单前转向轮摆振机理研究与结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摆振是轮子行走机构动力学研究的重要问题之一。本文从简单的单转向轮系统入手,建立不同复杂程度单转向轮系统的线性与非线性动力学模型;搭建了参数可调的单转向轮摆振实验装置,验证了转向轮系统动力学系统模型的有效性;应用线性常微分方程稳定性理论与非线性动力学Hopf分岔理论,研究转向轮系统的稳定性;提出了防范摆振的方法;对实际轮椅车转向轮系统参数进行优化设计;解决了杠杆驱动式轮椅车转向轮的摆振问题。其具体研究工作如下:
     从单自由度转向轮系统出发,分别探讨了单自由度垂直旋转枢轴、非垂直旋转枢轴转向轮动力学系统的数学模型与稳定性;建立了单自由度、二自由度典型单转向轮系统的线性动力学模型,分析了系统中阻尼参数、质量参数、几何参数与陀螺仪效应对稳定性的影响;基于线性稳定性理论对单轮、双轮、单自由度和二自由度典型单转向轮动力学系统进行稳定性分析;并从频域角度对摆振的机理进行进一步的解释。
     以杠杆驱动式轮椅车的转向轮系统为研究对象,将系统适当简化,利用分析力学方法,建立了转向轮三自由度非线性动力学系统模型,以及分解的两种二自由度和单自由度转向轮动力学系统模型。讨论了转向轮动力学系统中主要参数对其稳定性的影响。
     搭建了可调节主要参数的转向轮摆振实验装置,构造了一种全新的转向轮摆振实验台。此外,通过对三个自由度以及分解的二自由度和单自由度转向轮摆振实验装置的实验研究,用来检验理论上所建立的转向轮非线性动力学系统模型的可靠性。
     在二自由度转向轮系统动力学模型的基础上,应用非线性动力学Hopf分岔理论和常微分方程稳定性理论,对二自由度有、无阻尼转向轮系统的自激型摆振分岔特性进行了分析。阐明了,转向轮系统在一组特定的参数组合下,会表现出自激型摆振的性质,即自激型摆振是一种非线性动力学Hopf分岔后出现的稳定极限环振动现象;通过对摆振振幅及摆振发生时的速度的分析表明,由于转向轮系统中质量参数、几何参数及阻尼参数的改变,能够引起转向轮系统稳定性的变化,间接影响了摆振振幅和频率的变化,而摆振的强烈程度也反映了轮子行走装置的稳定性。
     通过研究转向轮系统参数变化对摆振的影响规律,提出了预防摆振的方法,获得了几条新的具有实用价值的结论。例如,通过增加拖距长度、合理的选择质量参数或者增加系统的阻尼都可以减小甚至消除摆振。利用遗传优化算法对轮椅车转向轮系统进行结构优化,针对实验研究的转向轮摆振实验装置进行稳定性分析,并采用增加阻尼轴承的方法改善实验中转向轮系统的稳定性。应用稳定性分析和结构优化设计的方法和结论,解决杠杆驱动式轮椅车转向轮摆振问题。
The steering wheel shimmy is a serious problem of wheeled device dynamics system. The mechanism of shimmy and stability analysis of different dynamics models were developed by simplified single steering wheel system. Meanwhile the mathematic steering wheel models were valid by shimmy test bench. The linear and nonlinear stability characters of steering wheel model were analyzed by stability theory of ordinary differential equation and Hopf bifurcation theory of nonlinear dynamics. The methods that can avoid shimmy were summed up from engineering viewpoints. The shimmy problem of steering wheel in a lever propulsion wheelchair has been solved based on the methods and conclusions of analysis of stability and optimization design. The main researches are as follows:
     The single Degree of Freedom (DoF) model of the typical steering wheel with vertical axis and inclined axis was established and their stability analyses were conducted respectively. The linear dynamics model of the typical steering wheel system was established to study the stability effect with different parameters. In particular, an analytical solution has been found for a system where the wheel has a mechanical trail and both the yaw and lateral damping of the hinge point are taken into account. The stability analysis of one and two DoFs typical steering wheel model was conducted using root locus theory and Routh Criterion. Furthermore we are applying control theory to explain the mechanism of shimmy in frequency domain.
     Lever propulsion wheelchair steering wheel dynamics model of3DoFs was established by analytic mechanics. This model is derived from Lagrange equation and its numerical solutions are solved by Ordinary Differential Equation (ODE) method. And the derivatives models are introduced by simplifying the3DoFs caster wheel model. Its different stability characters were given by changing the geometry, mass and damping parameters of the steering wheel system.
     In the experimental stage, a new steering wheel shimmy test bench was established. The whole structure and the working process of the test bench were introduced. Vibration measurements successfully verified the theoretical results obtained from mathematical model as well as the dynamics behavior of towed wheels within different cases.
     Steering wheel model bifurcation character of the self-excited shimmy was analyzed by Hopf bifurcation theory of nonlinear dynamics and by stability theory of ordinary differential equation. The computation results indicate that the self-excited shimmy is a stable limit cycle occurring after Hopf bifurcation and it can occur on the wheelchair with a certain set of parameters. The shimmy angle and the range of critical velocities of the wheelchair have effects on shimmy and the intensity of shimmy is also able to represent good or bad stability characters.
     To avoid and eliminate shimmy, some new practical suggestions are offered due to the effects of system parameters on shimmy, for instance, by increasing length of the trail, applying a damped bearing and adopting reasonable parameters of geometry and mass.
     To avoid the shimmy in the design stage, the genetic algorithm was applied to optimization design of the steering wheel system. According to the results obtained from the experiment to analyze the stability characters. Shimmy can be avoided after replacing a damping bearing with a set of reasonable parameters. Using the same method, the optimization of a real wheel chair was conducted. Base on the stability analysis and optimization design conclusion to solve the shimmy problem of steering wheel in a lever propulsion wheelchair.
引文
[1]赵剑.独立悬架汽车摆振研究及NVH问题讨论:[清华大学博士学位论文].北京:清华大学,2001
    [2]贺丽娟.汽车前轮摆振吉林研究:[北京理工大学博士学位论文].北京:北京理工大学,2006
    [3]管迪华,何泽民,肖田元.汽车转向轮振动的研究.汽车工程,1984(3):29-40
    [4]李胜.汽车转向轮摆振的机理及其控制的系统研究:[吉林大学博士学位论文].长春:吉林大学,2002
    [5]李胜,林逸.汽车转向轮摆振分岔特性的数值分析.吉林大学学报(工学版),2005,35(1):7-11
    [6]孔明树.解放牌汽车前轮摆振的研究.汽车技术,1985(7):22-28
    [7]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991
    [8]郭孔辉.纵滑与侧倾联合工况下的轮胎力学模型.长春:长春汽车研究所研究报告,1986
    [9]郭孔辉.轮胎侧偏特性的一般理论模型.汽车工程,1990,12(3):1-12
    [10]郭孔辉.轮胎侧倾力学特性模型.汽车技术,1993(10):1-4
    [11]郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型.中国机械工程,1996,7(4):8-13
    [12]K.H.Guo, Lei Ren. A Unified Semi-Empirical Tire Model with Higher Accuracy and Less Parameters, SAE Technical Paper Series.1999-01-0785,1999
    [13]Von Schlippe B., Diestrich R. Shimmying of a pneumatic wheel. NACA Report TM 1365,1954:253-261
    [14]Pacejka H B.The Wheel Shimmy Phenomenon:[dissertation]. Delft:Delft University of Technology,1966
    [15]Smiley R.F. Correlation, evaluation and extension of linearized theory for tire motion and wheel shimmy. NACA Rep,1957,1299-1957
    [16]Moreland W. The story of shimmy. Journal of the Aeronautical Science.1954, 21(12):793-808
    [17]Collins R.L. Theories on the mechanics of tire and their applications to shimmy analysis. Journal of Aircraft.1971,8(4):271-277
    [18]De Carbon B. Analytical study of shimmy of airplane wheels. NACA TM1337, 1952
    [19]Bergman W. Theoretical prediction of the effect of fraction on cornering force. 1961,69:246-257
    [20]Collins R.L., Black R.J. Experimental determination of tire parameters for aircraft landing gear shimmy stability studies. AIAA 1969,68-311
    [21]诸德培.摆振理论及防摆措施.北京:国防工业出版社,1984
    [22]王光颖.起落架非线性结构对飞机前轮摆振的影响.辽宁工程技术大学学报,2004(05)644-646
    [23]顾新.摩托车前轮摆振的故障分析与改进措施.摩托车技术,1999(03):4-7
    [24]Stepan G. Chaotic motion of wheels. Vehicle System Dynamics,1991 (20): 341-351
    [25]Takacs D, Stepan G, Hogan S J. Isolated large amplitude periodic motions of towed rigid wheel. Nonlinear Dynamics,2007 (12):35-46
    [26]Sharp. R. S, Evangelou S, Limebeer D J N. Advances in the modeling of motorcycle dynamics. Multibody System Dynamics,2004 (12):251-283
    [27]Stepan G. Delay Nonlinear oscillations and shimmying wheels. Applications of Nonlinear and Chaotic Dynamics in Mechanics,1998,373-386.
    [28]Takacs. D, Stepan G. Experiments on quasi-periodic wheel shimmy. Computer Nonlinear Dynamics.2009 (4):31-38
    [29]Kruger. W, Besselink. Aircraft Landing Gear Dynamics:Simulation and Control. Vehicle System Dynamics.1997 (28),119-158
    [30]李欣业,贺丽娟,董正身.解放CA10型载货汽车前轮摆振的数值仿真研究.汽车工程,2004,26(5):585-587
    [31]吕振华,高源,王望予.汽车转向系减振器原理及其阻尼特性的试验分析.汽车技术,1997(7):26-30
    [32]宋健,管迪华.前轮定位参数与轮胎特性对前轮摆振的影响的研究.汽车工程,1990(3):13-25
    [33]郭孔辉.轮胎动态侧偏特性对汽车摆振的影响.汽车技术,1995(4):1-6
    [34]李胜,林逸.汽车转向轮摆振研究综述.汽车技术,2004(11):16-19
    [35]喻凡,林逸.汽车系统动力学.北京:机械工业出版社,2005
    [36]朱爱芬.车辆前轮摆头的分析与解决方法的探讨.汽车科技,2004(1):49-50
    [37]J.X.Zhou. Linear and Nonlinear Aircraft Wheel Shimmy Studies:[Dissertation]. Northwestern Polytechnical University,1998
    [38]曾德军,吴建刚,李曙林.某型飞机高原起降前轮摆振特性分析.沈阳航空 工业学院学报,2005(02):7-10
    [39]王光颖,孙立红.轮胎力学特性对飞机前轮摆振的影响分析.黑龙江科技学院学报,2003(02):20-24
    [40]袁东.飞机起落架仿真数学模型建立方法.飞行力学,2002(04):34-36
    [41]周进雄,诸德培.起落架结构参数对飞机机轮摆振频率特性的影响.强度与环境,1999(02):12-17
    [42]苏开鑫.非线性减摆器的阻尼特性评价及其当量的线性化方法.航空学报,1987(12):22-25
    [43]郭孔辉,袁忠诚,卢荡UniTire轮胎稳态模型的速度预测能力.吉林大学学报,2006,35(5):30-34
    [44]侯永平,李成刚,胡于进.轮胎非稳态侧偏特性非线性模型.华中理工大学学报,2000,28(8):53-55
    [45]Segel L. Force and moment response of pneumatic tire to lateral motion inputs. 1986,88(4):37-44
    [46]Bill G, Gabor S. Stabilization of the Classical Shimming Wheel. Division of Engineering and Applied Science California Institute of Technology:1-4
    [47]H. Pacejka. Modelling of the pneumatic tyre and its impact on vehicle dynamic behavior. Technical report, Netherlands:Technical University of Delft,1988
    [48]Pacejka, H. B. Tyre and Vehicle Dynamic. Elsevier Butterworth-Heinemann, 2002
    [49]詹文章.汽车独立悬架多体系统动力学仿真及转向轮高速摆振研究:[吉林工业大学博士学位论文].长春:吉林工业大学,2000
    [50]I.J.M. Besselink. Shimmy of Aircraft Main Landing Gears. [Dissertation]. Delft:Delft University of Technology,2000
    [51]顾宏斌.飞机机轮摆振的数字仿真.航空学报,2001,22(4):362-365
    [52]Zhou J.X, Zhang L. Incremental harmonic balance method for predicting amplitudes of a multi-dof. Non-linear wheel shimmy system with combined Coulomb and quadratic damping. Journal of Sound and Vibration,2005
    [53]廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2000
    [54]林逸,李胜.非独立悬架汽车转向轮自激型摆振的分岔特性分析.机械工程学报,2004(12):187-191
    [55]Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation. Cambridge University Press,1981
    [56]Lin Yi, Li Sheng, Zhang Junyuan. Numerical Analysis of Hopf Bifurcation of Steering Wheel Shimmy System with Smooth Nonlinearity. Report for 2005 Beijing International Academic Forum On Vehicle Dynamics,2005
    [57]武际可,周昆.高维Hopf分岔的数值方法.北京大学学报(自然科学版),1993,29(5):574-582
    [58]陈文成,陈国良.Hopf分岔的代数判据.应用数学学报.1992,15(2):251-259
    [59]Shen Jiaqi, Jing Zhujun. A New Detecting Method for Conditions for Existence of Hopf Bifurcation. Acta Mathematice Applicatae Sinica.1995,11 (1):79-93
    [60]宋健,管迪华.前轮定位参数与轮胎特性对前轮摆振的影响的研究.汽车工程,1990(3):13-25
    [61]Kuznetsov Y A. Elements of Applied Bifurcation Theory. Springer-Verlag,1998
    [62]李云.非线性动力系统的现代数学方法及其应用.北京:人民交通出版社,1998
    [63]秦民,林逸,闵海涛.非线性闭环汽车系统直线行驶稳定性分析.汽车工程,2002,24(6):520-523
    [64]谢应齐,曹杰.非线性动力学数学方法.北京:气象出版社,2001
    [65]马知恩.常微分方程定性与稳定性方法.北京:科学出版社,2001
    [66]Graham C. Goodwin. A brief overview of nonlinear control. Plenary,3rd International Conference on Control Theory and Applications, Pretoria, South Africa,2001 (12):12-14
    [67]Pei Yu, Guanrong Chen. Hopf bifurcation control using nonlinear feedback with polynomial functions. International Journal of Bifurcation and Chaos,2004,14 (5):1683-1704
    [68]李敏强,寇纪淞.遗传算法的基本理论与应用.北京:科学出版社,2002
    [69]Jenkins.W.M. Structural optimization with the genetic algorithm. Structural Engineer.1991,69 (24):408-422
    [70]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000
    [71]Ned J Lindsley. A new tire model for aircraft landing gear dynamics [Dissertation], Akron, university of Akron,1999 (8)
    [72]张琪昌,陈予恕.汽车转向轮摆振的稳定和分岔特性.天津大学学报,1995,28(3):409-414
    [73]刘秉正.非线性动力学与混沌基础.长春:东北师范大学出版社,1994
    [74]李云.非线性动力系统的现代数学方法及其应用.北京:人民交通出版社1998
    [75]陈予恕.非线性振动系统的分岔和混沌理论.北京:高等教育出版社,1993
    [76]W. Govaerts, Yu. A. Kuznetsov, B. Sijnave. Numerical methods for the Generalized Hopf bifurcation, SIAM Numer Anal.2000,38(1):329-346
    [77]管迪华,何泽民,肖田元.汽车转向轮振动的研究.汽车工程,1984(3):29-40
    [78]陈家瑞.汽车构造.北京:人民交通出版社,1996
    [79]权元哲.汽车转向轮摆振的研究:[吉林工业大学博士学位论文].长春:吉林工业大学,1991
    [80]Le Saux, C., Leine, RI., Glocker, C. Dynamics of a rolling disk in the presence of dry friction. Journal of Nonlinear Science,2006,15 (1):27-61
    [81]Brogliato, B. Numerical simulation of finitedimensional multibody nonsmooth mechanical systems. In ASME Applied Mechanics Reviews,2002,55 (2): 107-150
    [82]Sharp, R. S., Limebeer, D. J. N. A Motorcycle Model for Stability and Control Analysis. Multibody System Dynamics.2001,6(2):123-142
    [83]Cossalter, V., and Lot, R. A. Motorcycle Multi-Body Model for Real Time Simulations Based on the Natural Coordinates Approach. Vehicle System Dynamics,2002,37 (6):423-447
    [84]Sharp, R. S. Stability, Control and Steering Responses of Motorcycles. Vehicle System Dynamics.2001 (35):291-318
    [85]Sharp, R. S., Evangelou, S., and Limebeer. Advances in the Modelling of Motorcycle Dynamics. Multibody System Dynamics,2004,1 (3):251-281.
    [86]Limebeer, D. J. N., Sharp, R. S. Motorcycle Steering Oscillations Due to Road Profiling. Journal Application Mechanics.2002,69 (6),724-739
    [87]Sharp, R. S., The Stability and Control of Motorcycles. Journal of Mechanical Engineering.1971,13 (5):316-329
    [88]Sharp, R. S., Vibrational Modes of Motorcycles and Their Design Parameter Sensitivities. Vehicle NVH and Refinement. Proc Int Conf. Mech. Eng. Publications, London,1995 (5):107-121
    [89]Limebeer, D. J. N., Sharp, R. S. The stability of motorcycles under acceleration and braking. Proc. Inst. Mech. Eng., Part C:J. Mech. Eng. Sci.,2001,1095-1109.
    [90]黄志望.改进遗传算法及其在结构工程优化中的应用研究:[北京工业大学硕士论文].北京:北京工业大学,2005
    [91]刘红军.计及弹性体运动的多体动力学方法初探及在整车动力学上的应用:[清华大学博士学位论文].北京:清华大学,1994
    [92]胡贵友.汽车前轮非线性摆振机理的研究:[天津大学博士学位论文].天津:天津大学,1999
    [93]廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2000
    [94]都长清,焦宝聪,焦炳照.常微分方程.北京:北京师范学院出版社,1993
    [95]黄象鼎,曹钟钢,马亚南.非线性数值分析的理论与方法.武汉:武汉大学出版社,2004
    [96]唐文艳.结构优化中的遗传算法研究和应用.[大连理工大学博士学位论文]大连:大连理工大学,2001
    [97]李磊.遗传算法与梁结构拓扑优化设计研究.[郑州大学硕士学位论文].郑州:郑州大学,2006
    [98]Roose D, Hlavacek V. A Direct Method for the Computation of Hopf Bifurcation Points.SIAM J. Appl. Math.,1985,45 (6):879-894
    [99]Rolf G, Alexander S. The Development of a Simulation Model for the Computerized Investigation of Car Wheel Shimmy. Automobil-industrie English Edition,1986 (5):17-23
    [100]Pauwelussen J P. The Local Contact Between Tyre and Road Under Steady State Combined Slip Conditions. Vehicle System Dynamics,2004,41 (1): 1-26
    [101]Ned J L, Nitin B T. A Tire Model for Air Vehicle Landing Gear Dynamics. 2000 International ADAMS User Conference,2000,1-12
    [102]Parry J R. Shimmy Theory and Practice. Automobile Engineer,1962 (9): 338-339
    [103]Hamzi B,Kang W,Barbot J. Analysis and Control of Hopf Bifurcations. SIAM J. Control Optimization Math,2004,42 (6):2200-2220
    [104]True H. Bifurcation Problems in Railway Vehicle Dynamics. Proc. Bifurcation:Analysis, Algorithms, Application,1987,79:319-333
    [105]Olivier A B, Jesus R. Simulation of Wheels in Nonlinear, Flexible Multibody Systems.Multibody System Dynamics,2002,4 (17):407-438
    [106]Dhooge, W. Govaerts, Yu.A. A Matlab packagefor numerical bifurcation analysis of ODE, ACM Transactions on Mathematical Software,2003,29 (2): 141-164
    [107]W.Govaerts, J. Guckenheimer, A.Khibnik. Defining functions formultiple Hopf bifurcation, SIAM J.Numer.Anal.1997,34(3):1269-1288
    [108]Bodd Werner, Computation of Hopf bifurcation with bordered matrices, SIAMJ. Numer.Anal.1996,33 (2):435-455
    [109]Pei Yu, Guanrong Chen. Hopf bifurcation control using nonlinear feedback with polynomial functions, International Journal of Bifurcation and Chaos. 2004,14 (5):1683-1704
    [110]刘岩,丁玉兰,林逸.汽车转向机构高速振动的研究.中国公路学报,2001,14(2):123-126
    [111]雷雨成.汽车系统动力学及仿真.北京:国防工业出版社,1997
    [112]陈潇凯.多体系统动力学应用于轻型客车数字化分析模型的研究:[吉林工业大学硕士学位论文].长春:吉林大学,2002
    [113]刘维信.汽车设计.北京:清华大学出版社,2001
    [114]舒仲周,张继业,曹登庆.运动稳定性.北京:中国铁道出版社,2001
    [115]陆启韶.分岔与奇异性.上海:上海科技教育出版社,1995
    [116]武际可,周昆.高维Hopf分岔的数值方法.北京大学学报(自然科学版)1993,29(5):574-582
    [117]郑亮.汽车前轮摆振试验研究.客车技术与研究,2006(3):25-27
    [118]Jocelyn P. Overview of Landing Gear Dynamics. Journal of aircraft,2001,38 (1):130-137
    [119]陈旻.汽车前轮摆振的研究:[南京林业大学硕士学位论文].南京:南京林业大学,2000
    [120]V. Ph. Zhuravlev, D. M. Klimov. Theory of the shimmy phenomenon. Mechanical of Solids,2010,45 (3):324-330
    [121]Denes Takacs, Gabor Stepan. Experiments on Quasiperiodic Wheel Shimmy, Journal of Computational and Nonlinear Dynamics,2009,4 (3):25-32
    [122]Denes Takacs, Gabor Stepan. Delay effects in shimmy dynamics of wheels with stretched string-like tyres, European Journal of Mechanics,2009,28 (3): 516-525
    [123]陈大伟,顾宏斌,刘晖.起落架摆振主动控制分岔研究.振动与冲击,2010,29(7):38-42
    [124]周兵,孙乐.前轮自激摆振分岔特性研究.湖南大学学报,2010(10):30-34
    [125]刘献栋,张紫广,何田等.基于增量谐波平衡法的汽车转向轮非线性摆振的研究.汽车工程,2011(2):142-147