Pt(111) surfaces.Surf.Sci.,1988,204:301-318.
    31.Atli A,Alnot M,Ehrhardt J J,Bertolini J C,Abon M.Hydrogen chemisorption on Pt_(80)Fe_(20)(111)studied by TDS and UPS.Surf Sci.Rep.,1992,269-270:365-371.
    32.Spiewk B E,Cortright R D,Dumesic J A.J.Catal.,1998,176:405.
    33.Xu X,Wu D Y,Ren B,Xian H,Tian Z-Q.On-top adsorption of hydrogen at platinum electrodes:a quantum-chemical study.Chem.Phys.Lett.,1999,311(3-4):193-201.
    34.Karlberg G S,Jaramillo T F,Sku'lason E,Rossmeisl J,Bligaard T,Norskov J K.Cyclic Voltammograms for H on Pt(111) and Pt(100) from First Principles.Phys.Rev.Lett.,2007,99:126101-4.
    35.K(q|¨)ll(?)n G,Wahnstr(o|¨)m G.Quantum treatment of H adsorbed on a Pt(111) surface.Phys.Rev.B,2001,65(3):033406.
    36.Lu C,Masel R I.The Effect of Ruthenium on the Binding of CO,H_2,and H_2O on Pt(110).J.Phys.Chem.B,2001,105 (40):9793-9797.
    37.Vincent J K,Olsen R A,Kroes G J,Baerends E J.Dissociative chemisorption of H2 on Pt(111):isotope effect and effects of the rotational distribution and energy dispersion.Surf.Sci.,2004,573:433-445.
    38.Montano M,Bratlie K,Salmeron M,Somorjai G A.Hydrogen and Deuterium Exchange on Pt(111) and Its Poisoning by Carbon Monoxide Studied by Surface Sensitive High-Pressure Techniques.J.Am.Chem.Soc.,2006,128 (40):13229-13234.
    39.Gu Z,Balbuena P B.Absorption of Atomic Oxygen into Subsurfaces of Pt(100) and Pt(111):Density Functional Theory Study.J.Phys.Chem.C,2007,111 (27):9877-9883.
    40.Ishikawa Y,Mateo J J,Tryk D A,Cabrera C R.Direct molecular dynamics and density-functional theoretical study of the electrochemical hydrogen oxidation reaction and underpotential deposition of H on Pt(111).J.Electroanal.Chem.,2007,607 (1-2):37-46.
    41.Skelton D C,Tobin R G,Fisher G B,Lambert D K,DiMaggio C L.Suppression of Water Formation over Stepped Pt(335) by Au.J.Phys.Chem.B,2000,104 (3):548-553.
    42.Clavilier J,Orts J M,G(?)mez R,Feliu J M,Aldaz A.Comparison of electrosorption at activated polycrystalline and Pt(531) kinked platinum electrodes:surface voltammetry and charge displacement on potentiostatic CO adsorption.J.Electroanaly.Chem.,1996,404:281-289.
    43.Held G,Jones L B,Seddon E A,King D A.Effect of Oxygen Adsorption on the Chiral Pt{531} Surface.J.Phys.Chem.B,2005,109 (13):6159-6163.
    44.Puisto S R,Held G,Ranea V,Jenkins S J,Mola E E,King D A.The Structure of the Chiral Pt{531} Surface:A Combined LEED and DFT Study.J.Phys.Chem.B,2005,109 (47):22456-22462.
    45.Grecea M L,Backus E H G,Riedmuller B,Eichler A,Kleyn A W,Bonn M.The Interaction of Water with the Pt(533) Surface.J.Phys.Chem.B,2004,108 (33):12575-12582.
    46.Ellen H G B,Andreas E,Mihail L G,Aart W K,Mischa B.Adsorption and dissociation of NO on stepped Pt (533).J.Chem.Phys.,2004,121(16):7946-7954.
    47.Attard G A,Ahmadi A,Feliu J,Rodes A,Herrero E,Blais S,Jerkiewicz G.Temperature Effects in the Enantiomeric Electro-Oxidation of D-AND L-Glucose on Pt{643}S.J.Phys.Chem.B,1999,103(9):1381-1385.
    48.Ahmadi A,Attard G,Feliu J,Rodes A.Surface Reactivity at "Chiral" Platinum Surfaces.Langmuir,1999,15 (7):2420-2424.
    49.Attard G A.Electrochemical Studies of Enantioselectivity at Chiral Metal Surfaces../.Phys.Chem.B,2001,105 (16):3158-3167.
    50.Horvath J D,Gellman A J.Enantiospecific Desorption of R-and S-Propylene Oxide from a Chiral Cu(643) Surface.J.Am.Chem.Soc,2001,123 (32):7953-7954.
    1.Steele B C H,Heinzel A.Materials for fuel-cell technologies.Nature,2001,414(6861):345-352.
    2.衣宝廉,燃料电地——原型·技术·应用.化学工业出版社,2003.
    3.侯中军,俞红梅,衣宝廉,韩明.质子交换膜燃料电池阳极抗CO催化剂的研究进展.电化学,2000,6(4):379-387.
    4.周桂林,谢红梅,邱发礼.富氢气中CO氧化脱除研究.化学进展,2007,19(6):1041-1048.
    5.Ratnasamy P.Srinivas D,Satyanarayana C V V,Manikandan P,Kumaran R S S,Sachin M,Shetti V N.Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO-CeO_2-ZrO_2 system.J.Catal.,2004,221:455-465.
    6.Lee S H,Han J,Lee K-Y.Development of 10-kWe preferential oxidation system for fuel cell vehicles.J.Power Sources,2002,109:394-402.
    7.Echigo M,Shinke N,Takami S,Higashiguchi S,Hirai K,Tabata T.Development of residential PEFC cogeneration systems:Ru catalyst for CO preferential oxidation in reformed gas.Catal.Today,2003,84:209-215.
    8.Chin S Y,Alexeev O S,Amiridis M D.Preferential oxidation of CO under excess H_2 conditions over Ru catalysts.Appl.Catal.A:General,2005,286(2):157-166.
    9.Bhatia K K,Wang C-Y.Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed.Electrochimica Acta,2004,49(14):2333-2341.
    10.Xu G,Zhang Z-G.Preferential CO oxidation on Ru/Al_2O_3 catalyst:An investigation by considering the simultaneously involved methanation.J.Power Sources,2006,157(1):64-77.
    11.Strasser P,Fan Q,Devenney M,Weinberg W H,Liu P,Norskov J K.High Throughput Experimental and Theoretical Predictive Screening of Materials-A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts.J.Phys.Chem.B,2003,107(40):11013-11021.
    12.Gro A.The virtual chemistry lab for reactions at surfaces:Is it possible? Will it be useful? Surf.Sci.,2002,500(1-3):347-367.
    13.Baschuk J J,Li X.Carbon monoxide poisoning of proton exchange membrane fuel cells.Int.J.Energy Res.,2001,25(8):695-713.
    14.Bellows R J,Marucchi-Soos E P,Buckley D T.Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation.Ind.Eng.Chem.Res.,1996,35(4):1235-1242.
    15.Divisek J,Oetjen H F,Peinecke V,Schmidt V M,Stimming U.Components for PEM fuel cell systems using hydrogen and CO containing fuels.Electrochim.Acta,1998,43(24):3811-3815.
    16.Li Q,He R,Gao J-A,Jensen J O,Bjerrum N J.The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200℃.J.Electrochem.Soc.,2003,150(12):A 1599-A 1605.
    17.Jiang R,Kunz H R,Fenton J M.Electrochemical Oxidation of H_2 and H_2/CO Mixtures in Higher Temperature (T_(cell)>100℃) Proton Exchange Membrane Fuel Cells:Electrochemical Impedance Spectroscopy.J.Electrochem.Soc,2005,152 (7):A1329-A1340.
    18.Zhang J,Xie Z,Zhang J,Tang Y,Song C,Navessin T,Shi Z,Song D,Wang H,Wilkinson D P,Liu Z-S,Holdcroft S.High temperature PEM fuel cells.J.Power Sources,2006,160 (2):872-891.
    19.Giorgi L,Pozio A,Bracchini C,Giorgi R,Turtu S.H_2 and H_2/CO oxidation mechanism on Pt/C,Ru/C and Pt-Ru/C electrocatalysts J.Appl.Electrochem.,2001,31 (3):325-334.
    20.Christoffersen E,Liu P,Ruban A,Skriver H L,Norskov J K.Anode Materials for Low-Temperature Fuel Cells:A Density Functional Theory Study.J.Catal.,2001,199(1):123-131.
    21.Ralph T R,Hogarth M P.Catalysis for low temperature fuel cells.Platinum Met.Rev,2002,46 (3):117-135.
    22.Lu C,Masel R I.The Effect of Ruthenium on the Binding of CO,H_2,and H_2O on Pt(110).J.Phys.Chem.B,2001,105 (40):9793-9797.
    23.Waszczuk P,Lu G Q,Wieckowski A,Lu C,Rice C,Masel R l.UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces,and reference to fuel cell catalysis.Electrochim.Acta,2002,47 (22-23):3637-3652.
    24.Tong Y Y,Kim H S,Babu P K,Waszczuk P,Wieckowski A,Oldfield E.An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst.J.Am.Chem.Soc,2002,124 (3):468-473.
    25.Lakshmanan B,Huang W,Olmeijer D,Weidner J W.Polyetheretherketone Membranes for Elevated Temperature PEMFCs.Electrochem.Solid State Lett.,2003,6 (12):A282-A285.
    26.Alayoglu S,Nilekar A U,Mavrikakis M,Eichhorn B.Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.Nature Materials,2008,7:333-338.
    27.Hogarth W H J,Diniz da Costa J C,Lu G Q.Solid acid membranes for high temperature (>140 ℃) proton exchange membrane fuel cells.J.Power Sources,2005,142 (1-2):223-237.
    28.Koper M T M,Shubina T E,van Santen R A.Periodic Density Functional Study of CO and OH Adsorption on Pt-Ru Alloy Surfaces:Implications for CO Tolerant Fuel Cell Catalysts.J.Phys.Chem.B,2002,106 (3):686-692.
    29.Shah A A,Sui P C,Kim G S,Ye S.A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst.J.Power Sources,2007,166 (1):1-21.
    30.Bleakley K,Hu P.A Density Functional Theory Study of the Interaction between CO and O on a Pt Surface:CO/Pt(111),O/Pt(111),and CO/O/Pt(111).J.Am.Chem.Soc,1999,121 (33):7644-7652.
    31.Greeley J,Mavrikakis M.Near-surface alloys for hydrogen fuel cell applications.Catal.Today,2006,111 (1-2):52-58.
    32.Greeley J,Mavrikakis M.Alloy catalysts designed from first principles Nature Materials,2004,3:810-815.
    33.Dunietz B D,Markovic N M,Ross P N,Head-Gordon M.Initiation of Electro-Oxidation of CO on Pt Based Electrodes at Full Coverage Conditions Simulated by Ab Initio Electronic Structure Calculations.J.Phys.Chem.B,2004,108 (28):9888-9892.
    34.Blackman G S,Xu M L,Ogletree D F,Van Hove M A,Somorjai G A.Mix of Molecular Adsorption Sites Detected for Disordered CO on Pt(111) by Diffuse Low-Energy Electron Diffraction.Phys.Rev.Lett.,1988,61(20):2352.
    35.Liu P,Logadottir A,Norskov J K.Modeling the electro-oxidation of CO and H2/CO on Pt,Ru,PtRu and Pt3Sn.Electrochim.Acta,2003,48(25-26):3731-3742.
    36.Goursot A,Papai I,Salahub D R.Density functional study of carbon monoxide chemisorption on model clusters of rhodium and palladium:a comparative analysis of the site selection.J.Am.Chem.Soc.,1992,114(19):7452-7458.
    37.刘永东,孙仁安,王长生.负载型金属催化剂Ru,Rh和Pd体系对CO化学吸附的理论研究Ⅱ.高等学校化学学报,2001,22:2094-2096.
    38.Chen M S,Goodman D W.The Structure of Catalytically Active Au on Titania.Science,2004,306:252-255.
    39.Hornekaer L,(?)ljivan(?)anin(?),Xu W,Otero R,Rauls E,Stensgaard I,Laegsgaard E,Hammer B,Besenbacher F.Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite(0001) Surface.Phys.Rev.Lett.,2006,96:156104.
    40.Chen L,Cooper A C,Pez G P,Cheng H.Density Functional Study of Sequential H2 Dissociative Chemisorption on a Pt6 Cluster.J.Phys.Chem.C,2007,111:5514-5519.
    41.Zhou C,Wu J,Nie A,C.Forrey R,Tachibana A,Cheng H.On the Sequential Hydrogen Dissociative Chemisorption on Small Platinum Clusters:A Density Functional Theory Study.J.Phys.Chem.C,2007,111:12773-12778.
    42.Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules.J.Chem.Phys.,1990,92(1):508-517.
    43.Delley B.From molecules to solids with the DMol~3 approach.J.Chem.Phys.,2000,113(18):7756-7764.
    44.Papoian G,Norskov J K,Hoffmann R.A Comparative Theoretical Study of the Hydrogen,Methyl,and Ethyl Chemisorption on the Pt(111) Surface.J.Am.Chem.Soc.,2000,122(17):4129-4144.
    45.Okamoto Y.Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces:A study from density-functional calculations.Chem.Phys.Lett.,2006,429:209-213.
    46.Alavi A,Hu P,Deutsch T,Silvestrelli P L,Hutter J.CO Oxidation on Pt(111):An Ab Initio Density Functional Theory Study.Phys.Rev.Lett.,1998,80:3650.
    47.Ertl G.Reactions at well-defined surfaces.Surf Sci.,1994,299-300:742-754.
    48.Izabela R,Leonard Morales de la G,Matsushima T.Surface phase transitions of Pt(110) studied by desorption dynamics of product CO_2 in steady-state CO oxidation.J.Vac.Sci.Technol.A,2002,20(4):1475-1482.
    49.Izabela R,Md.Goula M,Leonard Morales de la G,Yuichi O,Tatsuo M.CO_2 desorption dynamics on specified sites and surface phase transitions of Pt(110) in steady-state CO oxidation.J.Chem.Phys.,2003,119(18):9829-9841.
    50.Clay C,Haq S,Hodgson A.Hydrogen Bonding in Mixed OH+H_2O Overlayers on Pt(111).Phys.Rev.Lett.,2004,92 (4):046102.
    51.Saravanan C,Dunietz B D,Markovic N M,Somorjai G A,Ross P N,Head-Gordon M.Electro-oxidation of CO on Pt-based electrodes simulated by electronic structure calculations J.Electroanalytical Chem.,2003,554-555:459-465.
    52.Cheng X,Shi Z,Glass N,Zhang L,Zhang J,Song D,Liu Z-S,Wang H,Shen J.A review of PEM hydrogen fuel cell contamination:lmpacts,mechanisms,and mitigation.J.Power Sources,2007,165:739-756.
    1.Valentino R C,Alexie M K,Yashar Y,Andrew M R.Supported metal electronic structure:Implications for molecular adsorption.Phys.Rev.B,2005,72(8):081409.
    2.Ishimoto R,Jung C,Tsuboi H,Koyama M,Endou A,Kubo M,Del Carpio C A,Miyamoto A.Periodic density functional and tight-binding quantum chemical molecular dynamics study of catalytic properties on γ-Al_2O_3 supported Pt catalysts.Appl.Catal.A:General,2006,305(1):64-69.
    3.Sasahara A,Pang C L,Onishi H.Local Work Function of Pt Clusters Vacuum-Deposited on a TiO_2 Surface.J.Phys.Chem.B,2006,110(35):17584-17588.
    4.Kang J H,Menard L D,Nuzzo R G,Frenkel A I.Unusual Non-Bulk Properties in Nanoscale Materials:Thermal Metal-Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts.J.Am.Chem.Soc.,2006,128(37):12068-12069.
    5.Wallin M,Gronbeck H,Spetz A L,Eriksson M,Skoglundh M.Vibrational Analysis of H_2 and D_2Adsorption on Pt/SiO_2.J.Phys.Chem.B,2005,109(19):9581-9588.
    6.Sun M,Croiset E B,Hudgins R R,Silveston P L,Menzinger M.Steady-State Multiplicity and Superadiabatic Extinction Waves in the Oxidation of CO/H_2 Mixtures over a Pt/Al_2O_3-Coated Monolith.Ind.Eng.Chem.Res.,2003,42(1):37-45.
    7.Olsson L,Westerberg B,Persson H,Fridell E,Skoglundh M,Andersson B.A Kinetic Study of Oxygen Adsorption/Desorption and NO Oxidation over Pt/Al_2O_3 Catalysts.J.Phys.Chem.B,1999,103(47):10433-10439.
    8.Cheng D,Wang W,Huang S.Thermal Evolution of Pd and Pd-Pt Clusters Supported on MgO(100).J.Phys.Chem.C,2007,111(22):8037-8042.
    9.Ngo L T,Xu L,Grant A W,Campbell C T.Benzene Adsorption and Dehydrogenation on Pt/ZnO(0001)-O Model Catalysts.J.Phys.Chem.B,2003,107(5):1174-1179.
    10.Park J B,Conner S F,Chen D A.Bimetallic Pt-Au Clusters on TiO_2(110):Growth,Surface Composition,and Metal-Support Interactions.J.Phys.Chem.C,2008,112(14):5490-5500.
    11.Dilara P A,Vohs J M.Interaction of CO with Pt Supported on ZrO_2(100):Evidence for CO Adsorbed at the Pt-ZrO_2 Interface.J.Phys.Chem.,1995,99(47):17259-17264.
    12.Xu Z,Xiao F S,Purnell S K,Alexeev O,Kawi S,Deutsch S E,Gates B C.Size-dependent catalytic activity of supported metal clusters.Nature,1994,372:346-348.
    13.Trombetta M,Busca G,Rossini S,Piccoli V,Cornaro U,Guercio A,Catani R,Willey R J.FT-IR Studies on Light Olefin Skeletal lsomerization Catalysis:Ⅲ.Surface Acidity and Activity of Amorphous and Crystalline Catalysts Belonging to the SiO_2-Al_2O_3 System.J.Catal.,1998,179(2):581-596.
    14.Ivey M M,Allen H C,Avoyan A,Martin K A,Hemminger J C.Dimerization of 1,3-Butadiene on Highly Characterized Hydroxylated Surfaces of Ultrathin Films of γ-Al_2O_3.J.Am.Chem.Soc., 1998,120(42):10980-10981.
    15.Busca G.Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation.Catal.Today,1996,27 (3-4):457-496.
    16.Lin V S Y,Radu D R,Han M-K,Deng W,Kuroki S,Shanks B H,Pruski M.Oxidative Polymerization of 1,4-Diethynylbenzene into Highly Conjugated Poly(phenylene butadiynylene) within the Channels of Surface-Functionalized Mesoporous Silica and Alumina Materials.J.Am.Chem.Soc,2002,124 (31):9040-9041.
    17.McCabe R W,Usmen R K,Ober K,Gandhi H S.The Effect of Alumina Phase-Structure on the Dispersion of Rhodium/Alumina Catalysts.J.Catal.,1995,151 (2):385-393.
    18.Nie A,Wu J,Zhou C,YAO S,LUO C,C.FORREY R,CHENG H.Structural Evolution of Subnano Platinum Clusters.Int.J.Quan.Chem.,2007,107:219-224.
    19.Kresse G,Furthmuller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B,1996,54 (16):11169.
    20.Kresse G,Furthmuller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mater.Sci.,1996,6(1):15-50.
    21.Blochl P E.Projector augmented-wave method.Phys.Rev.B,1994,50 (24):17953.
    22.Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B,1999,59 (3):1758.
    23.Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations.Phys.Rev.B,1976,13(12):5188.
    24.Yashar Y,Valentino R C,Alexie M K,Andrew M R,Catalytic behavior at the nanoscale:CO adsorption on Al_2O_3-supported Pt clusters.Edited by Tianquan,L.;Hai-Lung,D.,Proceedings of the SPIE,2003,5223:223-231.
    25.Xiao L,Wang L.Structures of Platinum Clusters:Planar or Spherical? J.Phys.Chem.A,2004,108 (41):8605-8614.
    26.Huda M N,Leonard K.Hydrogen adsorption and dissociation on small platinum clusters:An electronic structure density functional study.Phys.Rev.B,2006,74 (19):195407.
    27.Kittel C,In Introduction to Solid State Physics,Wiley,New York,1996.
    28.Zhou C,Wu J,Nie A,Forrey R C,Tachibana A,Cheng H.On the Sequential Hydrogen Dissociative Chemisorption on Small Platinum Clusters:A Density Functional Theory Study.J.Phys.Chem.C,2007,111:13768-13793.
    29.Chen L,Cooper A C,Pez G P,Cheng H.Density Functional Study of Sequential H_2 Dissociative Chemisorption on a Pt_6 Cluster.J.Phys.Chem.C,2007,111 (14):5514-5519.
    1.Apsel S E,Emmert J W,Deng J,Bloomfield L A.Surface-Enhanced Magnetism in Nickel Clusters.Phys.Rev.Lett.,1996,76(9):1441.
    2.Billas 1 M L,Ch(?)telain A,de Heer W A.Magnetism of Fe,Co and Ni clusters in molecular beams.J.Magn.Magn.Mater.,1997,168(1-2):64-84.
    3.Mark B K.Nickel clusters:The influence of adsorbates on magnetic moments.J.Chem.Phys.,2002,116(22):9703-9711.
    4.Xie Y,John A B.On the oscillation of the magnetic moment of free transition metal clusters.J.Phys.:Condens.Matter,2003,15(40):L615-L622.
    5.Khanna S N,Beltran M,Jena P.Relationship between photoelectron spectroscopy and the magnetic moment of Ni_7 clusters.Phys.Rev.B,2001,64(23):235419.
    6.Liu S-R,Zhai H-J,Wang L-S.s-d hybridization and evolution of the electronic and magnetic properties in small Co and Ni clusters.Phys.Rev.B,2002,65(11):113401.
    7.Gerion D,Hirt A,Billas I M L,Ch(?)telain A,de Heer W A.Experimental specific heat of iron,cobalt,and nickel clusters studied in a molecular beam.Phys.Rev.B,2000,62(11):7491.
    8.Morenzin J,Kietzmann H,Bechthold P S,Gantef(o|¨)r G,Eberhardt W.Localization and bandwidth of the 3d-orbitals in magnetic Ni and Co clusters.Pure Appl.Chem.,2000,72(11):2149-2157.
    9.Basch H,Newton M D,Moskowitz J W.The electronic structure of small nickel atom clusters.J.Chem.Phys.,1980,73(9):4492-4510.
    10.Estiu G L,Zerner M C.Structural,Electronic,and Magnetic Properties of Small Ni Clusters.J.Phys.Chem.,1996,100(42):16874-16880.
    11.Estiu G L,Cory M G,Zerner M C.Projected Unrestricted Hartree-Fock Calculations and the Magnetism of Large Nickel Clusters.J.Phys.Chem.A,2000,104(2):233-242.
    12.Francesca B,Riccardo F.Structural properties of nanoclusters:Energetic,thermodynamic,and kinetic effects.Rev.Mod.Phys.,2005,77(1):371-423.
    13.Alonso J A.Electronic and Atomic Structure,and Magnetism of Transition-Metal Clusters.Chem.Rev.,2000,100(2):637-678.
    14.Mark S S,Andrew E D.The structure of Ni_n and Pd_n clusters:4≤N≤23.J.Chem.Phys.,1992,97(5):3386-3398.
    15.Reuse F A,Khanna S N.Geometry,electronic structure,and magnetisln of small Ni_n(n=2-6,8,13) clusters.Chem.Phys.Lett.,1995,234(1-3):77-81.
    16.Castro M,Jamorski C,Salahub D R.Structure,bonding,and magnetism of small Fe_n,Co_n,and Ni_n clusters,n≤5.Chem.Phys.Lett.,1997,271(1-3):133-142.
    17.Curotto E,Freeman D L,Chen B,Doll J D.The melting transition of Ni_7 and Ni_7H as modeled by a semi-empirical potential.Chem.Phys.Lett.,1998,295(4):366-372.
    18.Desmarais N,Jamorski C,Reuse F A,Khanna S N.Atomic arrangements in Ni_7 and Ni_8 clusters. Chem.Phys.Lett.,1998,294(6):480-486.
    19.Michelini M C,Diez R P,Jubert A H.Density functional calculations of Ni_5 and Ni_6 clusters.J.Mole.Struct:THEOCHEM,1999,490(1-3):181-188.
    20.Nayak S K,Khanna S N,Rao B K,Jena P.Physics of Nickel Clusters:Energetics and Equilibrium Geometries.J.Phys.Chem.A,1997,101(6):1072-1080.
    21.Hern(?)ndez-Torres J,Aguilera-Granja F,Vega A.Magnetic moments in Ni clusters with deformations.Solid State Commun.,2001,117(8):477-482.
    22.Luo C.Energies and structural properties of nickel clusters determined by tight-binding simulations:Ni_4-Ni_(55).Modelling Simul.Mater.Sci.Eng.,2002,10:13-20.
    23.Zacharias F,Antonis N A,Madhu M.Temperature evolution of structural and magnetic properties of transition metal clusters.J.Chem.Phys.,2003,119(20):10911-10916.
    24.Grigoryan V G,Springborg M.Structural and energetic properties of nickel clusters:2≤N≤150.Phys.Rev.B,2004,70(20):205415.
    25.Xiang Y,Sun D Y,Gong X G.Generalized Simulated Annealing Studies on Structures and Properties of Nin(n=2-55) Clusters.J.Phys.Chem.A,2000,104(12):2746-2751.
    26.Duan H M,Gong X G,Zheng Q Q,Lin H Q.Electronic structure and magnetic properties of Ni clusters.J.Appl.Phys.,2001,89:7308-7310.
    27.Reddy B V,Nayak S K,Khanna S N,Rao B K,Jena P.Physics of Nickel Clusters.2.Electronic Structure and Magnetic Properties.J.Phys.Chem.A,1998,102(10):1748-1759.
    28.郧少涛,蒙大桥,高涛,朱正和,蒋刚,王红艳.Ni_2分子结构和分子轨道密度(DMO)的成键贡献.原子与分子物理学报,2004,21(1):49-53.
    29.Futschek T,Hafner J,Marsman M.Stable structural and magnetic isomers of small transition-metal clusters from the Ni group:an ab initio density-functional study.J.Phys.:Condens.Matter,2006,18:9703-9748.
    30.Christmann K,Ertl G,Schober O.LEED intensities from clean and hydrogen covered Ni(100)and Pd(111) surfaces.Surf.Sci,1973,40(1):61-70.
    31.Knickelbein M B.Reactions of transition metal clusters with small molecules.Annu.Rev.Phys.Chem.,1999,50:79-115.
    32.Parks E K,Zhu L,Ho J,Riley S J.The structure of small nickel clusters.I.Ni_3—Ni_(15).J.Chem.Phys.,1994,100(10):7206-7222.
    33.Parks E K,Kerns K P,Riley S J.The binding of CO to nickel clusters.Ⅰ.Determination of saturation coverages.J.Chem.Phys.,2000,112(7):3384-3393.
    34.Kerns K P,Parks E K,Riley S J.The binding of CO to nickel clusters.Ⅱ.Structural implications and comparisons with electron counting rules.J.Chem.Phys.,2000,112(7):3394-3407.
    35.Chen B,Gomez M A,Doll J D,David L F.Theoretical studies of the effect of hydrogen-hydrogen interactions on the structural and dynamical properties of metal/hydrogen clusters,J.Chem.Phys.,1998,108(10):4031-4038.
    36.Watson G W,Wells R P K,Willock D J,Hutchings G J.A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni,Pd,and Pt from Density Functional Theory Calculations.J.Phys.Chem.B,2001,105:4889-4894.
    37.Kresse G,Hafner J.First-principles study of the adsorption of atomic H on Ni(111),(100) and (110).Surf.Sci.,2000,459(3):287-302.
    38.王泽新,赫策,张积树.氢原子在Ni(100),Ni(111)和Ni(110)面上吸附扩散势能面的结构.化学学报,1993,51(5):417-423.
    39.王洋新,张积树,于晓安,郝策,陈宗洪.Ni(510)台阶面对氢分子解离吸附的影响.物理化学学报,1994,10(10):915-920.
    40.张积树,张文霞,王泽新.氢在钯低指数表面上的吸附和扩散.物理化学学报,1996,12(9):773-779
    41.Halgren T A,Lipscomb W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states.Chem.Phys.Lett.,1977,49:225-232.
    42.Christopher J B,Jonathan C R-K,Henry F S,111.Homonuclear 3d transition-metal diatomics:A systematic density functional theory study,J.Chem.Phys.,2000,113(2):690-700.
    43.Calleja M,Rey C,Alemany M M G,Gallego L J,Ordej(?)n P,S(?)nchez-Portal D,Artacho E,Soler J M.Self-consistent density-functional calculations of the geometries,electronic structures,and magnetic moments of Ni-Al clusters.Phys.Rev.B,1999,60(3):2020.
    44.Michelini M C,Diez R P,Jubert A H.Density functional study of small Ni_n clusters,with n=2-6,8,using the generalized gradient approximation.Int.J.Quantum Chem.,2001,85(1):22-33.
    45.Morse M D,Hansen G P,Langridge-Smith P R R,Lan-Sun Z,Geusic M E,Michalopoulos D L,Smalley R E.Spectroscopic studies of the jet-cooled nickel dimer,J.Chem.Phys.,1984,80(11):5400-5405.
    46.Joe H,Mark L P,Kent M E,Lineberger W C.Photoelectron spectroscopy of nickel group dimers:Ni_2~-,Pd_2~-,and Pt_2~-.d.CHem.Phys.,1993,99(11):8542-8551.
    47.Jacqueline C P,Jon D L,Caleb A A,Eileen M S,Michael D M.Ni_2 revisited:Reassignment of the ground electronic state.J.Chem.Phys.,1995,102(2):666-674.
    48.Nie A,Wu J,Zhou C,YAO S,LUO C,C.FORREY R,CHENG H.Structural Evolution of Subnano Platinum Clusters.Int.J.Quan.Chem.,2007,107:219-224.
    49.Zhou C,Wu J,Nie A,Forrey R C,Tachibana A,Cheng H.On the Sequential Hydrogen Dissociative Chemisorption on Small Platinum Clusters:A Density Functional Theory Study.J.Phys.Chem.C,2007,111:13768-13793.
    50.Chen L,Cooper A C,Pez G P,Cheng H.Density Functional Study of Sequential H_2 Dissociative Chemisorption on a Pt_6 Cluster.J.Phys.Chem.C,2007,111(14):5514-5519.
    51.Zhou C,Yao S,Wu J,Forrey R C,Chen L,Tachibana A,Cheng H.Hydrogen dissociative chemisorption and desorption on saturated subnano palladium clusters(Pd_n,n=2-9).Phys.Chem.Chem.Phys.,2008,10:5445-5451.