中国豆梨与川梨的遗传多样性和群体遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传多样性是物种或群体抵抗环境变化的重要因素,也是生物多样性的核心组分,对于野生果树资源而言,遗传多样性更是砧木筛选的重要依据,对生产具有重要的意义。原产于我国的野生梨属种豆梨(Pyrus calleryana Dcne)和川梨(P. pashia D. Don)是我国南方地区的主要砧木资源。另外,豆梨被认为是最古老的梨属种之一,川梨则被认为是东、西方梨分化过程中的过渡种。因此,研究豆梨和川梨群体遗传多样性对解决梨属植物的起源演化过程也具有重要的意义。迄今为止,我国野生梨属资源遗传多样性和遗传结构的相关研究还非常有限。本研究利用cpDNA单倍型和nSSR的方法,结合对果实表型性状的分析,以野生豆梨和川梨群体为材料,对这两个野生种的遗传多样性和群体遗传结构进行评价,主要的研究结果如下:
     1. cpDNA单倍型和nSSR的结果表明目前浙江省豆梨保持着较高的遗传多样性水平(cpDNA:Hd=0.719,π=0.00105, nSSR:Hc=0.639). AMOVA分析表明豆梨的遗传变异主要存在于群体内,cpDNA和核基因水平上群体内的遗传变异分别占总遗传变异的77.04%和91.14%。Mantel检验表明群体间的遗传距离与其地理距离呈现显著的正相关(cpDNA单倍型:r=0.332,p=0.048;nSSRs:r=0.592, p=0.008)。SSR的结果表明群体间出现了一定程度的遗传分化(Fst=0.089)。本研究中花粉流/种子流仅为0.86,说明群体间的遗传物质交换主要依靠种子传播进行。STUCTURE的结果表明所有豆梨群体可以分为两个类群,根据不同类群在各群体中的比例可以将所有群体分为两个组,豆梨群体cpDNA和nSSR的N-J聚类树均表明所有群体可以分为东北和西南两组。浙江省的8个豆梨群体中,群体FY的遗传变异程度最高,而且群体规模也较大,因此在开展浙江省豆梨资源的保护工作时,群体FY应该优先得到保护。
     2.川梨群体保持着较高水平的遗传多样性(cpDNA:Hd=0.718, π=0.00085; nSSR:He=0.741). AMOVA分析表明川梨的遗传多样性主要存在于群体内,群体内的遗传变异在cpDNA和核基因水平上分别为59.61%和91.24%。cpDNA单倍型的Mantel检验表明群体间的遗传距离与其地理距离无显著相关(r=0.139,p=0.09),但是nSSR的Mantel检验的结果则显示群体间的遗传距离与其地理距离呈显著正相关(r=0.783,p=0.000)。在叶绿体水平上,群体间的遗传分化较大,遗传分化系数为0.404,核基因水平上群体间仅出现了中等程度的遗传分化,遗传分化系数为0.087。cpDNA单倍型的结果表明群体间的遗传分化较大,特有单倍型较为普遍,单倍型的网络图呈辐射状分布,推测川梨群体经历了近期的快速分化。川梨群体存在着亲缘地理结构(Nst>Gst, p<0.05),对cpDNA单倍型的亲缘地理学分析表明川梨群体经历了连续的扩张事件.NCA分析表明支系1-2、2-1和总支系经历了连续的群体扩张,总体的扩张时间大约发生在621000到209000年前之间。根据Ennos的花粉流和种子流比值的公式得到,花粉流是种子流的6.05倍,表明川梨群体之间的遗传物质交换主要通过花粉的传播进行。川梨的资源保护和利用工作应该集中于遗传变异丰富的群体以及包含特有基因的群体,群体YN1和YN8分别代表了最高水平的cpDNA和nSSR的遗传变异水平,应该优先得到保护。
     3.通过对本研究所用的豆梨和川梨样品的cpDNA单倍型结果进行比对,发现豆梨和川梨共享2个单倍型(单倍型S1和S2),这两个单倍型分别为豆梨和川梨的祖先单倍型。豆梨和川梨在单倍型网络图上并不能清晰的分为两枝,说明两者在叶绿体水平上的分化程度并不是很高,存在较近的共同祖先。
     4.本研究对豆梨和川梨6个果实表型性状的变异进行分析的结果表明单果重在群体内和群体间的变异程度最高(P. calleryana:26.37%; P. pashia:37.06%)。 UPGMA聚类图和主坐标分析的散点图表明利用6个果实表型性状可以将豆梨和川梨区分开来。
Genetic diversity is a critical factor for the long-term survival of a species or a population. To wild fruit tree species, understanding the genetic diversity is the primary task of rootstock selection. Pyrus calleryana Dcne and P. pashia D. Don are wild pear species which originate in China and widely used as rootstocks in Southern China. P. calleryana is one of the most ancestral pear species while P. pashia is thought to be the linkage between Oriental and Occidental Pear. Therefore, these two species also play important roles in the evolution of Pyrus. However, lack of sufficient research on P. calleryana and P. pashia limits the utilities of these two important pear species. In this study, a combined approach using cpDNA haplotypes and nSSRs was taken to study the genetic diversity and population structure of P. calleryana and P. pashia. Considering that P. calleryana and P. pashia are morphologically similar to each other, the phenotypic variation of them was also studied using six fruit phenotypic characters. The main results are listed as follows:
     1. Two cpDNA intergenic regions (accD-psaI and trnL-trnF) and14nSSR makers were used to study77individuals from8populations. A high level of genetic diversity was detected in P. calleryana (cpDNA:Hd=0.719,π=0.00105, nSSR: He=0.639). AMOVA analyses revealed that the majority of the genetic diversity occurred within population. Mantel tests showed that the genetic distance was significantly correlated with the geographic distance (cpDNA haplotype:r=0.332, p=0.048; nSSRs:r=0.592,p=0.008). STRUCTURE analysis exhibited that two clusters existed among the8populations. All the populations could be divided into two groups, correlating with geographic regions (northeast and southwest). Geographic distance was a key factor in shaping current genetic structure of P. calleryana. Pollen/seed flow (0.86) indicated that seed dispersal among populations was more frequent and pollen dispersal was limited to some extent. Population FY was the most diverse population and suitable population to be protected under in situ conservation strategy.
     2. In this study, we investigated the genetic diversity and population structure of P. pashia using accD-psaI and trnL-trnF intergenic spacers and13nSSR makers for a total of327individuals over22populations. P. pashia contained a relatively high level of genetic diversiy (cpDNA:Hd=0.718, π=0.00085; nSSR:He=0.741). AMOVA analyses of molecular variance indicated that the genetic variation mainly existed within populations, representing59.61%and91.24%of the total variation on the cpDNA and nuclear DNA level, respectively. Mantel test of cpDNA did not show a correlation between the genetic and geographic distances (r=0.139, p=0.09) while the nSSR-based Mantel test showed that geographic distance was an important factor to shape the current population genetic structure (r=0.783,p=0.000). According to the cpDNA haplotype results, genetic differentiation among populations was high (Gst=0.404). However, nSSR only revealed moderate genetic differentiation (Fst=0.087). Nst (0.420) was significantly higher than Gst (0.402)(p<0.05), which was reflected on the phylogeographic structure in P. pashia. NCA analyses of clade1-2, clade2-1, and the total cladogram inferred contiguous range expansion events in P. pashia. The overall population expansion of P. pashia was estimated to occur between621,000and209,000years ago. NCA analyses of clade2-2showed that restricted gene flow existed among populations. STRUCTURE analysis showed that four clusters formed the current genetic structure of P. pashia. According to the Ennos' formula, pollen flow was6.05times more than seed flow. Populations YN1(cpDNA) and YN8(nSSR) represented the highest genetic diversity of P. pashia and should have the priority when conservation strategy is implemented.
     3. All the cpDNA haplotypes of P. calleryana and P. pashia were used to construct Neighbor-Net network. Two haplotpyes were shared by P. calleryana and P. pashia (haplotype S1and S2), which were the most ancestral haplotypes of P. calleryana and P. pashia, respectively. Shared haplotypes and non-monophyly of these two species on the Neighbor-Net network indicated that they had a recent ancestor.
     4. Six phenotypic variations were analyzed in three P. calleryana populations and four P. pashia populations. Results showed that single fruit weight was the most diverse phenotypic character (P. calleryana:CV=26.37%; P. pashia:CV=37.06%). Four clusters were detected from UPGMA clusters, and all the samples of P. calleryana were grouped into one cluster. PCoA analysis also distinguished P. calleryana from P. pashia.
引文
暴朝霞,黄宏文.2002.板栗主栽品种的遗传多样性及其亲缘关系分析.园艺学报,9(1),13-19.
    曹玉芬,刘凤芝,高源,姜立杰,王昆,马智勇,张开春.2007.梨栽培品种SSR鉴定及遗传多样性.园艺学报,34(2),305-310.
    曹玉芬,刘凤芝,王昆,马智勇,龚欣,刘力军.2005.梨种质资源主要描述标准比较分析.植物遗传资源学报,6(4),460-463.
    冯涛,张红,陈学森,张艳敏,何天明,冯建荣,许正.2006.新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株.植物遗传资源学报,7(3),270-276.
    葛颂,洪德元.1994.遗传多样性及其检测方法.钱迎倩.生物多样性研究的原理与方法.北京.中国科学技术出版社.
    洪德元.1990.植物细胞分类学,北京.科学出版社.
    胡红菊,王友平,章靖国,田瑞,陈启亮,杨晓平.2008.梨属植物等位酶遗传多样性研究.中国农学通报,24(11),319-323.
    菊池秋雄.1948.果榭園芸学.上卷:果榭種颧各論.東京:餋賢堂.
    康明,黄宏文.2002.湖北海棠的等位酶变异和遗传多样性研究.生物多样性,10(4),376-385.
    林伯年,沈德绪.1983.利用过氧化物酶同功酶分析梨属种质特性及亲缘关系.浙江农业大学学报,9(3),235-241.
    刘崇琪,陈学森,王金政,陈晓流,王海波,田长平,吴传金.2008.新疆野生樱桃李果实部分表型性状的遗传多样性分析.园艺学报,35(9),1261-1268.
    路娟,吴俊,张绍铃,吴华清,张好艳.2010.基于苹果EST-SSR的梨种质资源遗传多样性分析.西北植物学报,4,690-696.
    罗怀荣,施鹏,张亚平.2001.单核苷酸多态性的研究技术.遗传,23(5),471-476.
    蒲富慎,黄礼森,孙秉均,李树玲.1985a.我国野生梨和栽培品种染色体数目观察.果树学报,12(3),155-158.
    蒲富慎,林盛华,宋文琴,陈瑞阳,李秀兰.1985b.我国梨属植物染色体核型研究(一).武汉植物学研究,3(4),381-387.
    蒲富慎,林盛华,陈瑞阳,宋文琴,李秀兰.1986.中国梨属植物核型研究Ⅱ.园艺学报,13(2),87-91.
    钱迎清,马克平.1994.生物多样性研究的原理与方法.北京:中国科学出版社.
    沈浩,刘登义.2001.遗传多样性概述.生物学杂志,18(3),5-8.
    沈玉英,滕元文,田边贤二.2006.部分中国砂梨和日本梨的RAPD分析.园艺学报,33(3),621-624.
    滕元文,柴明良,李秀根.2004.梨属植物分类的历史回顾及新进展.果树学报,21(3),252-257.
    王中仁.1994.植物遗传多样性和系统研究中的等位酶分析.生物多样性,2(1),91-95.
    徐刚标.2009.植物群体遗传学.北京:科学出版社.
    闫双喜,赵勇,赵天榜.2002.中国黄杨属植物数量分类的研究.生物数学学报,17(3),380-383.
    姚丽华.2008.苹果属EST-SSR标记开发及其在梨属上的转移性[硕士学位论文].杭州:浙江大学.
    俞德浚.1979.中国果树分类学.北京:农业出版社.
    愈德浚,陆玲娣,谷粹芝,李朝銮,关克俭.1974.中国植物志,第36卷.科学出版社.
    中国农业科学院果树研究所.1963.中国果树志,第三卷(梨).上海:上海科学技术出版社.
    Aoki, K., Matsumura, T., Hattori, T., Murakami, N.,2006. Chloroplast DNA phylogeography of Photinia glabra (Rosaceae) in Japan. American Journal of Botany,93(12),1852-1858.
    Asuka, Y., Tomaru, N., Nisimura, N., Tsumura, Y., Yamamoto, S.,2004. Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Molecular Ecology,13(5), 1241-1250.
    Avise, J.C.,2000. Phylogeography:the history and formation of species. Harvard University Press, Cambridge.
    Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., Saunders, N.C.,1987. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics,18,489-522.
    Bailey, L.H.,1917. Pyrus. In:Standard cyclopedia of horticulture, Vol.5. Macmillan, New York. USA.2865-2878.
    Bao, L., Chen, K., Zhang, D., Cao, Y., Yamamoto, T., Teng, Y.2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genetic Resources and Crop Evolution,54(5),959-971.
    Bao, L., Chen, K., Zhang, D., Li, X., Teng, Y.,2008. An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Scientia Horticulturae,116(4), 374-380.
    Barrett, S.C.H., Kohn, J.R.,1991. Genetic and evolutionary consequences of small population size in plants:implications for conservation. In:Falk, D. A., Holsinger, K.E. (eds.), Genetics and conservation of rare plants. Oxford University Press, New York, USA.
    Bejaoui, A., Boulila, A., Messaoud, C., Rejeb, M. N., Boussaid, M.,2010. Genetic diversity and population structure of Hypericum humifusum L. (Hypericacae) in Tunisia:Implications for conservation. Plant Biosystems,144(3),592-601.
    Birky, C.W., Maruyama, T., Fuerst, P.,1983. An approach to population and evolutionary genetic theory for gene in mitochondria and chloroplasts, and some results. Genetics,103(3),513-527.
    Bittencourt, J.V.M., Sebbenn, A.M.,2007. Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity,99(6),580-591.
    Botstein, D., White, R.L., Skolnick, M., Davis, R.W.,1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,32(3),314.
    Campbell, C.S., Evans, R.C., Morgan, D.R., Dickinson, T.A., Arsenault, M.P.,2007. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae):limited resolution of a complex evolutionary history. Plant Systematics and Evolution, 266(1),119-145.
    Cao, Y., Tian, L., Gao, Y, Liu, F.,2012. Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genetic Resources and Crop Evolution,59(1),9-17.
    Challice, J.S., Westwood, M.N.,1973. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Botanical Journal of the Linnean Society,67(2),121-148.
    Charlesworth, B., Lande, R., Slatkin, M.,1982. A neo-Darwinian commentary on macroevolution. Evolution,36(3),474-498.
    Chiang, T., Chiang, Y., Chen, Y., Chou, C., Havanond, S., Hong, T., Huang, S.,2002. Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Molecular Ecology, 10(11),2697-2710.
    Clegg, M.T., Gaut, G.S., Learn, G.H.,1994. Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences,91(15),6795-6801.
    Clegg, M.T., Zurawski, G.,1992. Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In:Soltis, P.S., Soltis, D.E., Doyle, J.J. (eds.), Molecular Systematics of Plants. Chapman and Hall, New York.
    Clement, M., Posada, D.C.K.A., Crandall, K.A.,2000. TCS:a computer program to estimate gene genealogies. Molecular Ecology,9(10),1657-1659.
    Darwin, C.,1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life,1st, ed., John Murray, London.
    de Nettancourt, D.,1997. Incompatibility in angiosperms. Sexual Plant Reproduction, 10(4),185-199.
    Demesure, B., Sodzi, N., Petit, R.J.,1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology,4(1),129-131.
    Doyle, J.J., Doyle, J.L.,1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull,19,11-15.
    Ennos, R.,1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity,72(3),250-259.
    Erixon, P., Oxelman, B.,2008. Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)?. Molecular Phylogenetics and Evolution,48(1), 313-325.
    Evanno, G., Regnaut, S., Goudet, J.,2005. Detecting the number of clusters of I ndividuals using the software STRUCTURE:a simulation study. Molecular Ecology,14(8),2611-2620.
    Excoffier, L., Laval, G., Schneider, S.,2005. Arlequin (version 3.0):an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,1,47.
    Excoffier, L., Smouse, P.E., Quattro, J.M.,1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics,131(2),479-491.
    Fan, Q., Xiang, X., Chen, S., Liao, W., Zhou, R., Shi, S.,2011. Genetic variation of wild litchi(Litchi chinensis Sonn. subsp. chinensis) revealed by microsatellites. Conservation Genetics,12(3),753-760.
    Frankham, R., Ballow, J.D., Briscoe, D.A.,2002. Introduction to Conservation Genetics. Cambridge, University Press.
    Frascaria, N., Maggia, L., Michaud, M., Bousquet, J.,1993. The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome,36(4), 668-671.
    Fu, Y., Li, W.,1993. Statistical tests of neutrality of mutations. Genetics,133(3), 693-709.
    Futuyma, D.J.,1998. Evolutionary Biology,3rd, ed., Sinauer Associates, Sunderland, Massachusetts, USA.
    Ge, X., Liu, M., Wang, W., Schaal, B.A., Chiang, T.,2005. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Molecular Ecology,14(4),933-944.
    Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M., Gessler, C.,1998. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics,96(8),1069-1076.
    Godoy, J.A., Jordano, P.,2001. Seed dispersal by animals:exact identification of source trees with endocarp DNA microsatellites. Molecular Ecology,10(9), 2275-2283.
    Gong, X., Luan, S.S., Hung, K., Hwang, C., Lin, C., Chiang, Y., Chiang, T.,2011. Population structure of Nouelia insignis (Asteraceae), an endangered species in southwestern China, based on chloroplast DNA sequences:recent demographic shrinking. Journal of Plant Research,124(2),221-230.
    Goudet, J.,1995. FSTAT (version 1.2):a computer program to calculate F-statistics. Journal of Heredity,86(6),485-486.
    Grassi, F., Labra, M., Imazio, S., Rubio, R. O., Failla, O., Scienza, A., Sala, F.,2006. Phylogeographical structure and conservation genetics of wild grapevine. Conservation Genetics,7(6),837-845.
    Guilford, P., Prakash, S., Zhu, J., Rikkerink, E., Gardiner, S., Bassett, H., Forster, R., 1997. Microsatellites in Malus X domestica (apple):abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics,94(2),249-254.
    Hamada, H., Petrino, M.G., Kakunaga, T.,1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences,79(21),6465-6469.
    Hamrick, J.L.,1987. Gene flow and distribution of genetic variation in plant populations. Differentiation Patterns in Higher Plants,53,67.
    Hamrick, J.L., Godt, M.J.W.,1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,351(1345),1291-1298.
    Hamrick, J.L., Godt, M.J.W., Brown, A.H.D., Clegg, M.T., Kahler, A.L., Weir, B.S., 1990. Allozyme diversity in plant species. Plant Population Genetics, Breeding, and Genetic Resources,43-63.
    Hamrick, J.L., Godt, M.J.W., Sherman-Broyles, S.L.,1992. Factors influencing levels of genetic diversity in woody plant species. New Forests,6(1),95-124.
    Hardy, G.H.,1908. Mendelian proportions in a mixed population. Science,28(706), 49-50.
    Harpending, H.C.,1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology,66(4),591.
    Harris, H.,1966. Enzyme polymorphisms in man. Proceedings of the Royal Society of London. Series B, Biological Sciences,164(995),298-310.
    Hewitt, G.M.,1996. Some genetic consequences of ice ages and their role in divergence and speciation. Botanical Journal of the Linnean Society,58(3), 247-276.
    Hewitt, G.M.,2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical transactions of the Royal Society of London. Series B, Biological sciences,359(1442):183-195.
    Holsinger, K.E., Gottlieb, L.D.,1991. Conservation of rare and endangered plants: principles and prospects. Genetics and Conservation of Rare Plants,195,208.
    Hudson, R.R.,1990. Gene genealogies and the coalescent process. In:Futuyma, D., Antonovics, J. (eds.), Oxford Surveys in Evolutionary Biology. Oxford University Press, New York, USA.
    Huson, D.H., Bryant, D.,2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution,23(2),254-267.
    Iketani, H., Manabe, T., Matsuta, N., Akihama, T., Tateki, H.,1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear(Pyrus spp). Genetic Resources and Crop Evolution,45(6),533-539.
    Iketani, H., Yamamoto, T., Katayama, H., Uematsu, C., Mase, N., Sato, Y.,2010. Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conservation Genetics,11(1),115-126.
    Katayama, H., Adachi, S., Yamamoto, T., Uematsu, C.,2007. A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genetic Resources and Crop Evolution,54(7),1573-1585.
    Katayama, H., Tachibana, M., Iketani, H., Zhang, S. L., Uematsu, C.,2012. Phylogenetic utility of structural alterations found in the chloroplast genome of pear:hypervariable regions in a highly conserved genome. Tree Genetics & Genomes,8(2),313-326.
    Katayama, H., Uematsu, C.,2003. Comparative analysis of chloroplast DNA in Pyrus species:physical map and gene localization. Theoretical and Applied Genetics, 106(2),303-310.
    Katayama, H., Uematsu, C.,2006. Pear (Pyrus species) genetic resources in Iwate, Japan. Genetic Resources and Crop Evolution,53(3),483-498.
    Kimura, M.,1985. The neutral theory of molecular evolution. Cambridge University Press.
    Kimura, T., Iketani, H., Kotobuki, K., Matsuta, N., Ban, Y., Hayashi, T., Yamamoto, T., 2003. Genetic characterization of pear varieties revealed by chloroplast DNA sequences. Journal of Horticultural Science Biotechnology,78(2),241-247.
    Kimura, T., Shi, Y., Shoda, M., Kotobuki, K., Matsuta, N., Hayashi, T., Ban, Y., Yamamoto, T.,2002. Identification of Asian pear varieties by SSR analysis. Breeding Science,52(2),115-121.
    Kingman, J.F.C.,1982. On the genealogy of large populations. Journal of Applied Probability,19,27-43.
    Ledig, F.T.,1992. Human impacts on genetic diversity in forest ecosystems. Oikos, 63,87-108.
    Liebhard, R., Gianfranceschi, L., Koller, B., Ryder, C.D., Tarchini, R., Van de Weg, E., Gessler, C.,2002. Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Molecular Breeding,10(4), 217-241.
    Liu, M., Ge, X., Wang, W., Hsu, T., Schaal, B.A., Chiang, T.,2004. Pollen and seed dispersal of Musa balbisiana in south China. Conservation Quarterly,47,9-24.
    Liu. G., Li, W., Zheng, P., Tong, X., Chen, L., Liu, D., Hussain, S., Teng, Y.,2012. Transcriptomic analysis of 'Suli' pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics,13,700.
    Lombard, P.B., Westwood, M.N.,1987. Pear rootstocks,145-183. In:Rom, R.C., Carlson, R.F. (eds.), Rootstocks for Fruit Trees. Wiley, New York.
    Loveless, M.D., Hamrick, J.L.,1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics,15,65-95.
    Mantel, N.,1967. The detection of disease clustering and a generalized regression approach. Cancer Research,27(2 Part 1),209-220.
    Marcysiak, K., Mazur, M., Romo, A., Montserrat, J.M., Didukh, Y., Boratynska, K., Jasinska, A., Kosinski, P., Boratynski, A.,2007. Numerical taxonomy of Juniperus thurifera, J. excelsa and J. foetidissima (Cupressaceae) based on morphological characters. Botanical Journal of the Linnean Society,155(4), 483-495.
    Merrell, D.J.,1981. Ecological genetics.黄瑞复译.1991.生态遗传学.北京.科学出版社
    Moffett, A.A.,1934. Chromosome and number and pollen germination in pears. Journal of Pomology,12,321-326.
    Mohanty, A., Martin, J.P., Aguinagalde, I.,2001. A population genetic analysis of chloroplast DNA in wild populations of Prunnus avium L. in Europe. Heredity, 87(4),421-427.
    Monte-Corvo, L., Cabrita, L., Oliveira, C., Leitao, J.,2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genetic Resources and Crop Evolution,47(3),257-265.
    Monte-Corvo, L., Goulao, L., Oliveira, C.,2001. ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. Journal of the American society for Horticultural Science,126(5),517-522.
    Moritz, C., Hillis, D.M.,1990. Molecular systematics:context and controversies. In Hillis, D.M., Moritz, C. (eds.), Molecular systematics. Sunderland:Sinauer, 1-11.
    Moritz, C.,1994. Applications of mitochondrial DNA analysis in conservation:a critical review. Molecular Ecology,3(4),401-411.
    Nebel, B.R.,1930. Recent findings in cytology of fruits (cytology of Pyrus Ⅲ). Proceedings. American Society for Horticultural Science,406.
    Nei, M.,1977. Standard error of immunological dating of evolutionary time. Journal of Molecular Evolution,9(3),203-211.
    Nei, M.,1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,89(3),583-590.
    Nei, M., Li, W.,1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10),5269-5273.
    Newton, A.C., Allnutt, A.R., Gillies, A.C.M., Lowe, A.J., Ennos, R.A.,1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecology Evolution,14(4),140-145.
    Peakall, R.O.D., Smouse, P.E.,2006. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1),288-295.
    Petit, E., Balloux, F., Goudet, J.,2001. Sex-biased dispersal in a migratory bat:A characterization using sex-specific demographic parameters. Evolution,55(3), 635-640.
    Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Aparajita Mohanty, A., Muller-Starck, G., Demesure-Musch, B., Palme, A., Martin, J.P., Rendell, S., Vendramin, G.G.,2003. Glacial refugia:hotspots but not melting pots of genetic diversity. Science,300(5625),1563-1565.
    Petit, R.J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., Vendramin, G.G.,2004. INVITED REVIEW:Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology,14(3),689-701.
    Petit, R.J., Kremar, A., Wagner, D.B.,1993. Geographic structure of chloroplast DNA polymorphisms in European oaks. Theoretical and Applied Genetics,87(1-2), 122-128.
    Petit, R.J., Mousadik, A., Pons, O.,1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology,12(4),844-855.
    Petit, R.J., Vendramin, G.G.,2007. Plant phylogeography based on organelle genes: an introduction. Phylogeography of Southern European Refugia,23-97.
    Pons, O., Petit, R.J.,1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics,144(3),1237-1245.
    Posada, D., Crandall, K.A., Templeton, A.R.,2000. GeoDis:a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology,9(4),487-488.
    Pritchard, J.K., Wen, X., Falush, D.,2009. Documentation for STRUCTURE software:Version 2.3. Universtiy of Chicago, Chicago,1-37.
    Raymond, M., Rousset, F.,1995. GENEPOP:population genetics software for exact tests and ecumenicism. Journal of Heredity,86(3),248-249.
    Reed, D.H., Frankham, R.,2003. Correlation between fitness and genetic diversity. Conservation Biology,17(1),230-237.
    Rehder, A.,1915. Synopsis of the Chinese species of Pyrus. Proceedings of The American Academy of Arts and Society,50(10),225-241.
    Rehder, A.,1940. Manual ofcultivated trees and shrubs,2nd ed., Macmillan, NewYork. SA.
    Richards, C.M., Volk, G.M., Reilley, A.A., Henk, A.D., Lockwood, D.R., Reeves, P.A., Forsline, P.L.,2009. Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genetics & Genomes,5(2),339-347.
    Rohlf, F.J.,1994. NTSYS-pc. Version 2.10e. Applied Biostatistics Inc. New York, 1994.
    Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R.,2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18),2496-2497.
    Rubtsov, G.A.,1944. Geographical distribution of the genus Pyrus and trends and factors in its evolution. The American Naturalist,78(777),358-366.
    Schaal, B.A., Hayworth, D.A., Olsen, K.M., Rauscher, J.T., Smith, W.A.,1998. Phylogeographic studies in plants:problems and prospects. Molecular Ecology, 7(4),465-474.
    Small, R.L., Ryburn, J.A., Cronn, R.C., Seelanan, T., Wendel, J.F.,1998. The tortoise and the hare:choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany,85(9),1301-1315.
    Smith, J.M.,1989. Evolutionary genetics. Oxford University Press.
    Senath, P.H.A.,2001. Numerical taxonomy. In:Boone, D., Castenholz, R.W. (eds.), Bergey's Manual of Systematic Microbiology, vol.1,2nd ed., Springer, New York.
    Soltis, D.E., Soltis, P.S., Kuzoff, P.K., Tucker, T.L.,1992a. Geographic structuring of chloroplast DNA genotyoes in Tiarella triforliata (Saxifragaceae). Plant Systematics and Evolution,181(3-4),203-216.
    Soltis, D.E., Soltis, P.S., Milligan, B.G.,1992b. Intraspecific chloroplast DNA variations:systematic and phylogenetic implications. In:Solits, D.E., Solits, P.S., Doyle, J.J. (eds.), Molecular Systematics of Plants. Chapman and Hall, New York.
    Taberlet, P., Gielly, L., Pautou, G., Bouvet, J.,1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology,17(5),1105-1109.
    Taberlet, P.L., Fungalli, A.G., Wust-Saucy, A., Wust-saucy, J.F.,1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology,7(4),453-464.
    Tajima, F.,1983. Evolutionary relationship of DNA sequences in finite populations. Genetics,105(2),437-460.
    Tamura, K., Dudley, J., Nei, M., Kumar, S.,2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,24(8),1596-1599.
    Templeton, A.R., Routman, E., Phillips, C.A.,1995. Separating population structure from population history:a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics,140(2),767-782.
    Teng, Y., Tanabe, K., Tamura, F., Itai, A.,2001. Genetic relationships of pear cultivars in Xin-Jiang, China, as measured by RAPD markers. Journal of Horticultural Science and Biotechnology,76(6),771-779.
    Teng, Y., Tanabe, K., Tamura, F., Itai, A.,2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. Journal of the American Society for Horticultural Science,127(2), 262-270.
    Terpo, A.,1985. Studies on taxonomy and grouping of species. Feddes Repertorium, 96(1-2),73-87.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.,1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,22(22),4673-4680.
    Volk, G.M., Richards, C.M., Henk, A.D., Reilley, A.A., Bassil, N.V., Postman, J.D., 2006. Diversity of wild Pyrus communis based on microsatellite analyses. Journal of the American Society for Horticultural Science,131(3),408-417.
    Vos, P., Hogers, R., Bleeker, M.,1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,23(21),4407-4414.
    Wahlund, S.,1928. The combination of populations and the appearance of correlation examined from the standpoint of the study of heredity. Hereditas,11,65-106.
    Wang, S., Xie, Y.,2004. China species red list, vol 1. Higher Education Press, Beijing, China.
    Wang, Z., Guan, K.,2011. Genetic structure and phylogeography of a relict tree fern, Sphaeropteris brunoniana (Cyatheaceae) from China and Laos inferred from cpDNA sequence variations:Implications for conservation. Journal of Systematics and Evolution,49(1),72-79.
    Weinberg, W.,1908. On the demonstration of heredity in man. In:Boyer, S.H. (eds.), 1963. Papers on Human Genetics. Prentice-Hall, Englewood Cliffs, NJ.
    Westwood, M.N.,1982. Pear germplasm of the new national clonal repository:it's evaluation and use. Acta Horticulturae,124,57-65.
    Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V.,1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18(22),6531-6535.
    Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M.A., Tao, S., Korban, S.S., Wang, H., Chen N.J., Nishio, T., Xu. X., Cong. L., Qi, K., Huang, X., Wang, Y, Zhao, X., Wu, J., Deng, C., Gou, C., Zhou, W, Yin, H., Qin, G., Sha, Y, Tao, Y, Chen, H., Yang, Y., Song, Y, Zhan, D., Wang, J., Li, L., Dai, M., Gu, C., Wang, Y., Shi, D., Wang, X., Zhang, H., Zeng, L., Zheng, D., Wang, C., Chen, M., Wang, G., Xie, L., Sovero, V., Sha, S., Huang, W., Zhang, S.; Zhang, M., Sun, J., Xu, L., Li, Y, Liu, X., Li, Q., Shen, J., Wang, J., Paull, R.E., Bennetzen, J.L., Wang, J., Zhang, S.,2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research,23(2),396-408.
    Wuyun, T., Ma, T., Uematsu, C., Katayama, H.,2013. A phylogenetic network of wild Ussurian pears (Pyrus ussuriensis Maxim.) in China revealed by hypervariable regions of chloroplast DNA. Tree Genetics & Genomes,9(1),167-177.
    Xue, W., Zhang, X.,2011. Geographic distribution of Coenosia Meigen (Diptera, Muscidae) of Yunnan, China, with descriptions of four new species. Deutsche Entomologische Zeitschrift,58(1),155-164.
    Yamamoto, T., Kimura, T., Sawamura, Y., Kotobuki, K., Ban, Y, Hayashi, T., Matsuta, N.,2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics,102(6),865-870.
    Yamamoto, T., Kimura, T., Sawamura, Y., Manabe, T., Kotobuki, K., Hayashi, T., Ban. Y., Matsuta, N.,2002a. Simple sequence repeats for genetic analysis in pear. Euphytica,124(1),129-137.
    Yamamoto, T., Kimura, T., Shoda, M., Imai, T., Saito, T., Sawamura, Y., Kotobuki, K., Hayashi, T., Matsuta, N.,2002b. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical and Applied Genetics,106(1),9-18.
    Yan, G., Long, H., Song, W., Chen, R.,2008. Genetic polymorphism of Malus sieversii populations in Xin-Jiang, China. Genetic Resources and Crop Evolution, 55(1),171-181.
    Yao, L., Zheng, X., Cai, D., Gao, Y., Wang, K., Cao, Y., Teng, Y.,2010. Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genetic Resources and Crop Evolution,57(6),841-851.
    Yeh, F.C., Yang, R., Boyle, T.B., Ye, Z., Mao, J.,1997. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada,10.
    Zhang, Q., Chiang, T., George, M., Liu, J., Abbott, R.J.,2005. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molecular Ecology,14(11), 3513-3524.
    Zheng, X., Cai, D., Yao, L., Teng, Y,2008. Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in Pyrus. Molecular Phylogenetics and Evolution,48(3),892-903.
    Zheng, X., Hu, C., Spooner, D., Liu, J., Cao, J., Teng, Y.,2011. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae). BMC Evolutionary Biology,11.