聚能装药对典型土壤/混凝土复合介质目标的侵彻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战场上永备工事及野战工事多覆盖厚厚的土层,以降低来袭弹丸对其造成的冲击和破坏;各种浅埋地下指挥所和深埋地下指挥所多深入地下几米甚至几十米,对各类攻坚战斗部的毁伤效能提出了严峻的考验,大大提高了地下深层指挥防护工程的生存能力。动能侵彻战斗部由于受到发射平台的限制,难以得到大规模的应用,并且攻角以及着靶角对其侵彻威力有较大影响。聚能装药战斗部具有发射平台简单、可搭载于各种运载体的优点,而其爆炸形成的聚能侵彻体具有能量密度高、穿透能力强的特点,因此聚能装药在各类破障弹药、攻坚弹药中得到了广泛应用,携带聚能装药的串联攻坚战斗部作为一种比动能侵彻战斗部更先进的攻坚战斗部,近年来得到了各国的广泛关注。而作为攻坚战斗部对付的主要目标之一,现阶段开展聚能装药侵彻典型土壤/混凝土复合介质目标的研究具有重大现实意义。
     本文主要采用理论分析和试验研究等方法,根据聚能射流侵彻典型土壤、混凝土目标的特点,研究了射流对典型土壤、混凝土目标的轴向侵彻和径向孔径增长过程。在此基础上,对聚能射流侵彻典型土壤/混凝土复合介质目标时,应力波在土壤/混凝土复合介质中的传播和衰减过程进行了分析,并研究了在不同情况下应力波对射流侵彻典型土壤/混凝土复合介质目标的影响。采用数值仿真计算了聚能装药爆轰波的传播及药型罩的压垮过程,结合X光实验和理论分析,得到了聚能射流速度、直径沿长度方向的分布及断裂时间常数;采用理论分析和试验研究相结合的方法,得到了不同情况下土壤、混凝土目标的靶板阻抗及应力波的传播和衰减规律,射流参数及土壤、混凝土参数可作为输入参数,用于计算聚能射流对土壤、混凝土及土壤/混凝土复合介质目标的侵彻孔形。
     本文的主要研究内容包括以下几个方面:
     1、聚能射流对土壤、混凝土目标的超声速侵彻
     针对土壤、混凝土目标低密度、低声速的特点,将聚能射流对该类目标的侵彻过程分为超声速侵彻状态和亚声速侵彻状态两种情况。当侵彻速度大于靶板声速时,通过分析冲击波的强度、冲击波对轴向侵彻和径向孔径增长的影响,基于Alekseevskii-Tate (A-T)方程和Szendrei/Held方程,得到了超声速侵彻状态下聚能射流的轴向侵彻速度和侵彻孔的最终直径。当侵彻速度小于靶板声速时,聚能射流即由超声速侵彻状态转变为亚声速侵彻状态,此时靶板中不再有冲击波的影响,射流的侵彻速度和侵彻孔的最终直径可由A-T方程和Szendrei/Held方程计算得到。
     2、双材质复合射流侵彻土壤、混凝土目标的径向孔径增长
     根据双材质复合射流的形态特点,将双材质复合射流侵彻土壤、混凝土目标的过程分为单质射流侵彻、双滞止点侵彻和单滞止点侵彻三个阶段。在超声速侵彻模型的基础上,分别对三个阶段的径向孔径增长过程进行了分析,并计算了双材质复合射流的侵彻孔形。
     3、聚能射流侵彻土壤/混凝土复合介质目标的工程计算模型
     根据聚能射流侵彻土壤/混凝土复合介质目标时,对土壤和混凝土侵彻状态不同,将射流侵彻土壤/混凝土复合介质目标过程分为三种情况。1)对于覆土层较薄的土壤/混凝土复合介质目标,射流到达土壤/混凝土界面时,对土壤和混凝土的侵彻均处于超声速侵彻状态;2)随着覆土层厚度的增加,射流到达土壤/混凝土界面时,对土壤的侵均处于超声速侵彻状态,对混凝土的侵彻速度相对于透射波传播之后的材料声速为亚声速侵彻;3)当覆土层的厚度增加到一定程度,聚能射流在侵彻土壤的过程中,已经从超声速侵彻状态转变为亚声速侵彻状态,因而射流穿透土壤后对混凝土侵彻也为亚声速侵彻状态。针对以上三种情况,考虑到应力波在土壤/混凝土界面的传播,及其对聚能射流侵彻过程的影响,结合超声速侵彻理论,对聚能射流侵彻土壤/混凝土复合介质目标进行了分析,覆土层厚度约为2-3倍装药口径时,会使得聚能射流对土壤/混凝土目标的侵彻深度低于对混凝土目标的侵彻深度。
     此外,本文还研究了聚能射流对弹丸头部结构物的侵彻效能,设计了新的聚能装药以提高射流对弹丸头部结构的抗干扰能力,并采用数值仿真和试验研究,将弹丸头部结构等效为一定厚度的均质靶板,简化了对聚能射流侵彻弹丸头部结构后射流参数的计算过程。
In order to reduce failure and damage of defence works under projectiles penetration, most defence works are covered by soil in modern battlefield. Shallow and deep command posts are going into the deep ground meters or even tens, and the protective capability of the underground command protection work is good. Now the most kinds of warhead can not meet the requirement of penetrated the defence works. The shaped charge warhead can be used in nearly almost kind of weapon transporters, such as missile, torpedo, and so on. The penetrator formed by shaped charge have many advantages, such as high energy density, penetration ability, and so on. Thus, the shaped charge has been widely used in the weapon to penetrate the defence works.
     That was studied axial penetration and radial crater growth caused by shaped charge jet penetration in soil and concreted in this paper. The process of the stress wave transmitting and damping in the soil/concrete target was discussed when shaped charge jet penetration into soil/concrete target. And the influence of stress wave on the jet penetration was investigated. Numerical simulation was used to calculate the process of detonation propagation and liner collapse. The distribution of jet velocity and jet diameter along the length of the shaped charge jet and the fracture time constant was obtained by combining numerical simulation. X-ray experiments, and theoretical analysis. Moreover, the laws of target resistance and stress wave propagation and attenuation in soil and concrete were obtained by combining theoretical and experimental research. The hole profiles for soil, concrete, and soil/concrete target of jet penetration were described using the input parameters above.
     Following aspects are included in this paper:
     1. Supersonic penetration of shaped charge jet into soil and concrete target.
     Given the low density and low sound velocity of soil and concrete, the effect of stationary shocks and compression cannot be neglected during the penetration process of shaped charge jets into concrete. This paper postulates that a stationary shock that results in the material characteristic alterations affecting the process of penetration and crater growth across the wave front is generated when the penetration velocity is greater than the sound velocity of concrete. A supersonic penetration model of shaped charge jet penetration and radial crater growth is presented by analyzing the influence of stationary shock and compression.
     2. Radial crater growth for jacketed jet penetration into soil and concrete target.
     The current study designs a shaped charge structure that could form a jacketed jet to enhance the cavity diameter created by a shaped charge jet into concrete. Moreover, three types of penetration modes during the process of jacketed jet penetration into concrete, including homogeneous jet penetration,"bi-erosion," and "co-erosion" are discussed. A two-step mechanism of cavity growth that contains the trajectory of flowing jet erosion products and the radial momentum of the target is used to describe the penetration modes. The final diameter of the jacketed jet penetration is greater than the core penetration caused by the larger cavity diameter in the first stage.
     3. The engineering model of shaped charge jet penetration into soil/concrete target.
     According to the thickness of the soil and the penetration state in soil and concrete, the process of jet penetration into soil/concrete target was divided into three cases. First, supersonic penetration occurs both in soil and concrete when jet reaches soil/concrete interface. Second, supersonic penetration occurs in soil and subsonic penetration occurs in concrete when jet reaches soil/concrete interface. Third, subsonic penetration occurs both in soil and concrete when jet reaches soil/concrete interface. Considering stress wave propagation and influence on jet penetration, this paper analysised the process of jet penetration into soil/concrete target for three cases above. The penetration depth of the jet into soil/concrete target is lower than that of a jet into a concrete target when the thickness of soil is2or3times the charge diameter.
     Moreover, penetration performance of jet into forward section was studied in this paper. A new type liner was designed for reducing interference during jet penetration forward section and penetration ability increased. This article analyzed equivalent method and homogeneous target which is equivalent to the forward section, and equivalent thickness of homogeneous target was calculated.
引文
[1]王伟等.混凝土结构设计数据资料一本全.第1版.北京:中国建材工业出版社,2007.
    [2]臧晓京.国外攻击硬目标和深埋地下目标的引战技术发展.飞航导弹,2006(1):43-51.
    [3]李旭丰.钻地武器技术.国外科技动态,2005(1):40-43.
    [4]任辉启,李晓军,钱七虎.深地下防护工程中的科学问题.中国土木工程学会防护工程分会第九次学术年会论文集,吉林长春,2004:225-237.
    [5]何典章.防护工程科研现状及发展趋势.中国土木工程学会防护工程分会第九次学术年会论文集,吉林长春,2004:19-29.
    [6]朱万红,王凤山,王可定.军事工程综合防护模型研究.系统工程与电子技术,2005(1):81-83.
    [7]王涛,余文力,王少龙,权威.国外钻地武器的现状与发展趋势.导弹与航天运载技术,2005(5):51-56.
    [8]石艳霞.国外钻地武器的技术特点及发展趋势.导弹与航天运载技术,2003(4):50-53.
    [9]周义.美军钻地弹现状与发展趋势.中国航天,2002(8):31-34.
    [10]宗和.美军钻地炸弹.中国青年科技,2003(1):52-56.
    [11]刘永远,姜正平,张进.钻地弹及其发展趋势.飞航导弹,2006(3):34-37.
    [12]K.Mattsson, J. Church. Development of the K-Charge, a Short L/D Shaped Charge.18th International Symposium of Ballistics, San Antonio, U. S. A.,1999.
    [13]M. Cauret, A. Delmas. Study of Hybrid Charge.17th nternational Symposium of Ballistics, Midrand, South Africa,1998.
    [14]P. Church. Experimental and Simulation Studies of Slow Stretching Jets.18th International Symposium of Ballistics, San Antonio, U. S. A.,1999.
    [15]焦斌.指挥防护工程综合防护效能评估与决策优化分析[硕士学位论文].西安:西安建筑科技大学,2010.
    [16]何懿.善守者藏于九地之下-杨秀敏院士访谈录,兵器知识,2011(2A):22-25.
    [17]邓国强,周早生,郑全平.钻地弹爆炸聚集效应研究现状及展望.解放军理工大学学报(自然科学版),2002(3):45-49.
    [18]威廉·普·沃尔斯特,乔纳斯·埃·朱卡斯.成型装药原理及其应用.王树魁,贝静芬等译.第1版.北京:兵器工业出版社,1992.
    [19]A. Blache, K. Weimann. Shaped Charge with Jetting Projectile for Extended Targets.17th nternational Symposium of Ballistics, Midrand, South Africa,1998.
    [20]黄正祥.聚能杆式侵彻体成型机理研究[博士学位论文].南京:南京理工大学,2003.
    [21]谭多望.高速杆式弹丸的成形机理和设计技术[博士学位论文].绵阳:中国工程物理研究院,2005.
    [22]M. Huerta, M. G. Vigil. Design, Analyses, and Field Test of a 0.7 m Conical Shaped Charge. International Journal of Impact Engineering,2006,32(8):1201-1213.
    [23]M. J. Murphy, D. W. Baum, R. M. Kuklo, S. C. Simonson. Effect of Multiple and Delayed Jet Impact and Penetration on Concrete Target Borehole Diameter.19th International Symposium of Ballistics, Interlaken, Switzerland,2001:1553-1559.
    [24]M. J. Murphy, R. M. Kuklo, T. A. Rambur, L. L. Switzer, M. A. Summers. Single and Multiple Jet Penetration Experiments into Geologic Materials.21st International Symposium of Ballistics, Adelaide, South Australia,2004:41-48.
    [25]P. Pincosy, M. J. Murphy. Calculated Concrete Target Damage by Multiple Rod Impact and Penetration.23rd International Symposium of Ballistics, Tarragona, Spain,2007: 1453-1460.
    [26]F. J. Moster, C. J. Terblanche. Investigation of Pre-Cursor Charge Configurations and Designs to Allow for Off-Axis Motion of a Follow-Through Penetrator in a Target.23rd International Symposium of Ballistics, Tarragona, Spain,2007:161-168.
    [27]E. L. Baker, A. S. Daniels, K. W. Ng, V. O. Martin, J. P. Orosz. Barnie:a Unitary Demolition Warhead.19th International Symposium of Ballistics, Interlaken, Switzerland, 2001:569-574.
    [28]D. Davison, D. Pratt. Perforator with Energetic Liner.26th International Symposium on Ballistics, Miami, U. S. A.,2011:123-131.
    [29]孙庚辰,吴锦云,赵国志,史俊.长杆弹垂直侵彻半无限厚靶板的简化模型.兵工学报,1981,2(4):1-8.
    [30]Z. Rosenberg. E/Marmor, M. Mayseless. On the Hydrodynamic Theory of Long-Rod Penetration. International Journal of Impact Engineering,1990,10(1-4):483-486.
    [31]李永池,吴立朋,罗春涛.侵彻力学的一种新理论分析方法.力学与实践,2009,31(4):22-26.
    [32]M. J. Murphy. Survey of the Influence of Velocity and Material on the Projectile Energy/Target Hole Volume Relationship.10th International Symposium of Ballistics, San Diego, U. S. A.,1987.
    [33]T. Szendrei. Link Between Axial Penetration and Radial Crater Expansion in Hypervelocity Impact.17th International Symposium of Ballistics, Midrand, South Africa, 1998:25-32.
    [34]W. Schwartz. Modified SDM Model for the Calculation of Shaped Charge Hole Profiles. Propellants, Explosives, Pyrotechnics,1994,19(4):192-201.
    [35]T. Szendrei. Analytical Model of Crater Formation by Jet Impact and its Application to Calculation of Penetration Curves and Hold Profiles.7th nternational Symposium of Ballistics, The Hague, The Netherlands,1983:575-583.
    [36]M. Held Verification of the Equation for Radial Crater Growth by Shaped Charge Jet Penetration. International Journal of Impact Engineering,1995,17(1-3):387-398.
    [37]M. Held, N. S. Huang, D. Jiang, C. C. Chang. Determination of the Crater Radius as a Function of Time of a Shaped Charge Jet that Penetrates Water. Propellants, Explosives, Pyrotechnics,1996,21(2):64-69.
    [38]M. Held, A. A. Kozhushko. Radial Crater Growing Process in Different Materials with Shaped Charge Jets. Propellants, Explosives, Pyrotechnics,1999,24(6):339-342.
    [39]王静,王成,宁建国.聚能射流侵彻的理论模型和孔径计算.工程力学,2009,26(4):21-26.
    [40]R. Hill. Cavitation and the Influence of Headshape in Attack of Thick Targets by Non-Deforming Projectiles. Journal of the Mechanics and Physics of Solids,1980, 28(5-6):249-263.
    [41]W. P. Walters, B. R. Scott. The Crater Radial Growth Rate under Ballistic Impact Conditions. Computers & Structures,1985,20(1-3):641-648.
    [42]Y. Kivity, E. Hirsch. Penetration Cutoff Velocity for Ideal Jets.10th International Symposium on Ballistics, San Diego, U. S. A.,1987.
    [43]C. W. Miller. Two-Dimensional Engineering Model of Jet Penetration.15th International Symposium on Ballistics, Jerusalem, Israel,1995:8-21.
    [44]G. I. Shinar, N. Barnea, M. Ravid, E. Hirsch. An Analytical Model for the Cratering of Metallic Targets by Hypervelocity Long Rods.15th International Symposium on Ballistics, Jerusalem, Israel,1995:59-66.
    [45]M. Lee, S. Bless. Cavity Dynamics for Long Rod Penetration. Institute for Advanced Technology, The University of Texas at Austin, IAT.R 0094.
    [46]M. Lee. Cavitation and Mushrooming in Attack of Thick Targets by Deforming Rods. Journal of Applied Mechanics,2001,68(3):420-424.
    [47]M. J. Murphy, R. M. Kuklo. Fundamentals of Shaped Charge Penetration in Concrete. 18th International Symposium on Ballistics, San Antonio, U. S. A.,1999:1057-1064.
    [48]A. D. Resnyanski, A. E. Wildegger-Gaissmaier. Study of Borehole Diameter in Concrete due to the Shaped Charge Jet Penetration.20th International Symposium on Ballistics, Orlando, U. S. A.,2002:957-963.
    [49]D. W. Baum, R. M. Kuklo, J. W. Routh, S. C. Simonson. Simultaneous Multiple-Jet Impacts in Concrete-Experiments and Advanced Computational Simulations.18th International Symposium on Ballistics, San Antonio, U. S. A.,1999.
    [50]R. Subramanian, S. Satapathy, D. Littlefield. Observations on the Ratio of Impact Energy to Crater Volume(E/V) in Semi-Infinite Targets.19th International Symposium on Ballistics, Interlaken, Switzerland,2001:1273-1280.
    [51]N. J. Lynch, R. Subramanian, S. Brown, J. Alston. The Influence of Penetrator Geometry and Impact Velocity on the Formation of Crater Volume in Semi-Infinite Targets.19th International Symposium on Ballistics, Interlaken, Switzerland,2001:1265-1271.
    [52]T. Szendrei. Analytical Model for High-Velocity Impact Cratering with Material Strengths:Extensions and Validation.15th International Symposium on Ballistics, Jerusalem, Israel,1995:123-131.
    [53]郑平泰,杨涛,秦子增,寇保华.基于改进SDM模型的聚能射流侵彻混凝土介质孔型计算.弹箭与制导学报,2006,26(2):574-577,581.
    [54]郑平泰,杨涛,寇保华,秦子增.聚能射流侵彻混凝土靶板的工程计算方法研究.弹箭与制导学报,2007,27(2):144-147.
    [55]王辉.聚能装药侵彻混凝土介质效应研究[博士学位论文].北京:北京理工大学,1997.
    [56]肖强强,黄正祥,祖旭东,朱传胜.新结构药型罩射流对等效前舱的抗干扰研究.弹道学报,2012,
    [57]谈庆明.量纲分析.第1版,合肥:中国科学技术大学出版社,2007.
    [58]B. S. Haugstad, O. S. Dullum. Finite Compressibility in Shaped Charge Jet and Long Rod Penetration-The Effect of Shocks. Journal of Applied Physics,1981,52(8):5066-5071.
    [59]W. J. Files, P. C. Chou. Penetration of Compressible Materials by Shaped Charge Jets.7th nternational Symposium of Ballistics, The Hague, The Netherlands,1983:19-21.
    [60]肖强强,黄正祥,顾晓辉.冲击波影响下的聚能射流侵彻扩孔方程.高压物理学报,2011,25(4):333-338.
    [61]吴望一.流体力学.第1版,北京:北京大学出版社,2006.
    [62]Marc Andre Meyers.材料的动力学行为.张庆明,刘彦,黄风雷,吕中杰译.第1版,北京:国防工业出版社,2006.
    [63]张俊秀,刘光烈.爆炸及其应用技术.第1版,北京:兵器工业出版社,1998.
    [64]M. Mayseless, E. Hirsch. The Penetration-Standoff Relation of Jets with Nolinear Velocity Distribution.18th International Symposium of Ballistics, San Antonio, U. S. A., 1999:15-19.
    [65]Century dynamic inc. Interactive non-linear dynamic analysis software theory manual. USA:Century Dynamics Incorporated,2004.
    [66]E. Hirsch. A Formula for the Shaped Charge Jet Breakup Time. Propellants, Explosives, Pyrotechnics 1979,4(5):89-94.
    [67]P. C. Chou, J. Carleone. The Stability of Shaped Charge Jet. Journal of Applied Physics 1977,48(10):4187-4195.
    [68]P. C. Chou, W. J. Flis. Recent developments in shaped charge technology. Propellants, Explosives, Pyrotechnics 1986,11(4):99-114.
    [69]P. C. Chou, M. Grudza, Liu Y, et al. Shaped Charge Jet Breakup Formula with Metal Anisotropy.13th International Symposium on Ballistics, Stockholm, Sweden; 1992.
    [70]郑哲敏.聚能射流的稳定性问题.爆炸与冲击,1981,1(1):6-17.
    [71]B. Haugstad. On the Breakup of Shaped Charge Jets. Propellants, Explosives, Pyrotechnics 1983,8(4):119-120
    [72]L. A. Romero. The instability of rapidly stretching plastic jets. Journal of Applied Physics 1989,65(8):3006-3016.
    [73]V. B. Shenoy, L. B. Freund. Necking bifurcations during high strain rate extension. Journal of the Mechanics and Physics of Solids 1999,47(11):2209-2233.
    [74]J. P. Curtis. Axisymmetric Instability Model for Shaped Charge Jets. Journal of Applied Physics,1987,61(11):4978-4985.
    [75]E. Hennequin. Modelling of the Shaped Charge Jet Break-Up. Propellants, Explosives, Pyrotechnics,1996,21(4):181-185.
    [76]J. Petit, V. Jeanclaude, C. Fressengeas. Breakup of Copper Shaped-Charge jets: Experiment, Numerical Simulations, and Analytical Modeling. Journal of Applied Physics,2005,98(12),123521.
    [77]石艺娜,秦承森.金属射流失稳断裂的理论分析.力学学报,2009,41(3):361-369.
    [78]王儒策,赵国志.弹丸终点效应.第1版,北京:北京理工大学出版社,1993.
    [79]D. Grady. Shock Equation of State Properties of Concrete. International conference on structures under shock and impact, Udine,1996:1-10.
    [80]A. Tate. Long Rod Penetration Models-Part I A Flow Field Model for High Speed Long Rod Penetration. International Journal of Mechanical Sciences,1986,28(8):535-548.
    [81]A. Tate. Long Rod Penetration Models-Part II Extensions to the Hydrodynamic Theory of Penetration. International Journal of Mechanical Sciences,1986,28(9):599-612.
    [82]J. Sternberg. Material Properties Determining the Resistance of Ceramics to High Velocity Penetration. Journal of Applied Physics,1989,65(9):3417-3424.
    [83]M. J. Forrestal, D. Y. Tzou. A Spherical Cavity-Expansion Penetration Model for Concrete Targets. International Journal of Solids and Structures,1997,34(31-32): 4127-4146.
    [84]S. Satapathy, S. Bless. Calculation of Penetration Resistance of Brittle Materials Using Spherical Cavity Expansion Analysis. Mechanics of Materials,1996,
    [85]Z. Rosenberg, Y. Ashuach, Y. Yeshurun, E. Dekel. On the Main Mechanisms for Defeating AP Projectiles, Long Rods and Shaped Charge Jets. International Journal of Impact Engineering,2009,36(4):588-596.
    [86]王辉,蔡汉文,王志军,王瑞臣.高速侵彻下混凝土材料性态和阻力.弹箭与制导学报,1997,17(4):54-56.
    [87]李成兵,沈兆武,裴明敬.聚能杆式弹丸侵彻混凝土靶计算分析.中国科学技术大学学报,2008,38(2):215-219.
    [88]王静,王成,宁建国.射流侵彻混凝土靶的靶体阻力计算模型与数值模拟研究.兵工学报,2008,29(12):1409-1416.
    [89]何涛.动能弹在不同材料靶体中的侵彻行为研究[博士学位论文].合肥:中国科学技术大学,1999.
    [90]李国宾.双层药型罩的研究进展.兵器材料科学与工程,1995,18(1):63-68.
    [91]郑宇,王晓鸣,李文彬,韩玉.双层药型罩射流形成的理论建模与分析.火炸药学报,31(3):10-14.
    [92]I. G. Cullis, N. J. Lynch. Hydrocode and Experimental Analysis of Scale Size Jacketed KE Projectile.14th International Symposium on Ballistics,1994:271-280.
    [93]H. F. Lehr, E. Wollman, G. Koerber. Experiments with Jacketed Rods of High Fineness Ratio. International Journal of Impact Engineering,1995:517-526.
    [94]B. R. Sorensen, K. D. Kimsey, J. A. Zukas, K. Frank. Numerical Analysis and Mmodeling of Jacketed Rod Penetration. International Journal of Impact Engineering, 1999:71-91.
    [95]B. A. Pedersen, S. J. Bless, J. U. Cazamias. Hypervelocity Jacketed Penetrators. International Journal of Impact Engineering,2001:603-611.
    [96]B. R. Sorensen, K. D. Kimsey, J. A. Zukas, K. Frank. Numerical Analysis and Mmodeling of Jacketed Rod Penetration. International Journal of Impact Engineering, 1999:71-91.
    [97]D. L. Orphal, C. W. Miller, W. L. McKay, W. F. Borden, S. A. Larson, C. M. Kennedy. Hypervelocity Impact and Penetration of Concrete by High L/D Projectiles.6th International Symposium on Ballistics,1982.
    [98]D. L. Orphal, C. W. Miller. Hypervelocity Impact of High L/D Penetrators.1986 Hypervelocity Impact Symposium, DARPA-TIO-87-62,1987.
    [99]M. Lee. Analysis of Jacketed Rod Penetration. International Journal of Impact Engineering,2000:891-905.
    [100]祖旭东.典型橡胶复合靶板抗射流侵彻机理研究[博士学位论文].南京:南京理工大学,2011.
    [101]M. Held. Transverse shaped charges [C].8th International Symposium on Ballistic, Orlando, USA,1984:39-47.
    [102]M. Held, R. Fischer. Penetration theory of inclined and moving shaped charges [J]. Propellants, Explosive, Pyrotechnics,1986,11(4):115-122.
    [103]张蔚峰.爆炸式反应装甲的等效靶研究[硕士学位论文].南京:南京理工大学,2003.
    [104]赵国志,杨玉林.动能弹对装甲目标毁伤评估的等效靶模型.南京理工大学学报,2003,27(5):509-514.
    [105]杨玉林,赵国志,王戈冰.装甲目标毁伤评估的等效靶方法.火力与指挥控制,2003,28(6):81-84.
    [106]隋树元,王树山.终点效应学.北京:国防工业出版社,2000.
    [107]D. Bourget, Y. Baillargeon, S. Northrop. Witness Pack Calibration for Human Vulnerability Assessment.20th International Symposium on Ballistics, Orlando, U. S. A., 2002:1270-1277.
    [108]曹兵.603靶板抗EFP侵彻等效靶实验研究.爆破器材,2007,36(1):36-39.
    [109]M. Held. Shaped Charge Steel Equivalence.20th International Symposium on Ballistics, Orlando, U. S. A.,2002:903-909.
    [110]高世泽.武装直升机等效靶的研究[硕士学位论文].南京:南京理工大学,1992.
    [111]包亦望,黎晓瑞,金宗哲.等效冲击方法研究硬质颗粒对玻璃的冲击损伤.航空材料学报,1998,18(2):41-46.
    [112]苏开鑫.起落架疲劳载荷谱的损伤等效当量折算方法.航空学报,1994,15(1):62-69.
    [113]罗文波,杨挺青,安群力.非线性粘弹体的时间-温度-应力等效原理及其应用.固体力学学报,2001,22(3):219-224.
    [114]赵德廷.板-肋系统的等效简化在近海平台整体分析中的应用.中国海上油气(工程),1993,5(5):8-12.
    [115]陈山林,刘东.变厚度环板等效厚度的近似估计.仪器仪表学报,1992,13(3):299-303.
    [116]张国衡.等效桩计算.中国海上油气(工程),1989,1(2):1-6.
    [117]A.A.Kozhusko, J.J.Rykova, M.Held. On the shortening of the effective length of a shaped charge jet in penetrating ceramic materials. Technical Physics Letters,1994,20(5): 377-378.
    [118]任会兰,郭婷婷,宁建国.聚能射流对氧化铝陶瓷靶的侵彻特性研究.高压物理学报,2011,25(6):526-532.
    [119]黄正祥,徐学华,陈惠武.钛刚玉陶瓷抗射流侵彻实验研究.
    [120]谭多望,谢盘海.射流侵彻陶瓷力学特性实验研究.高压物理学报,1997,11(2):145-149.
    [121]魏雪英,张春燕,马淑芳.射流侵彻作用下陶瓷材料的性态与阻力.兵工学报,2005,26(4):481-485.
    [122]Cheng Wang, Tianbao Ma, Jianguo Ning. Experimental investigation of penetration performance of shaped charge into concrete targets. Acta Mechanica Sinica,2008,24(3): 345-349.
    [123]M. Held. Penetration of Shaped Charges in Concrete and in Sand in Comparison to Steel-Targets. Journal of Explosives and Propellants,1992(8):1-15.
    [124]M. Held. Glass Armour and Shaped Charge Jets. Propellants, Explosives, Pyrotechnics,1998,23(2):105-110.
    [125]张先锋,李永池.约束及增韧对氧化铝陶瓷抗射流侵彻性能的影响.爆炸与冲击,2009,29(2):149-154.
    [126]黄正祥,徐学华,陈惠武.射流对陶瓷装甲侵彻深度灰色预估.弹箭与制导学报,2004,24(3):31-33.
    [127]黄正祥,徐学华,陈惠武.大倾角条件下陶瓷复合装甲抗射流侵彻实验研究.弹箭与制导学报,2005,25(1):37-38.
    [128]A. Helte, E. Liden. The role of Kelvin-helmholtz instabilities on shaped charge jet interaction with reactive armours plates [C],25th International Symposium on Ballistics, Beijing, China,2010:1547-1553.
    [129]A. Helte, E. Liden. The role of Kelvin-helmholtz instabilities on shaped charge jet interaction with reactive armours plates [J]. Journal of Applied Mechanics.2010, 77:051805-1-051805-8.
    [130]王礼立.应力波基础.第二版,北京:国防工业出版社,2010.