直升机飞行模拟器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,直升机以其独特的性能和机动能力在军用和民用方面有着其它机种不可替代的重要作用,特别是最近,我国已开放低空空域允许私人直升机飞行,因此,对直升机飞行员进行日常飞行训练就变得更加迫切。另一方面,随着虚拟现实技术的发展,飞行模拟器以其安全、节能、经济和高逼真度等优势,已经成为飞行员训练和飞机研发过程中不可缺少的仿真试验设备,本文根据实际科研项目的需要,对直升机模拟器的关键技术问题进行了深入系统的研究,并取得了如下创新性成果。
     (1)针对仿真应用,建立了直升机飞行的旋翼空气动力学模型。直升机的旋翼桨叶绕桨毂转动时,同时绕水平铰作挥舞运动,此时求旋翼升力将变得十分复杂棘手,并且,国内外鲜有文献对旋翼升力的迭代计算流程进行探讨,本文在对旋翼的空气动力学进行分析时,分别利用动量法和叶素法推导出悬停、垂直上升和下降时旋翼升力的求解公式,并推导出一般飞行状态和垂直起降状态的自然挥舞运动方程;当考虑桨叶的挥舞运动时,利用叶素法分析了叶素力,提出了一种求旋翼对机身产生的升力、侧向力及后向力的八占位法。利用动量-叶素法,推导了理想扭转和线性扭转型桨叶的旋翼升力计算式,给出了此两种叶型针对仿真应用的旋翼升力的迭代计算流程。
     (2)建立了可同时适用于飞行与着陆仿真的机身动力学模型。在现有的直升机模拟器动力学模型中,多在飞行和着陆时分别采取两个不同的动力学模块,这使得模拟器很难准确反映出直升机着陆或离地瞬间的动态特性。本文在前述直升机飞行的空气动力学模型基础上,将机轮简化为带有粘性阻尼的三维线性弹簧,选取含有耗散函数的拉格朗日方程进行建模,以微小时段下机身的微小位移和转角为广义坐标,建立了集飞行与着陆为一体的六自由度机身动力学模型;基于四阶龙格库塔法,给出了机身位置和姿态角的具体计算流程。
     (3)结合新搭建的直升机飞行模拟器实验台,编制了直升机动力学仿真与视景仿真软件。利用MultiGen Creator软件建立了地形和直升机的三维视景模型;采用HLA技术框架作为数据通信模块,实现了飞行仿真系统与视景仿真系统之间的数据传输,利用HLA技术中的时间推进机制,有效地解决了视景仿真画面的迟滞性问题;根据传过来的直升机位姿参数,利用视景驱动软件OpenGVS在VC++6.0平台上完成了直升机的实时驱动。从仿真画面上看,系统的跟随性较好,满足了直升机模拟器在视景仿真方面的实时性和逼真度要求。在搭建的直升机模拟器实验平台上对前文提出的旋翼空气动力学理论进行了仿真和验证,通过与实际飞行数据对比,验证了本文提出的空气动力学模型和机身动力学模型的正确性和实用性。最后,在此实验平台上对直升机的典型飞行及着陆动作进行了仿真。
     论文还做了如下工作:(1)对机身所受的其它气动力进行了建模。详细探讨了旋翼对机身的反扭矩和陀螺力矩、尾桨对机身的气动力,以及悬停和垂直起降时周围空气对机身的气动阻力。(2)制定了模拟器的整体规划方案,同时对视景仿真系统中的视景显示子系统进行了设计。根据模拟器的设计要求,对模拟器进行了整体规划,在确定了视景显示系统的方案后,对球幕投影系统进行了设计。
In recent years, the helicopter has achieved an irreplaceable role due to its uniqueperformance and mobility in military and civil fields. Our government, especially, hasalready opened airspace at low altitudes allowing private helicopters to fly. So,training helicopter pilots becomes more urgent. On the other hand, with thedevelopment of virtual reality technologies, flight simulator has already become anindispensable emulation test equipment for pilot training and aircraft-developmentowing to its safety, energy saving, low cost and high fidelity advantages. To meet theneed of practical research project, this paper has made a deep and systematicalresearch on the key technology of helicopter simulator and some innovativecontributions are enumerated as follows.
     (1)Aiming at simulation application, the main rotor aerodynamic model of thehelicopter flight has been set up. When the main rotor blade of the helicopter rotatesabout the hub, it also flaps around the level hinge. In this case, the calculation of mainrotor thrust will become quite complex. In addition, few literatures at home andabroad discussed iterative computation process of main rotor thrust. When theaerodynamic force acting on main rotor is analysed in this paper, the formulas tocalculate main rotor thrust in hovering, vertical climb and descent are deduced usingmomentum theory and blade element theory. Futhermore, blade natural-flap motionequations are derived in the general flight state and in the vertical climb and descentstate. When considering flapping motion of blades, the force on the blade element isanalysed and eight-site-occupancy method is put forward to calculate upward force,lateral force and backward force on the airframe from main rotor using blade elementtheory. And then, main rotor thrusts from ideal-twist and linear-twist blades areworked out based on Blade Element Momentum(BEM) theory. Iterative computationprocesses of main rotor thrust produced by the two different blade profiles areproposed, which are applied to simulation application.
     (2)Dynamics model of airframe which applied to both flight and landingsimulation has been established. In the existing dynamics models of helicoptersimulator, two different dynamics modules were adopted separately when flight andlanding, which made it difficult for simulator to accurately reflect the dynamic natureof helicopter at landing and liftoff moment. On base of the aforementionedaerodynamic model of helicopter flight, each tyre is regarded as a suspension, whichconsists of three-dimensional linear springs and viscous dampings in this paper. The Lagrange equation including dissipation function has been chosen as our modelingfoundation. Treating micro displacements and rotating angles of airframe in minutetime interval as generalized coordinates, we have given6-DOF dynamics equation ofairframe which involved flight as well as landing. Based on the fourth-orderRunge-Kutta method, concrete compute process about airframe position and attitudeangle was put forward.
     (3)Combined with the newly constructed experiment platform of helicoptersimulator, the dynamic and visual simulation software of the helicopter has beendeveloped. Via Software Multigen Creator,3D visual models of terrain and thehelicopter were established. Adopting technical framework HLA as datacommunication module, we have effectively realized data transfer between flightsimulation subsystem and visual simulation subsystem. Using time advancemechanism from HLA, this paper has effectively prevented the retardance of visualsimulation scene. According to position and orientation parameters of the helicopterand using view drive software OpenGVS, real-time drive of the helicopter has beenrealized on platform VC++6.0. Simulation scene showed this system had excellentfollowing performance and it could meet the requirement of real-time andverisimilitude in the respect of visual simulation for helicopter simulator.Aerodynamic theories of main rotor outlined above have been simulated and verifiedon the experimental platform of helicopter flight simulator. The simulation results andactual flight data have been compared to verify the correctness and practicality ofaerodynamic model and airframe dynamics model presented in this paper. Finally, thetypical flight and landing behaviours of the helicopter have been simulated on thisexperiment platform.
     The other works of this paper are summarized as follows:(1)The otheraerodynamic forces on the airframe have been modeled. The antitorque andgyroscoopic torque arisen by main rotor, aerodynamic force deriving from tail rotor,aerodynamic drag from the surrounding air on the airframe in the hovering state,vertical climb and descent state have been discussed in detail.(2)The whole planningscheme of simulator has been formulated and scene display subsystem as a part ofvisual simulation system has been designed. According to the design requirements ofsimulator, the overall planning of simulator was given. After the scheme of visualdisplay subsystem was determined, the ball-screen projection system was designed.
引文
[1] Oh SR., Ryu JC, Agrawal SK. Dynamics and control of a helicopter carrying apayload using a cable-suspended robot[J]. Journal of Mechanical Design,2006,128(5):1113-1121.
    [2] Littlewooda N, Parkerb A, Hearnsa Stephen, Corfield A. The UK helicopterambulance tasking study. Injury,2010,41(1):27-9.
    [3]陆洋,顾仲权,凌爱,李明强.直升机结构响应主动控制飞行试验[J].振动工程学报,2012,25(1):24-29.
    [4]吕保良.直升机自转及相关标准分析[J].航空标准化与质量,2009,231:13-16.
    [5] Gomes JO, Wood DD, Carvalho PVR, Huber GJ, Borges MRS. Resilience andbrittleness in the offshore helicopter transportation system: The identification ofconstraints and sacrifice decisions in pilots work[J]. Reliability Engineering&System Safety,2009,94(2):311-319.
    [6] Montgomery JF, Johnson AE, Roumelliotis SI, Matthies Larry H. The jetpropulsion laboratory autonomous helicopter testbed: A platform for planetaryexploration technology research and development[J]. Journal of Field Robotics,2006,23(3):245-267.
    [7] Kim S.K., Tilbury DM. Mathematical modeling and experimental identificationof an unmanned helicopter robot with flybar dynamics[J]. Journal of RoboticSystems,2004,21(3):95-116.
    [8] Baoquan S, Mills JK, Yunhui L, Caizhi F. Nonlinear dynamic modeling andcontrol of a small-scale helicopter[J]. International Journal of ControlAutomation and Systems,2010,8(3):534-543.
    [9] Yavrucuk, Ilkay; Kubali, Eser; Tarimci, Onur. A low cost flight simulator usingvirtual reality tools[J]. IEEE Aerospace and Electronic Systems Magazine,2011,26(4):10-14.
    [10]齐潘国.飞行模拟器液压操纵负荷系统力感模拟方法研究[D].哈尔滨:哈尔滨工业大学,2009.
    [11]赵旭东,贾荣珍. ARJ21飞机工程模拟器关键技术研究[J].系统仿真学报,2009,21(21):6856-6859.
    [12]杨宇.飞行模拟器动感模拟关键技术研究[D].哈尔滨:哈尔滨工业大学,2010.
    [13]周冬萍,鄢辉萍,戚春明.直升机工程模拟器在飞行控制律设计和操纵品质评估中的应用[C].2010系统仿真技术及其应用学术会议.长春, Augu,315-319,2010.
    [14] Li Haixu, Qu Xiangju, Wang Weijun. Multi-body motion modeling andsimulation for tilt rotor aircraft[J]. Chinese Journal of Aeronautics,2010,23(4):415-422.
    [15]袁东,李葆红,章伯定.直升机模拟器鉴定标准的分析[J].飞行力学,2005,23(4):9-12.
    [16]许和勇,叶正寅,王刚,史爱明.旋翼/机身干扰非定常流场数值模拟[J].空气动力学学报,2010,28(2):162-167.
    [17]许建华,宋文萍,韩忠华.基于涡限制法的旋翼气动噪声计算[J].航空学报,2011,32(12):2204-2212.
    [18]赵刚张晓林基于虚拟现实技术的无人直升机实时监控系统[J].北京航空航天大学学报,2003,29(4):291-294.
    [19]罗漳平,向锦武.直升机起落架抗坠毁性能的有限元仿真评估[J].航空学报,2003,24(3):216-219.
    [20] Li Pan, Chen Renliang A mathematical model for helicopter comprehensiveanalysis[J]. Chinese Journal of Aeronautics,2010,23(3):320-326.
    [21] Yifeng Wang, Haowen Wang. Dynamic modeling of helicopter rotor blades[J].Zheng Gao Tsinghua Science Technology,2009,14:84-88.
    [22] Zhaojing Liu, Feng Zuo, Shanzhi Ren, Fengzhen LI, Preparation of helicopterrotor counterbalance component by means of permanent-mold casting[J].Transactions of Nonferrous Metals Society of China,2007,17(2):357-362.
    [23] Yihua Cao, Ziwen Yu. Numerical simulation of turbulent flow around helicopterducted tail rotor, Aerospace Science and Technology,2005,9(4):300-306.
    [24] Chengxiong Pan, Jingzhou Zhang, Yong Shan. Modeling and analysis ofhelicopter thermal and infrared radiation[J]. Chinese Journal of Aeronautics,2011,24(5):558-567.
    [25] Xu Heyong, Ye Zhengyin,Numerical simulation of unsteady flow around forwardflight[J]. Chinese Journal of Aeronautics,2011,24(1):1-7.
    [26] Luo Chenga, Liu Hua, Yang Jialing, Liu Kaixin. Simulation and analysis ofcrashworthiness of fuel tank for helicopters[J]. Chinese Journal of Aeronautics,2007,20(3):230-235.
    [27] H. Shahverdi, A.S. Nobari, M. Behbahani-Nejad, H. Haddadpour. Aeroelasticanalysis of helicopter rotor blade in hover using an efficient reduced-orderaerodynamic model[J]. Journal of Fluids and Structures,2009,25(8):1243-1257.
    [28] Senthil Murugan, R. Chowdhury, S. Adhikari, M.I. Friswell. Helicopteraeroelastic analysis with spatially uncertain rotor blade properties[J]. AerospaceScience and Technology,2012,16(1):29-39.
    [29] S.R. Viswamurthy, Ranjan Ganguli. Modeling and compensation of piezoceramicactuator hysteresis for helicopter vibration control[J]. Sensors and Actuators A:Physical,2007,135(2):801-810.
    [30] Lynn Byers, Farhan Gandhi. Embedded absorbers for helicopter rotor lagdamping[J]. Journal of Sound and Vibration,2009,325(4):705-721.
    [31] L. Sanches, G. Michon A, Berlioz, D. Alazard parametrically excited helicopterground resonance dynamics with high blade asymmetries[J]. Journal of Soundand Vibration,2012,331(16):3897-3913.
    [32]胡国才,马琳,张学军.直升机旋翼粘弹阻尼器定常响应分析[J].直升机技术,2010(2):9-13.
    [33] Johnson W. Helicopter theory[M]. New York: Dover Publications, Inc,1980.
    [34] Gessow A, Myers G C. Aerodynmics of the helicopter[M]. New York: FrederickUngar Publishing Co,1985.
    [35] Stepniewski W Z, Keys C N. Rotary-wing aerodynamics[M]. New York: DoverPublications, Inc,1984.
    [36] Glauer t H. A general theory of the autogyro[M]. ARCR&M1111,1926.
    [37] Salazar S, Romero H, Lozano, R. Modeling and real-time stabilization of anaircraft having eight rotors[J]. Journal of Intelligent&Robotic Systems,2009,54(1):455-470.
    [38]招启军,徐国华.直升机旋翼下洗流场的数值模拟[J].南京理工大学学报,2005,29(6):669-678.
    [39]招启军,徐国华.直升机旋翼流场的初步混合方法模拟[C],探索创新交流-中国航空学会青年科技论坛文集,北京: July129-137,2004.
    [40]褚江,王晓江,焦晓辉.动量法翼型阻力飞行测量技术[J].科学技术与工程,2012,12(15):3695-3698.
    [41]王适存,徐国华.直升机旋翼空气动力学的发展[J].南京航空航天大学学报,2001,33(3):203-211.
    [42] J.Sedden. Basic helicopter aerodynamics[M]. London: A Division of BlackwellScientific Publications, Ltd,1990.
    [43] GLAUERT, H. The elements of aerofoil and airscrew theory[M]. Cambridge:Cambridge University Press,1947.
    [44] VON MISES, R.. Theory of Flight[M]. New York: Dover Publications,1959.
    [45] Thomas C, Wey Robin B, Gray. A numerical investigation of blade tip loadingson thick-bladed helicopter rotors[J]. Computers&Mathematics withApplications,1986,12(1):53-83.
    [46] NORBERG, U. M. Vertebrate Flight[M]. Berlin: SpringeVerlag,1990.
    [47] G.K. Taylor, A.L.R. Thomas. Animal flight dynamics ii. longitudinal stability inflapping flight[J]. Journal of Theoretical Biology,2002,214(3):351-370.
    [48] Gabriel M, Hoffmann, Haomiao Huang, Steven L. Waslander, Claire J. TomlinPrecision flight control for a multi-vehicle quadrotor helicopter testbed[J].Control Engineering Practice,2011,19(9):1023-1036.
    [49]周文雅,李立涛,杨涤.倾转旋翼航空器建模方法研究[J].飞行力学,2008,26(3):5-9.
    [50]宋宝泉.小型无人直升机非线性建模与控制算法研究[D].长沙:国防科学技术大学,2010.
    [51]王小青.无人直升机建模与控制技术研究[D].南京:南京航空航天大学,2009.
    [52]孙涛.直升机飞行力学模型辨识研究[D].南京:南京航空航天大学,2010.
    [53] Glauert, H. Airplane propellers aerodynamic theory volume iv edited by williamfrederick durand[M]. New York: Dover Publications, Inc,1963.
    [54] Plautia,Helicopter performance, Stability and control[R]. PWS Press, America,1986.
    [55] Madsen H, Mikkelsen R,Oye S. A detailed investigation of the Blade ElementMomentum (BEM) model based on analytical and numerical results and proposalfor modifications of the BEM model[J]. Journal of Physics Conference Series,2007,75:12016-12016.
    [56] Pratumnopharat R, Leung P. S. Validation of various windmill brake state modelsused by blade element momentum calculation[J]. Renewable Energy,2011,36(11):3222-3227.
    [57]王海,徐国华.直升机旋翼瞬态气动响应分析的一个高效方法[J].应用力学学报,2006,23(1):154-159.
    [58]付洁程,周洲.垂直起降无人机涵道螺旋桨系统特性及计算方法研究[J].科学技术与工程,2012,12(6):1294-1300.
    [59]唐正飞,王畅,高卓飞.微型旋翼悬停状态气动性能分析方法[J].南京航空航天大学学报,2011,43(3):357-362.
    [60] Castles W, Durham H L. Distribution o f normal component of induced velocityin lateral plane of a lifting rotor [R]. NACA TN3841,1956.
    [61] Heyson H H, KatzoffS. Induced velocities near a lifting rotor with nonuniformdisc loading[R]. NACA TR1319,1957.
    [62] Landgrebe A J. An analytical and experimental investigation o f helicopter rotorhover performance and wake geometry characteristics[R]. USAAMRDL TR71-24,1971.
    [63] Kocurek J D, Tangler J L. A prescribed wake lifting surface hover performanceanalysis[J]. Journal of the American Helicopter Society,1977,22(1):24-35.
    [64] Miller R H. A simplified approach to the free wake analysis of a hovering rotor[C]. The7th European Rotorcraft Forum, Southampton,1981.
    [65] Quackenbush T R, Bliss D B, etal. Free wake analysis of hover performanceusing a new inflence coefficient method[R]. NASA CR4309,1990
    [66] Miller W O, Bliss D B. Direct periodic solutions of rotor free wakecalculations[J]. Journal of the Amer ican Helicopter Society,1993,38(2):53~60.
    [67]徐国华,王适存.悬停旋翼的自由尾迹计算[J].南京航空航天大学学报,1998,30(2):126-131.
    [68] Crouse G L, Leishman J G. A new method for improved free-wake convergencein hover and low speed forward flight[C]. The21st AIAA Aerospace SciencesMeeting and Exhibit,1993.
    [69] Sadler S G. Development and application of a method for predicting rotor freewake positions and resulting rotor blade air loads[R]. NASA-CR-1911,1971.
    [70] Johnson W. A comprehensive analytical model of rotorcraft aerodynamics anddynamics[R]. NASA TM-81182,1980.
    [71]谭剑锋.基于升力面自由尾迹的直升机旋翼悬停性能参数影响研究[J].航空学报,2012,33(2):249-257.
    [72]徐冠峰.基于自由尾迹的共轴直升机航向/总距解耦分析[J].北京航空航天大学学报,2011,37(2):249-252.
    [73] Caradonna F X, Dessopper A, Tung C. Finite difference modeling of rotor flowincluding wake effects[J]. Jounal of the American Helicopter Society,1984,29(2):26-33.
    [74] Strawn R C, Caradonna F X. Numerical modeling of rotor flows with aconservative form of the full-potential equations[J]. American Institute ofAeronautics and Astronautics,1987,25(2):193-201.
    [75] Steinhoff J, Ramachandran K. Free wake analysis of compressible rotor flows[J].American Institute of Aeronautics and Astronautics,1990,28(3):426-431.
    [76] Boniface J C, Mialon B, Sides J. Numer ical simulation of unsteady Euler flowaround multi-bladed rotor in forward flight using a moving grid approach[C].The51st AHS Annual Forum,1995.
    [77] Strawn R C, Bar th T J. A finite-folume Euler solver for computing rotary-wingaerodynamics on unstructured meshes[J]. Journal of the AHS,1993,38(2):61-68.
    [78] Sheffer S G, Alonso J J, et al. Time-accurate simulation o f helicopter rotor flowsincluding aeroelastic effects[R]. AIAA Paper97-0399,1997.
    [79] Srinivasan G R, McCroskey W J. Navier-Stokes calculations of hovering rotorflow fields[J]. Journal of Aircraft,1988,25(10):865-874.
    [80] Srinivasan G R, Baeder J D, et al. Flowfield of a lifting rotor in hover: a navier-stokes simulation[J]. AIAA Journal,1992,30(10):2371-2378.
    [81] Srinivasan G R, Baeder J D. A free wake Euler/Navier-Stokes numerical methodfor helicopter rotor[J]. American Institute of Aeronautics and Astronautics,1993,31(5):959-962.
    [82] Dumont A, Le Pape A, Peter J. Aerodynamic shape optimization of hoveringrotors using a discrete adjoint of the reynolds-averaged navier-stokesequations[J]. Journal of the American Helicopter Society,2011,56(3):256-258.
    [83] Bowen Zhong, Scott Shaw, NingQin, BILU. Implicit multiblockEuler/Navier–Stokes simulation for rotor tip vortex and wake convection[J].International Journal For Numerical Methods In Fluids,2007,55(6):509-536.
    [84] Pavel Marilena D. Prediction of the necessary degrees of freedom for helicopterreal-time simulation models[J]. Journal of Aircraft,2008,45(4):1256-1266.
    [85] Voskuijl.M, Padfield G D, Walker D J. Simulation of automatic helicopter decklandings using nature inspired flight control[J]. Aeronautical Journal,2010,114(1151):25-44.
    [86] Zhu Zheng-hong, Larosa Michael, Ma James. Fatigue life estimation of helicopterlanding probe based on dynamic simulation[J]. Journal of Aircraft,2009,46(5):1544-1544.
    [87] Dario Schafroth, Christian Bermes, Samir Bouabdallah,Roland Siegwart.Modeling and System Identification of the mufly micro helicopter[J]. Journal ofIntelligent&Robotic Systems,2010,57(1):27-47.
    [88] Vilchis JCA, Brogliato B, Dzulc A, Lozano R.. Nonlinear modelling and controlof helicopters r[J]. Automatica,2003,39(9):1583-1596.
    [89] Wall AS, Langlois RG, Afagh FF. Modeling helicopter blade sailing: dynamicformulation in the planar case[J]. Journal of applied mechanics-transactions ofthe asme,2007,74(6):1104-1113.
    [90] Huang Xingli, Zhu, Jihong Liu, Shiqian. Neural network adaptive control forsmall unmanned tandem helicopter[J]. Sixth World Congress on IntelligentControl and Automation,2006,1:9302-9306.
    [91] Salazar-Cruz S, Lozano R, Escareno J. Stabilization and nonlinear control for anovel trirotor mini-aircraft[J]. Control Engineering Practice,2009,17(8):886-894.
    [92] Dzul A, Lozano R., Castillo P. Adaptive control for a radio-controlled helicopterin a vertical flying stand[J]. International journal of adaptive control and signalprocessing,2004,18(5):473-485.
    [93] Shih CL, Chen ML, Wang JW. Mathematical model and set-point stabilizingcontroller design of a twin rotormimo system[J]. Asian journal of control,2008,10(1):107-114.
    [94] Das A, Lewis F, Subbarao K. Backstepping approach for controlling a quadrotorusing Lagrange form dynamics[J]. Journal of Intelligent&Robotic Systems,2009,56(1):127-151.
    [95] Delsart D, Langrand B, Vagnot A.. Evaluation of a Euler/Lagrange couplingmethod for the ditching simulation of helicopter structures[J]. Fluid StructureInteraction,2009,105(1):259-268.
    [96] Zarikian G, Serrani A. Harmonic Disturbance Rejection in Tracking Control ofEuler-Lagrange Systems: An External Model Approach[J]. IEEE Transactions onControl Systems Technology,2007,15(1):118-129.
    [97] Kathleen R. Rosen. The history of medical simulation Original Research[J].Journal of Critical Care,2008,23(2):157-166.
    [98] K.S. Berbaum, R.S. Kennedy, L.J. Hettinger. Visual tasks in helicopter shipboardlanding[J]. Applied Ergonomics,1991,22(4):231-239.
    [99] Woonchul Ham, Ts.Khurelbaatar, Kyumann Im. Computer graphic animation forhelicopter control[J]. IEEE International Symposium on Industrial Electronics,2009,1937-1942.
    [100] Gertach. Visualisation of the brownout phenomenon, integration and test on ahelicopter flight simulator[J]. Aeronautical Journal,2011,115(1163):57-63.
    [101]邱岳恒,卢京潮,刘秉.直升机视景仿真及座舱仪表显示系统实现[J].测控技术,2010,29(7):13-15.
    [102]马天翼,张建国.直升机飞行模拟器视景系统地形数据库的设计与实现[J].直升机技术,2007,149(7):25-30.
    [103]魏靖彪,郭广利,黄海,赵孜萍.直升机布雷视景仿真的建模与实现[J].航空计算技术,2009,39(1):78-79.
    [104]刘婉竹.不确定环境下无人直升机飞行控制方法研究[D].沈阳:沈阳航空航天大学,2012.
    [105] Srivastava, Anurag; Sood, Akshay, Joy, S. Parijat. Principles of physics insurgery: the laws of flow dynamics physics for surgeons–Part1[J]. IndianJournal of Surgery,2009,71(4):182-187.
    [106]秦超敏,程卫真,李万新.直升机旋翼运动参数试飞技术[J],飞行力学,2004,22(2):65-68.
    [107]周洪波.小型无人直升机的建模与控制器设计[D].广州:华南理工大学,2011.
    [108]张辽,张允昌,韩亮.直升机旋翼系统仿真建模研究[J].系统仿真学报,2006,18(2):166-171.
    [109]宋于波.基于Flightlab的无人直升机建模与仿真技术研究[D].南京:南京航空航天大学,2011.
    [110]蔚海军.基于Flightgear的直升机飞行模拟系统研究[D].大连:大连理工大学,2008.
    [111]张余华.直升机自转着陆过程的最优控制[D].南京:南京航空航天大学,2004.
    [112]尹德新,何欢,陈国平.滑撬式起落架动力学设计与仿真[J].江苏航空,2010,增刊:33-36.
    [113]林松,一种用于直升机的水陆两用浮筒加滑橇式可收缩的起落架:中国,CN201712786U [P].2011-01-19.
    [114]孔天荣.磁流变自抑振智能镗杆的理论与方法研究[D].杭州:浙江大学,2009.
    [115]李庆扬,王能超,易大义著.数值分析[M].北京:清华大学出版社,2008.
    [116]臧春杰.直升机座舱仪表仿真技术研究[D].南京:南京航空航天大学航空宇航学院,2008.
    [117]黄安祥,刘长华,陈宗基.空间立体仿真视景的技术研究及实现[J].系统仿真学报,2001,14(4):288-291.
    [118]马天翼,张建国.直升机飞行模拟器视景系统地形数据库的设计与实现[J].直升机技术,2007,3:25-30.
    [119]谢广辉,魏少宁.飞行模拟器视景系统发展现状和趋势[J].航天医学与医学工程,2003,16(3):223-226.
    [120]郭栋.海上航空器遇难模拟系统原型研究[D].大连:大连海事大学,2008.
    [121]张立民.飞行模拟器视景仿真系统设计与关键技术研究[D].天津:天津大学,2004.
    [122]张晓兵,安新伟,刘璐,尹涵春.头盔显示器的发展与应用[J].电子器件,2000,23(1):51-59.
    [123]李明忠,毕长剑,张双建,牛敦津.训练用飞行仿真器视景显示系统研究[C].第五届全国仿真器学术会论文集,长春:56-62,2004.
    [124]王乘等. Creator可视化仿真建模技术[M].武汉:华中科技大学出版社,2005.
    [125]廉静静,尹勇,杨晓,神和龙.基于OpenGVS半潜船操作模拟器视景系统的研究[J].计算机应用与软件,2011,28(5):67-70.
    [126]余洋,基于HLA的视景仿真技术研究[D].合肥:中国科学技术大学,2009.
    [127] Meng Qinghua, Gao Wei, Guo Xi, Li Qiuyan. A Study on Dynamic CollisionDetection of Armored Vehicle in Visual Simulation[C].2012AASRIConference on Computational Intelligence and Bioinformatics, Changsha, July,505-511,2012.
    [128] zer Uygun, Ercan ztemel, Cemalettin Kubat. Scenario based distributedmanufacturing simulation using HLA technologies[J]. Information Sciences,2009,179(10):1533-1541.
    [129] Ning Li, Xiao-Yuan Peng, Min-Hu Zhang, Mei Wang, Guang-Hong Gong.Multimedia communication over HLA/RTI[J]. Simulation Modelling Practiceand Theory,2006,14(2):161-176.
    [130] Frederick Kuhl, Richard Weatherly, Judith Dahmann. Creating ComputerSimulation Systems An Introduction to High Level Architecture[M]. PrenticeHall PTR,2003.
    [131]肖凡,张志荣,徐勤超. HLA时间推进中死锁的算法研究和改进[J].舰船电子工程,2008,28(1):127-129.
    [132] Jie Liu, Yiqi Zhou, Long Yan, Xingfang Zhao. Research on DR Algorithm withthe Model of Basic Flight Action Based on HLA[C]. Proceedings-2ndWorkshop on Digital Media and its Application in Museum and Heritage,Dmamh,291-296,2007.
    [133] Munzinger C. Development of a real-time flight simulator For an experimentalmodel helicopter[D]. Atlanta: Georgia Institute of Technology School ofAerospace Engineering,1998.