神经内分泌拮抗剂对冠心病左心室舒张功能障碍患者的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心力衰竭是由心脏的结构或功能异常损害了心室的充盈或射血能力而引起的一种复杂的临床综合症。随着生活条件的改善,人类平均寿命不断增加,慢性心力衰竭也正在成为重要的临床问题,尤其在老年人。它也是每年住院患者最常见的住院原因,其每年的医疗费开支超过心肌梗死。越来越多的证据表明,舒张功能不全是慢性心力衰竭的主要病理生理学表现,过去的研究偏重收缩功能不全。由于缺乏深入研究和循证医学证据,慢性心力衰竭的治疗指南对于舒张性心力衰竭人群尚无确切定义,也没有给出明确的治疗方法。舒张功能不全时,心室(左心室或右心室或两者)松驰和充盈延迟或不能完全恢复到收缩期前的长度和张力。舒张功能障碍常出现于收缩功能障碍之前。舒张性心力衰竭的最早期表现可能是劳力性呼吸困难和活动耐受力下降。通常是由于心肌肥厚、纤维化或缺血,左室充盈减慢或舒张不完全,引起肺静脉瘀血。
     冠心病伴无症状的左室舒张功能不全与临床上发生的症状性心力衰竭有一定的联系。由于从病史、体格检查、心电图和胸部X线检查来区分舒张功能不全与收缩功能不全是非常困难的,因此常常需要其他客观的检查手段。心导管检查是第一个用来诊断舒张功能不全的手段,但其具有一定的创伤性,且不利于长期随访。目前有关冠心病病变程度与左室舒张功能的关系以及导管法与超声应变率显像对舒张功能所测指标的关系报道较少。为尽早对此类患者进行强化干预治疗,改善预后,有必要采用不同方法探讨冠状动脉病变程度与左室舒张功能的关系。应变率显像易于被患者接受,是一种可靠及实用的心室舒张功能障碍的检查方法。
     肾素-血管紧张素-醛固酮系统(RAAS)不仅在心室收缩功能不全的病理生理过程中起着重要的作用,而且在心室舒张功能不全中也有重要作用。由于RAAS在心肌间质纤维化的独特作用,已经确立了血管紧张素转换酶(ACE)抑制剂及醛固酮受体拮抗剂在收缩功能不全治疗中的地位。基于RAAS分子水平的研究发现,RAAS中血管紧张素Ⅱ和醛固酮有明确的致心肌纤维化作用,而干预RAAS的一类神经内分泌拮抗剂在心室舒张功能不全也应有较大的治疗价值。到目前为止,仅有血管紧张素Ⅱ型受体拮抗剂针对舒张性心力衰竭患者的死亡率进行了研究,而其他神经内分泌拮抗剂在舒张功能不全的研究正在进行,尚未有最后结果。
     本研究分为三部分。首先应用心导管及超声心动图检查研究了不同冠状动脉病变程度的冠心病患者心室舒张功能的变化。第二部分应用超声应变率显像从临床上分析了ACE抑制剂、β受体阻滞剂以及加用醛固酮受体拮抗剂螺内酯对冠心病心室舒张功能障碍患者的影响。第三部分从基础研究的角度分析了大鼠左室损伤模型应用ACE抑制剂、β受体阻滞剂及醛固酮受体拮抗剂对血流动力学和心室重构的影响。
     第一部分左心导管法与超声心动图检查对比评价冠状动脉病变对左心室舒张功能的影响
     目的:探讨冠心病患者冠状动脉病变程度对左心室舒张功能的影响。
     资料与方法:应用心导管法及超声心动图检查对75例经选择性冠状动脉造影确诊的冠心病患者进行了研究。根据冠状动脉造影结果将冠心病患者按病变狭窄所累及的动脉支数分为四组:轻度冠状动脉狭窄组(冠状动脉狭窄程度≥50%且≤75%,轻度病变组)、单支病变组(单支血管狭窄>75%)、双支病变组(两支血管狭窄>75%)及三支病变组(三支血管狭窄>75%)。另外,根据Gensini积分进行分组,比较不同积分与心室舒张功能的关系。应用导管法测定主动脉内的收缩压、舒张压、心率、左心室舒张末期压力(LVEDP),收缩期及舒张期左室压力最大变化率(dp/dtmax, dp/dtmin)及等容舒张期压力衰减时间常数(T)。比较不同的冠状动脉狭窄程度与心室舒张功能的关系。应用心导管法与超声心动图检查分析左心房内径(LAD)、左心室舒张末期容量(EDV)、收缩末期容量(ESV)、每搏量(SV)、舒张期前1/3充盈量(1/3V)及舒张早期充盈分数(1/3FF),并计算左心室射血分数(EF)。应用超声应变率显像(SRI)分别测量左心室各壁不同节段收缩期(SRs)、快速充盈期(SRe)及舒张晚期(SRa)的峰值应变率,对各峰值应变率与导管法所测的相应指标进行相关性分析。结果:常规超声心动图指标比较,在不同冠状动脉狭窄病变组,仅LAD在三支病变组(38.74±4.57mm)较轻度冠脉病变组(33.87±3.80mm)及单支血管病变组(33.77±3.94mm)显著增加。左心导管测定的LVEDP、dp/dtmax、dp/dtmin、EDV、ESV各组比较均未发现有显著的统计学差异。而轻度冠脉病变组的时间常数T(30.31±6.50ms)低于其他各组(单支病变、双支病变与三支病变组分别为40.92±11.79、43.02±15.83、50.32±23.57ms, P<0.05),反映了显著狭窄各组的左室舒张早期,尤其是等容舒张期功能受损。舒张早期充盈的1/3V(轻度冠脉病变组、单支病变组、双支病变组及三支病变组分别为55.69±24.87、31.44±21.17、24.29±14.79、19.15±13.01ml)及1/3FF%(分别为45.95±19.90、33.29±20.49、25.52±15.06、24.22±15.29),冠状动脉显著狭窄组低于轻度冠脉病变组。而反映左室收缩功能指标的SV及EF在三支病变组降低,与轻度冠脉病变组比较出现了统计学差异(P<0.05)。不同Gensini积分的患者比较,常规超声心动图的LAD在积分较高的“15~”及“30~”两组显著高于“<15”组,导管法测得的EF值、1/3V及1/3FF仅在“30~”组与“<15”组有显著的统计学差别。等容舒张时间常数T及LVEDP在以Gensini积分分组的各组间未发现显著的统计学差异。16例患者同时进行了超声应变率与心导管血流动力学的检查。导管法所测各项心功能指标与超声所测指标的相关性分析发现,两种方法测得的EF相关性良好,相关系数为0.89(P<0.01);导管法所测的EF与SRI的平均SRs相关系数为-0.74(P<0.01);SRe与舒张期前1/3充盈分数的相关系数为0.61(P=0.01),与等容舒张时间常数T的相关系数为-0.66(P<0.01);而未发现E峰与舒张早期峰值应变率、E峰与T有显著的相关性。
     结论:不同程度的冠状动脉病变对心室的舒张功能具有一定的影响,而且随着病变程度的加重影响增大。无论以冠状动脉的狭窄动脉支数还是以冠状动脉狭窄的Gensini积分法比较都反映了冠状动脉显著狭窄影响左心室舒张功能,但前者更能敏感地反映舒张功能的受损;超声应变率显像技术可以准确判断冠心病患者的心室舒张功能。
     第二部分血管紧张素转换酶抑制剂、β受体阻滞剂及螺内酯对冠心病左室舒张功能的影响
     目的:应用超声应变率成像(SRI)技术观察冠心病舒张功能障碍患者应用血管紧张素转换酶(ACE)抑制剂、β受体阻滞剂及醛固酮受体拮抗剂螺内酯对左心室舒张功能的影响。
     方法:34例无心肺疾病的对照组与连续在本科住院符合入选条件的75例冠心病患者,年龄25~83岁。所有患者无ACE抑制剂、β受体阻滞剂及醛固酮受体拮抗剂应用的禁忌证。75例冠心病患者随机分为两组,即干预1组共38例应用ACE抑制剂+β受体阻滞剂(C+M),干预2组共37例,在上述治疗的基础上加用螺内酯40mg/d(C+M+S)。用药前及用药后1个月、3个月及6个月时采用超声心动图测量左房内径(LAD)、左室舒张末期内径(LVEDD)、左室收缩末期内径(LVESD)、室间隔厚度(IVST)、左室后壁厚度(LVPWT),并计算左室质量指数(LVMI)。应用Simpson双平面面积长度法测量左室舒张末期容量、左室收缩末期容量,并计算左室射血分数;应用脉冲多普勒测定二尖瓣口舒张早期左室充盈峰速度( E)、心房收缩期左室充盈峰速度(A),并计算E/A比值。启动组织多普勒测量左心室各壁不同节段收缩期、快速充盈期及房缩期的峰值应变率(SRs、SRe及SRa)。
     结果:对照组与冠心病患者的常规超声心动图指标比较,治疗后6个月无论是两药合用(C+M组,36.84±3.50mm),还是三药合用(C+M+S组,34.86±3.18mm)除LAD冠心病组高于对照组(30.40±2.92mm)而有显著的统计学差异(P<0.01)外,其余各项指标均无显著的统计学差异。三药合用组的LAD较ACE抑制剂+β受体阻滞剂合用组缩小,但仍达不到对照组水平。对照组与冠心病各组超声应变率显像指标比较,对照组各项指标均显著好于冠心病各组,无论是ACE抑制剂+β受体阻滞剂合用还是在此基础上再加用螺内酯。但加用螺内酯6个月后,反映心室舒张功能的指标SRe可进一步改善。
     冠心病的C+M组与C+M+S组治疗前各项超声心动图指标比较无显著的统计学差别。治疗前与治疗后6个月两组组内比较,E/A比值均增大(P<0.05),两组E/A比值的均值分别为0.74及0.75,说明了舒张早期经二尖瓣血流的增加,间接反映了左室舒张早期快速充盈功能的改善。6个月的治疗后三药合用(C+M+S)组IVST、LVPWT及LVMI也较治疗前好转(P<0.05),说明心室质量的下降。
     治疗前后不同治疗方案的冠心病两组组内比较,各项应变率指标(包括收缩功能指标SRs及舒张早期的SRe)均有不同程度的改善。但在C+M+S组反映舒张早期左室快速充盈功能的SRe在各心室节段的改善更为显著。治疗后的组间比较表明,SRe在C+M+S组的基底段后间隔(PS)、侧壁(LW)及前间隔(AS),心室中段的侧壁(LW)、前壁(AW)、前间隔(AS)和后壁(PW)较C+M组有显著的统计学意义的增加。
     长期应用三种药物的联合治疗,未发现严重的影响治疗的副作用。结论:ACE抑制剂及β受体阻滞剂可以显著改善冠心病患者的心室舒张功能,醛固酮受体拮抗剂在ACE抑制剂和β受体阻滞剂合用的基础上应用,能使单纯舒张功能障碍患者的心室舒张功能得到更好的改善,而且长期应用的安全性良好。
     第三部分螺内酯、卡托普利及卡维地洛对左室损伤大鼠血流动力学及心室重构的影响
     目的:探讨应用卡托普利、卡维地洛和醛固酮拮抗剂螺内酯对大鼠急性左室损伤后血流动力学及左室重构的影响。
     方法:雄性健康、Wistar大鼠,超低温冷冻左室游离壁15秒建立大鼠急性心肌坏死模型。24小时存活者96只,12只为假手术组,其余84只随机分为4组,即损伤对照组22只、螺内酯组22只、卡托普利+卡维地洛组20只、卡托普利+卡维地洛+螺内酯组20只。给予不同的药物14周时,存活76只,死亡20只。假手术组12只,心室肌坏死面积符合要求的共54只,即损伤对照组12只、螺内酯组14只、卡托普利+卡维地洛组16只、卡托普利+卡维地洛+螺内酯组12只。测定主动脉收缩压、舒张压、平均压、心率、左室舒张末压、左室内压最大上升和下降速率、等容舒张压力衰减时间常数。之后处死大鼠,称重全心质量、左室质量、测量左室横径及心肌坏死面积,同时测定非坏死区心肌胶原含量及Ⅰ/Ⅲ型胶原比值。
     结果:不同药物处理组的死亡数无显著的统计学差异。与损伤对照组(2.94±0.30mg/g)比较,假手术组(2.33±0.27mg/g)与三药合用组(2.43±0.17mg/g)心脏相对质量的降低有显著的统计学差异。用药各组的左室舒张末期压力和时间常数与假手术组无统计学差别,但均低于对照损伤组(P<0.05),假手术组和三药联合应用组的时间常数低于单用螺内酯组与卡托普利+卡维地洛组(P<0.05),而假手术组及用药各组的非梗塞区心肌胶原含量及Ⅰ/Ⅲ型胶原比值低于损伤对照组,三药合用组低于螺内酯单用及卡托普利与卡维地洛合用组。
     结论:卡托普利、卡维地洛和螺内酯改善受损左室的血流动力学及心室重构,螺内酯与其他神经内分泌拮抗剂的联合应用对血流动力学的改善及心肌胶原增生的抑制有协同作用。
     综上所述,我们的研究结果表明:
     1.冠心病患者的冠状动脉狭窄程度与左室舒张功能障碍有关,随着病变范围的增大,对舒张功能的影响增加,且在一定程度时影响心室收缩功能。
     2.从临床观察及动物模型的研究证明,应用ACE抑制剂及β受体阻滞剂可以改善左室舒张功能障碍,在此基础上加用醛固酮拮抗剂螺内酯可进一步改善左室舒张功能,减轻心室重构。
Heart failure is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood. With the improvement of life enviroment and increase of the life-span in human being, chronic heart failure (CHF) is becoming an important and growing clinical problem, especially in the elderly. CHF is the most common inpatient diagnosis. The annual hospital cost of treating these patients is more than the cost of treating patients with myocardial infarction. Increasingly, many evidences indicate that diastolic dysfunction is a major contributor to the pathophysiology of CHF, which traditionally has been identified with systolic dysfunction. Interestingly, because of the lack of evidence-based data, many guidelines for treatment of CHF either do not address diastolic heart failure or do not give definitive therapeutic recommendations. Diastolic dysfunction refers to abnormalities in ventricular relaxation and filling (right ventricle, left ventricle, or both) with prolonged or incomplete return to presystolic length and force. In the progression of most cardiac diseases, diastolic dysfunction typically precedes systolic impairment. One of the earliest signs of diastolic dysfunction is exercise intolerance due to exertional dyspnea. Because of increased chamber stiffness, the end-diastolic volume in patients with diastolic dysfunction cannot increase during exercise. Usually as a result of myocardial hypertrophy, fibrosis, or ischemia, left ventricular filling is slowed or incomplete, causing pulmonary venous congestion.
     The presence of asymptomatic left ventricular diastolic dysfunction is related to the symptomatic heart failure in the patients with coronary heart disease. Diastolic dysfunction is difficult to differentiate from systolic dysfunction on the basis of history, physical examination, electrocardiographic and chest radiographic findings. Objective diagnostic testing is required. Cardiac catheterization was the first method used to diagnose diastolic dysfunction. However, the catheterization is invasive and impractical for long-term follow-up. A few reports investigated the severity of impaired LV diastolic function in patients with coronary artery disease and its relationship to the number and coronary score in coronary artery lesions visualized at coronary angiography. It is necessary to evaluate the effect of the severity of coronary stenosis on the left ventricular diastolic function by catheterization and echocardiographic strain rate imaging method in order to carry out the intensive treatment for the patients with diastolic dysfunction and improve the patients’prognosis. Strain rate imaging is an accepted, reliable, and practical method for diagnosing diastolic dysfunction.
     The renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathophysiology of both systolic dysfunction as well as diastolic dysfunction. The beneficial role of angiotensin-converting enzyme (ACE) inhibitors as well as aldosterone antagonists in systolic dysfunction has been well established. Because of its unique role of the RAAS in establishing fibrosis at a molecular level, RAAS blockade provides an opportunity to expand the therapeutic options for diastolic dysfunction. Thus far, in patients with primary diastolic dysfunction only the angiotensin receptor type 1 antagonist has been reported to decrease morbidity. Other kinds of neuroendocrine blockers are currently underway to establish the role in patients with diastolic dysfunction.
     Our current research included three parts. In the part 1, we aimed to investigate the severity of impaired left ventricular diastolic function in patients with coronary heart disease and its relationship to the number and coronary score of coronary artery lesions visualized at coronary angiography and echocardiography. The part 2 was designed to assess the effects of spironolactone on left ventricular diastolic dysfunction on the basis of ACE inhibitor andβblocker in patients with coronary heart disease by echocardiographic strain rate imaging. In the part 3, we established rat model of left ventricular injury. The effect of ACE inhibitor,βblocker and spironolactone on hemodynamics and remodeling of injury left ventricles in rats were analyzed.
     Part 1 Relationship between severity of coronary lesions and left ventricular diastolic function in patients with coronary heart disease by cardiac catheterization and echocardiographic imaging
     Objective:We aimed to investigate the severity of impaired LV diastolic function in patients with coronary heart disease(CHD) and its relationship to the number and coronary score in coronary artery lesions visualized at coronary angiography and echocardiography.
     Methods:Seventy-five consecutive patients with CHD confirmed by coronary angiography were divided into 4 groups according to extent of coronary lesions(the degree of stenosis≥50% and≤75% defined as mild stenosis, stenosis in one vessel>75% as single branch lesion, in two vessels >75% as double branch lesion and in three vessels>75% as triple branch lesion ) and the diseased coronary artery Gensini score was evaluated. The systolic pressure and diastolic pressure in aorta, heart rate, left ventricular end-diastolic pressure (LVEDP), maximum and minimum value of the first derivative of left ventricular pressure (dp/dtmax, dp/dtmin), ejection fraction in left ventricles(EF) were measured and then, the time constant of isovolumic pressure decay in early period of left ventricular relaxation(T) was calculated. The left atrial dimension(LAD), left ventricular end-diastolic volume(EDV), left ventricular end-systolic volume(ESV), stroke volume(SV), the early 1/ 3 filling volume (1/3V) and filling fraction (1/ 3 FF) of left ventricle were measured by left ventriculography and echocardiography. Peak systolic strain rate (SRs), peak early diastolic strain rate (SRe) and peak late diastolic strain rate( SRa) in each segment of left ventricles were measured. The correlation of the peak strain rates and other diastolic parameters was analyzed.
     Results:The significant difference in echocardiographic study was only the diameter of LAD which in triple branch lesion group(38.74±4.57mm)was more than in mild stenosis group(33.87±3.80mm) and in single branch lesion group(33.77±3.94mm). There was no significant difference in LVEDP, dp/dtmax, dp/dtmin among those groups. The time constant(T) was better in mild stenosis group(30.31±6.50 ms) than in single vessel lesion(40.92±11.79), double vessel lesion(43.02±15.83ms) and triple-vessel lesion group(50.32±23.57ms, P<0.05). The increase in time constant in obvious stenosis showed the impaired diastolic function of left ventricle, especially for the isovolumic diastole. The early filling 1/3V (55.69±24.87、31.44±21.17、24.29±14.79、19.15±13.01ml in mild stenosis group, single, double and triple branch lesion group, respectively ) and 1/3FF%(45.95±19.90、33.29±20.49、25.52±15.06、24.22±15.29 in mild stenosis group, single, double and triple branch lesion group, respectively) was more in mild stenosis group than in obvious stenosis groups. The level of EF and SV in mild stenosis group was more than in triple branch lesion group. The comparison of LAD, EF, early 1/3V and 1/3FF of different coronary Gensini score was significant difference in score“<15”and“15~”,“30~”group. The parameters of“<15”group was better than in“15~”and“30~”group. There was no significant difference of the time constant (T) and LVEDP among the groups by coronary Gensini score. The catheterization and strain rate image of echocardiography were carried out in sixteen patients. A strong correlation between the EF by echocardiogram and by invasive catheter(r=0.89, P<0.01) was existed. Invasive EF was significantly related to SRs( r=-0.74, P<0.01). SRe was also correlated to the time constant of left ventricular pressure decay (r=-0.66, P<0.01) and early 1/3FF(0.61, P=0.01), whereas a lack of significant correlation was found between the time constant and the peak of mitral early diastolic velocity(E), and SRe and E.
     Conclusions: The different severity of coronary lesion affected ventricular diastolic function at a certain extent. Whether by the lesion numbers or the coronary Gensini score, the more the severity of coronary lesion was, the more serious ventricular diastolic dysfunction was. The grouping by the lesion numbers was more sensitive than the grouping by Gensini score in predicting diastolic dysfunction. Strain rate imaging in echocardiogram is reasonable accuracy for evaluating diastolic dysfunction in patients with CAD. Part 2 Effect of angiotensin-converting enzyme inhibitor,βblocker and spironolactone on left ventricular diastolic function in patients with coronary heart disease
     Objective: This study was designed to assess the effects of angiotensin-converting enzyme inhibitor (ACEI),βblocker and spironolactone on left ventricular diastolic dysfunction in patients with coronary heart disease (CHD) by echocardiographic strain rate imaging (SRI).
     Methods: Thirty-four subjects without heart and lung disease (control group) and seventy-five patients with CHD between 25 and 83 years of age with isolated diastolic dysfunction and no contraindications for ACEI,βblocker and spironolactone were enrolled in this study. The patients with CHD were randomized to combination of ACEI andβblocker (C+M group, 38 patients) or combination of ACEI,βblocker and spironolactone (C+M+S group, 37 patients, spironolactone 40mg/d) for 6 months. Left atrial dimension(LAD), left ventricular end diastolic and systolic dimension, interventricular septal thickness(IVST), left ventricular posterior wall thickness(LVPWT) were measured by echocardiography. Left ventricular mass index (LVMI) was calculated from the above mentioned left ventricular parameters. Measurements of left ventricular end-diastolic volume ,end-systolic volume and ejection fraction was obtained by biplane Simpson's method. E/A ratio were calculated according to the early diastolic peak filling velocity of mitral inflow (E) and to late diastolic peak filling velocity (A). Peak systolic strain rate (SRs), peak early diastolic strain rate (SRe) and and peak late diastolic strain rate (SRa) in each segment of left ventricle were measured by tissue Doppler mode. The parameters mentioned above were determined at baseline 1st month, 3rd month and 6th months after randomization.
     Results: LAD at 6-month follow-up was 36.84±3.50mm in two-drug combination (C+M) group, 34.86±3.18mm in three-drug combination (C+M+S) group and 30.40±2.92mm in control group. The difference of LAD among the groups was significant (P<0.01). There was no significant difference in other conventional echocardiographic parameters. Although LAD in the group of three-drug combination was smaller than in the group of two-drug combination, LAD in three-drug combination (C+M+S) group was larger than in control group at 6th month. The parameters of SRI in control group were better than (C+M) and (C+M+S) group. However, compared with the (C+M) group, SRe reflecting the early ventricular diastolic function was improved in C+M+S group six months later(P<0.05).
     The baseline characteristics of the two groups with coronary heart disease were equally distributed. The E/A ratio averaged 0.74 in the (C+M) group and 0.75 in the (C+M+S) group at 6th month. There was significant difference within groups (P<0.05). The increase in E/A ratio implicated that the left ventricular inflow and filling function in the early diastole was improved. The decrease of IVST, LVPWT and LVMI in (C+M+S) group showed that the ventricular mass became less after six-month treatment.
     The indexes related to the systolic (SRs) and diastolic (SRe) functions were improved after treatment in two groups with coronary heart disease. However, the SRe was significantly higher in ventricular basal segments of posterior septum, lateral wall, anterior septum and mid segments of lateral wall, anterior wall, anterior septum and posterior wall in (C+M+S) group than in (C+M) group.
     No serious side-effect which influenced continued treatment was found in the combinative use of ACE inhibitor,β-blocker and spironolactone in long term.
     Conclusions: The combination of ACE inhibitor andβ-blocker significantly improved the ventricular diastolic function in patients with coronary heart disease. The additive aldosterone inhibitor spironolactone in the background of combination of ACE inhibitor andβ-blocker made the isolated diastolic dysfunction better and the safety was promotive in the long term application. Part 3 Effect of spironolactone, captopil and carvedilol on hemodynamics and remodeling after left ventricular injury in rats
     Objective: To evaluate the effect of spironolactone, captopil and carvedilol on hemodynamics and remodeling of injury left ventricles in rats.
     Methods: Wistar rats (male) were cryoinjuried on the free left ventricular wall for 15 seconds to establish the myocardial necrosis model. There were 96 survived rats after 24 hours of the operation. Except 12 rats which were enrolled in Sham group, 84 rats were randomly divided into control group(22 rats), spironolactone group(22 rats), captopil and carvedilol group(20 rats), combinative group (20 rats, captopil+ carvedilol+spironolactone). There were 76 rats survived and 20 death after 14 weeks. 12 rats were in Sham group and 54 rats in control group or other treated groups complying with the requirement of myocardial necrosis. Systolic pressure, diastolic pressure and mean pressure in aorta, heart rate, left ventriclular end-diastolic pressure (LVEDP), maximum and minimum dp/dt in left ventricles were measured after 14 weeks of the drug administration. Then, the time constant of isovolumic pressure decay was calculated. The collagen content and the ratio of typeⅠandⅢcollagen in non-necrosis zone were determined. Cardiac actual weight, left ventricular actual weight, the diameter and area of left ventricular necrosis were measured after the rats were killed.
     Results: Compared with control group(2.94±0.30mg/g), relative cardiac weight in Sham group(2.33±0.27mg/g) and three-drug administration group(2.43±0.17mg/g) was lower (P<0.05). There were not significantly different in LVEDP and the time constant between Sham group and the drug administration groups, but the parameters in these groups were better than in control group(P<0.05). The time constant in Sham group and three-drug combination group were better than in spironolactone group and captopil+carvedilol group(P<0.05). The collagen content and the ratio of typeⅠandⅢcollagen in non-necrosis zone were lower in Sham group and each of treated groups than control group. The levels of the collagen content and the ratio of typeⅠandⅢcollagen in non-necrosis zone in three-drug combined group were lower than spironoloactone group and captopil+carvedilol group.
     Conclusion: The cardiac hemodynamic parameters and ventricular remodeling in rats with the myocardiac injury are improved by the use of spironolactone, captopil and carvedilol. Spironolactone cooperates with other neurohormonal antagonists in the improvement of cardiac function and remodeling.
     In conclusion, our research results indicated that:
     1. The left ventricular dysfunction was related to the severity of coronary artery stenosis in patients with coronary heart disease. The more the severity of coronary lesion was, the more serious ventricular diastolic dysfunction was. The serious and wide range of stenosis may impair the systolic function.
     2. Our research from both clinical observation and animal models demostrated that ACE inhibitor andβ-blocker contributed to the improvement of left ventricular diastolic dysfunction. Adding spironolactone to ACE inhibitors andβ-blocker made further ventricular diastolic function improvement and reduced ventricle remodeling in coronary heart disease.
引文
1 Smiseth OA. Assessment of ventricular diastolic function[J]. Can J Cardiol, 2001, 17(11):1167-1176
    2 Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study[J]. N Engl J Med, 2006, 355(3):260-269
    3 Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community[J]. JAMA, 2006, 296(18):2209-2216
    4 Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med, 2006, 355(3):251-259
    5 Ren X, Ristow B, Na B, et al. Prevalence and prognosis of asymptomatic left ventricular diastolic dysfunction in ambulatory patients with coronary heart disease[J]. Am J Cardiol, 2007, 99(12):1643-1647
    6 Gaasch WH, Little WC. Assessment of left ventricular diastolic function and recognition of diastolic heart failure[J]. Circulation, 2007, 116(6):591-593
    7 Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time?[J]. J Am Coll Cardiol, 2006, 47(7):1313-1327
    8 Hashimoto I, Li X, Hejmadi Bhat A, et al. Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue Doppler imaging[J]. J Am Coll Cardiol, 2003, 42(9):1574-1583
    9 Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis[J]. N Engl J Med, 1994, 330(25):1782-1788
    10 Dash H, Johnson RA, Dinsmore RE, et al. Cardiomyopathic syndrome due to coronary artery disease. I: Relation to angiographic extent of coronary disease and to remote myocardial infarction[J]. Br Heart J, 1977, 39(7):733-739
    11 Gensini GG. A more meaningful scoring system for determining theseverity of coronary heart disease[J]. Am J Cardiol, 1983, 51(9):606-607
    12 Tanaka H, Kawai H, Tatsumi K, et al. Relationship between regional and global left ventricular systolic and diastolic function in patients with coronary artery disease assessed by strain rate imaging[J]. Circ J, 2007, 71(4):517-523
    13 Wang J, Khoury DS, Thohan V, et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures[J]. Circulation, 2007, 115(11):1376-1383
    14 Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure[J]. J Clin Invest, 1976, 58(3):751-760
    15 Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle[J]. N Engl J Med, 2004, 350(19):1953-1959
    16 Marino P, Little WC, Rossi A, et al. Can left ventricular diastolic stiffness be measured noninvasively?[J]. J Am Soc Echocardiogr, 2002, 15(9):935-943
    17 Yamakado T, Takagi E, Okubo S, et al. Effects of aging on left ventricular relaxation in humans. Analysis of left ventricular isovolumic pressure decay[J]. Circulation, 1997, 95(4):917-923
    18 Gaasch WH, Carroll JD, Blaustein AS, et al. Myocardial relaxation: effects of preload on the time course of isovolumetric relaxation[J]. Circulation, 1986, 73(5):1037-1041
    19 Sandler H, Dodge HT. The use of single plane angiocardiograms for the calculation of left ventricular volume in man[J]. Am Heart J, 1968, 75(3):325-334
    20 Chatterjee K, Sacoor M, Sutton GC, et al. Assessment of left ventricular function by single plane cineangiographic volume analysis[J]. Br Heart J, 1971, 33(4):565-571
    21 Dodge HT. Current concepts in cardiology: angiographic evaluation of ventricular function[J]. N Engl J Med, 1977, 296(10):551-553
    22 Firstenberg MS, Greenberg NL, Garcia MJ, et al. Relationship between ventricular contractility and early diastolic intraventricular pressure gradients: A diastolic link to systolic function[J]. J Am Soc Echocardiogr, 2007, 8:8(Epub ahead of print)
    23 Yuda S, Fang ZY, Marwick TH. Association of severe coronary stenosis with subclinical left ventricular dysfunction in the absence of infarction[J]. J Am Soc Echocardiogr, 2003, 16(11):1163-1170
    24 Vaskelyte J, Stoskute N, Kinduris S, et al. Coronary artery bypass grafting in patients with severe left ventricular dysfunction: predictive significance of left ventricular diastolic filling pattern[J]. Eur J Echocardiogr, 2001, 2(1):62-67
    25 Naqvi TZ, Padmanabhan S, Rafii F, et al. Comparison of usefulness of left ventricular diastolic versus systolic function as a predictor of outcome following primary percutaneous coronary angioplasty for acute myocardial infarction[J]. Am J Cardiol, 2006, 97(2):160-166
    26 Gibson DG, Francis DP. Clinical assessment of left ventricular diastolic function[J]. Heart, 2003, 89(2):231-238
    27 Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function[J]. Eur J Cardiothorac Surg, 2006, 30(4):604-610
    28 Osadchii OE. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects[J]. Heart Fail Rev, 2007, 12(1):66-86
    29 Osranek M, Seward JB, Buschenreithner B, et al. Diastolic function assessment in clinical practice: the value of 2-dimensional echocardiography[J]. Am Heart J, 2007, 154(1):130-136
    30 JS G, DW K, GP A, et al. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or =65 years of age (the cardiovascular health study)[J]. Am J Cardiol, 2006, 97(1):83-89
    31 Yu CM, Lin H, Kum LC, et al. Evidence of atrial mechanical dysfunction by acoustic quantification in abnormal relaxation and restrictive fillingpatterns of diastolic dysfunction in patients with coronary artery disease[J]. Eur J Echocardiogr, 2003, 4(4):272-278
    32 Pickering TG. Heart failure and hypertension: The diastolic dilemma[J]. J Clin Hypertens, 2004, 6(11):647-650
    33 Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment[J]. Circulation, 2002, 105(12):1503-1508
    34 De Keulenaer GW, Brutsaert DL. Systolic and diastolic heart failure: different phenotypes of the same disease?[J]. Eur J Heart Fail, 2007, 9(2):136-143
    35 Yu CM, Lin H, Yang H, et al. Progression of systolic abnormalities in patients with "isolated" diastolic heart failure and diastolic dysfunction[J]. Circulation, 2002, 105(10):1195-1201
    36 Petrie MC, Caruana L, Berry C, et al. "Diastolic heart failure" or heart failure caused by subtle left ventricular systolic dysfunction?[J]. Heart, 2002, 87(1):29-31
    37 Sanderson JE. Diastolic heart failure: fact or fiction?[J]. Heart, 2003, 89(11):1281-1282
    38 Fabbiocchi F, Galli C, Sganzerla P, et al. Changes in right ventricular filling dynamics during left anterior descending, left circumflex and right coronary artery balloon occlusion[J]. Eur Heart J, 1997, 18(9):1432-1437.
    39 Fox JM, Maurer MS. Ventriculovascular coupling in systolic and diastolic heart failure[J]. Curr Cardiol Rep, 2006, 8(3):232-239
    40 Maciver DH, Townsend M. A novel mechanism of heart failure with normal ejection fraction[J]. Heart, 2007, 94(4):446-449.
    41 Yip G, Wang M, Zhang Y, et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition?[J]. Heart, 2002, 87(2):121-125
    42 Rydberg E, Willenheimer R, Erhardt L. The prevalence of impaired left ventricular diastolic filling is related to the extent of coronary atherosclerosis in patients with stable coronary artery disease[J]. CoronArtery Dis, 2002, 13(1):1-7
    43 Leaman DM, Brower RW, Meester GT, et al. Coronary artery atherosclerosis: severity of the disease, severity of angina pectoris and compromised left ventricular function[J]. Circulation, 1981, 63(2):285-299
    44 Mirsky I. Assessment of diastolic function: suggested methods and future considerations[J]. Circulation, 1984, 69(4):836-841
    45 Little WC, Downes TR. Clinical evaluation of left ventricular diastolic performance[J]. Prog Cardiovasc Dis, 1990, 32(4):273-290
    1 Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population[J]. JAMA, 2004, 292(3):344-350
    2 van Jaarsveld CH, Ranchor AV, Kempen GI, et al. Epidemiology of heart failure in a community-based study of subjects aged > or = 57 years: incidence and long-term survival[J]. Eur J Heart Fail, 2006, 8(1):23-30
    3 顾东风, 黄广勇, 何江, 等. 中国心力衰竭流行病学调查及其患病率[J]. 中华心血管病杂志, 2003, 31(1):3-6
    4 Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: Diagnosis, prognosis, and measurements of diastolic function[J]. Circulation, 2002, 105(11):1387-1393
    5 Badano LP, Albanese MC, De Biaggio P, et al. Prevalence, clinical characteristics, quality of life, and prognosis of patients with congestive heart failure and isolated left ventricular diastolic dysfunction[J]. J Am Soc Echocardiogr, 2004, 17(3):253-261
    6 王美婵, 宋亚华. 心脏舒张功能的年龄性变化早于收缩功能[J]. 中国循环杂志, 1996, 11(7):419-422
    7 Leather HA, De Wolff MH, Wouters PF. Effects of propofol on the systolic and diastolic performance of the postischaemic, reperfused myocardium in rabbits[J]. Eur J Anaesthesiol, 2003, 20(3):191-198
    8 Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based survey of a population sample[J]. Eur Heart J, 2003, 24(4):320-328
    9 Husic M, Norager B, Egstrup K, et al. Usefulness of left ventricular diastolic wall motion abnormality as an early predictor of left ventricular dilation after a first acute myocardial infarction[J]. Am J Cardiol, 2005, 96(9):1186-1189
    10 Moller JE, Hillis GS, Oh JK, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction[J]. Circulation, 2003, 107(17):2207-2212
    11 Ren X, Ristow B, Na B, et al. Prevalence and prognosis of asymptomatic left ventricular diastolic dysfunction in ambulatory patients with coronary heart disease[J]. Am J Cardiol, 2007, 99(12):1643-1647
    12 Moller JE, Pellikka PA, Hillis GS, et al. Prognostic importance of diastolic function and filling pressure in patients with acute myocardial infarction[J]. Circulation, 2006, 114(5):438-444
    13 Chen HH, Lainchbury JG, Senni M, et al. Diastolic heart failure in the community: clinical profile, natural history, therapy, and impact of proposed diagnostic criteria[J]. J Card Fail, 2002, 8(5):279-287
    14 Galasko GIW, Barnes SC, Collinson P, et al. What is the most cost-effective strategy to screen for left ventricular systolic dysfunction: natriuretic peptides, the electrocardiogram, hand-held echocardiography, traditional echocardiography, or their combination?[J]. Eur Heart J, 2006, 27(2):193-200
    15 Teske AJ, De Boeck BW, Melman PG, et al. Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking[J]. Cardiovasc Ultrasound, 2007, 5(27):27
    16 Wang J, Khoury DS, Thohan V, et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures[J]. Circulation, 2007, 115(11):1376-1383
    17 Tanaka H, Kawai H, Tatsumi K, et al. Relationship between regional and global left ventricular systolic and diastolic function in patients with coronary artery disease assessed by strain rate imaging[J]. Circ J, 2007, 71(4):517-523
    18 McMurray J, Solomon S, Pieper K, et al. The effect of valsartan, captopril, or both on atherosclerotic events after acute myocardial infarction: an analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT)[J]. J Am Coll Cardiol, 2006, 47(4):726-733
    19 Fowler MB. Carvedilol prospective randomized cumulative survival (COPERNICUS) trial: carvedilol in severe heart failure[J]. Am J Cardiol, 2004, 93(9A):35B-39B
    20 Domanski MJ, Krause-Steinrauf H, Massie BM, et al. A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS[J]. J Card Fail, 2003, 9(5):354-363
    21 Ouzounian M, Hassan A, Cox JL, et al. The effect of spironolactone useon heart failure mortality: a population-based study[J]. J Card Fail, 2007, 13(3):165-169
    22 Bertram P, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure[J]. N Engl J Med, 1999, 341(2):709-717
    23 Dash H, Johnson RA, Dinsmore RE, et al. Cardiomyopathic syndrome due to coronary artery disease. I: Relation to angiographic extent of coronary disease and to remote myocardial infarction[J]. Br Heart J, 1977, 39(7):733-739
    24 Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society[J]. Circulation, 2005, 112(12):e154-235
    25 Khouri SJ, Maly GT, Suh DD, et al. A practical approach to the echocardiographic evaluation of diastolic function[J]. J Am Soc Echocardiogr, 2004, 17(3):290-297
    26 陈志强. 人体体表面积计算方法的比较研究[J]. 中国运动医学杂志, 2003, 22(6):576-579
    27 Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings[J]. Am J Cardiol, 1986, 57(6):450-458
    28 Thohan V, Torre-Amione G, Koerner MM. Aldosterone antagonism and congestive heart failure: a new look at an old therapy[J]. Curr Opin Cardiol, 2004, 19(4):301-308.
    29 Cohn JN, Colucci W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology[J]. Am J Cardiol, 2006,97(10A):4F-12F
    30 Pitt B. Effect of aldosterone blockade in patients with systolic left ventricular dysfunction: implications of the RALES and EPHESUS studies[J]. Mol Cell Endocrinol, 2004, 217(1-2):53-58
    31 MacFadyen RJ, Lee AF, Morton JJ, et al. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure?[J]. Heart, 1999, 82(1):57-61
    32 Cohn JN, Anand IS, Latini R, et al. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial[J]. Circulation, 2003, 108(11):1306-1309
    33 Bauersachs J, Heck M, Fraccarollo D, et al. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: role of vascular superoxide anion formation and endothelial nitric oxide synthase expression[J]. J Am Coll Cardiol, 2002, 39(2):351-358
    34 Rajagopalan S, Duquaine D, King S, et al. Mineralocorticoid receptor antagonism in experimental atherosclerosis[J]. Circulation, 2002, 105(18):2212-2216
    35 Suzuki G, Morita H, Mishima T, et al. Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure[J]. Circulation, 2002, 106(23):2967-2972
    36 De Angelis N, Fiordaliso F, Latini R, et al. Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat[J]. J Mol Cell Cardiol, 2002, 34(12):1655-1665
    37 中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 慢性稳定 性 心 绞 痛 诊 断 与 治 疗 指 南 [J]. 中 华 心 血 管 病 杂 志 , 2007, 35(3):195-206
    38 中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 不稳定性心绞痛和非 ST 段抬高心肌梗死诊断与治疗指南[J]. 中华心血管病杂志, 2007, 25(4):295-304
    39 Hayashi M, Tsutamoto T, Wada A, et al. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction[J]. Circulation, 2003, 107(20):2559-2565
    40 Modena MG, Aveta P, Menozzi A, et al. Aldosterone inhibition limits collagen synthesis and progressive left ventricular enlargement after anterior myocardial infarction[J]. Am Heart J, 2001, 141(1):41-46
    41 Di Pasquale P, Cannizzaro S, Giubilato A, et al. Additional beneficial effects of canrenoate in patients with anterior myocardial infarction on ACE-inhibitor treatment. A pilot study[J]. Ital Heart J, 2001, 2(2):121-129
    42 Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease[J]. Am J Cardiol, 1995, 76(17):1259-1265
    43 MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients[J]. Cardiovasc Res, 1997, 35(1):30-34
    44 Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure[J]. Circulation, 2000, 101(6):594-597
    45 Tsutamoto T, Wada A, Maeda K, et al. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure[J]. J Am Coll Cardiol, 2001, 37(5):1228-1233
    46 Abiose AK, Mansoor GA, Barry M, et al. Effect of spironolactone on endothelial function in patients with congestive heart failure on conventional medical therapy[J]. Am J Cardiol, 2004, 93(12):1564-1566
    47 Cicoira M, Zanolla L, Rossi A, et al. Long-term, dose-dependent effects ofspironolactone on left ventricular function and exercise tolerance in patients with chronic heart failure[J]. J Am Coll Cardiol, 2002, 40(2):304-310
    48 Kasama S, Toyama T, Kumakura H, et al. Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy[J]. J Am Coll Cardiol, 2003, 41(4):574-581
    49 Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction[J]. N Engl J Med, 2003, 348(14):1309-1321
    50 Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study[J]. N Engl J Med, 2004, 351(6):543-551
    51 Osranek M, Seward JB, Buschenreithner B, et al. Diastolic function assessment in clinical practice: the value of 2-dimensional echocardiography[J]. Am Heart J, 2007, 154(1):130-136
    52 Gottdiener JS, Kitzman DW, Aurigemma GP, et al. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or =65 years of age (the cardiovascular health study)[J]. American Journal of Cardiology, 2006, 97(1):83-89
    53 Kurtoglu N, Akdemir R, Yuce M, et al. Left ventricular inflow normal or pseudonormal. A new echocardiographic method: diastolic change of left atrial diameter[J]. Echocardiography, 2000, 17(7):653-658
    54 Milliez P, Deangelis N, Rucker-Martin C, et al. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction[J]. Eur Heart J, 2005, 26(20):2193-2199
    55 Boixel C, Fontaine V, Rucker-Martin C, et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat[J]. J Am Coll Cardiol, 2003, 42(2):336-344
    56 Prasad A, Popovic ZB, Arbab-Zadeh A, et al. The effects of aging and physical activity on Doppler measures of diastolic function[J]. Am JCardiol, 2007, 99(12):1629-1636
    57 Burns AT, Connelly KA, La Gerche A, et al. Effect of heart rate on tissue Doppler measures of diastolic function[J]. Echocardiography, 2007, 24(7):697-701
    58 Marwick TH. Straining to detect ischaemia[J]. Eur Heart J, 2007, 28(12):1407-1408
    59 Weidemann F, Jung P, Hoyer C, et al. Assessment of the contractile reserve in patients with intermediate coronary lesions: a strain rate imaging study validated by invasive myocardial fractional flow reserve[J]. Eur Heart J, 2007, 28(12):1425-1432
    60 Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study[J]. Circulation, 2005, 112(19):2940-2945
    61 Roongsritong C, Sutthiwan P, Bradley J, et al. Spironolactone improves diastolic function in the elderly[J]. Clin Cardiol, 2005, 28(10):484-487
    62 Chan AK, Sanderson JE, Wang T, et al. Aldosterone receptor antagonism induces reverse remodeling when added to angiotensin receptor blockade in chronic heart failure[J]. J Am Coll Cardiol, 2007, 50(7):591-596
    63 Orea-Tejeda A, Colin-Ramirez E, Castillo-Martinez L, et al. Aldosterone receptor antagonists induce favorable cardiac remodeling in diastolic heart failure patients[J]. Rev Invest Clin, 2007, 59(2):103-107
    64 Di Pasquale P, Cannizzaro S, Scalzo S, et al. Effects of canrenoate plus angiotensin-converting enzyme inhibitors versus angiotensin-converting enzyme inhibitors alone on systolic and diastolic function in patients with acute anterior myocardial infarction[J]. Am Heart J, 2005, 150(5):919
    65 Susic D, Varagic J, Ahn J, et al. Long-term mineralocorticoid receptor blockade reduces fibrosis and improves cardiac performance and coronary hemodynamics in elderly SHR[J]. Am J Physiol Heart Circ Physiol, 2007, 292(1):H175-179
    66 Kang YM, Zhang ZH, Johnson RF, et al. Novel effect of mineralocorticoidreceptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure[J]. Circ Res, 2006, 99(7):758-766
    67 Hashimoto I, Li X, Hejmadi Bhat A, et al. Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue Doppler imaging[J]. J Am Coll Cardiol, 2003, 42(9):1574-1583
    68 Stoylen A, Slordahl S, Skjelvan GK, et al. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus[J]. J Am Soc Echocardiogr, 2001, 14(4):264-274
    69 Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging[J]. Circulation, 2002, 106(1):50-56
    70 Shammas RL, Khan NU, Nekkanti R, et al. Diastolic heart failure and left ventricular diastolic dysfunction: what we know, and what we don't know![J]. Int J Cardiol, 2007, 115(3):284-292
    1 Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure: from molecules to man (Part I)[J]. Cardiovasc Pathol, 2005, 14(1):1-11
    2 Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure From molecules to man (Part II)[J]. Cardiovasc Pathol, 2005, 14(2):49-60
    3 Babick AP, Dhalla NS. Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure[J]. Med Princ Pract, 2007, 16(2):81-89
    4 Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure[J]. Circulation, 2007, 116(4):434-448
    5 刘副英, 吕占军. 实验动物学[M], 第 1 版. 北京:中国农业科技出版社,1997,180
    6 Hu K, Gaudron P, Ertl G. Long-term effects of beta-adrenergic blocking agent treatment on hemodynamic function and left ventricular remodeling in rats with experimental myocardial infarction: importance of timing of treatment and infarct size[J]. J Am Coll Cardiol, 1998, 31(3):692-700
    7 Olivetti G, Capasso JM, Meggs LG, et al. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats[J]. Circ Res, 1991, 68(3):856-869
    8 Yau TM, Fung K, Weisel RD, et al. Enhanced myocardial angiogenesis by gene transfer with transplanted cells[J]. Circulation, 2001, 104(12 Suppl 1):I218-222
    9 赵文萍, 刘刚, 郑晔, 等. 无呼吸机支持反复冷冻法建立大鼠急性心肌梗死模型[J]. 第三军医大学学报, 2007, 29(4):314-317
    10 Cohn JN, Colucci W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology[J]. Am J Cardiol, 2006, 97(10A):4F-12F
    11 Young MJ, Lam EY, Rickard AJ. Mineralocorticoid receptor activation and cardiac fibrosis[J]. Clin Sci (Lond), 2007, 112(9):467-475
    12 Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review[J]. J Hypertens, 2006, 24(6):983-991
    13 Buss SJ, Backs J, Kreusser MM, et al. Role of the renin–angiotensin–aldosterone system in vascular remodeling and inflammation: a clinical review spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats[J]. Endocrinology, 2006, 147(5):2526-2534
    14 Barbato JC, Mulrow PJ, Shapiro JI, et al. Rapid effects of aldosterone and spironolactone in the isolated working rat heart[J]. Hypertension, 2002, 40(2):130-135
    15 Barbato JC, Rashid S, Mulrow PJ, et al. Mechanisms for aldosterone and spironolactone-induced positive inotropic actions in the rat heart[J]. Hypertension, 2004, 44(5):751-757
    16 Laviolle B, Pape D, Turlin B, et al. Direct effects of 3 combinations of enalapril, metoprolol, and spironolactone on cardiac remodeling in dilated cardiomyopathic hamsters[J]. J Card Fail, 2006, 12(9):752-758
    17 Packer HKPMHAKMTJ-LRMBFAJCM. Are Beta-Blockers Needed in Patients Receiving Spironolactone for Severe Chronic Heart Failure? An Analysis of the COPERNICUS Study[J]. Am Heart J, 2006, 151(1):55-61
    18 Kambara A, Holycross BJ, Wung P, et al. Combined effects of low-dose oral spironolactone and captopril therapy in a rat model of spontaneous hypertension and heart failure[J]. J Cardiovasc Pharmacol, 2003, 41(6):830-837
    19 Struthers AD. Aldosterone: an important mediator of cardiac remodelling in heart failure[J]. Br J Cardiol, 2005, 12(3):211-218
    20 Fejes-Toth G, Naray-Fejes-Toth A. Early aldosterone-regulated genes in cardiomyocytes: clues to cardiac remodeling?[J]. Endocrinology, 2007, 148(4):1502-1510
    21 董士民, 白杰, 刘坤申. 螺内酯、氯沙坦及两者合用对急性心肌梗死大鼠心肌胶原重建、醛固酮合成酶基因及胶原 mRNA 表达的影响[J]. 中国病理生理杂志, 2006, 22(9):1839-1842
    22 Janicki JS, Brower GL, Gardner JD, et al. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling[J]. Heart Fail Rev, 2004, 9(1):33-42
    23 Funck RC, Wilke A, Rupp H, et al. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease[J]. Adv Exp Med Biol, 1997, 432(1):35-44
    24 Nomoto T, Nishina T, Miwa S, et al. Angiotensin-converting enzyme inhibitor helps prevent late remodeling after left ventricular aneurysm repair in rats[J]. Circulation, 2002, 106(12 Suppl 1):I115-119
    25 Wei S, Chow LT, Shum IO, et al. Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction[J]. J Card Fail, 1999, 5(2):117-126
    26 Milliez P, Deangelis N, Rucker-Martin C, et al. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction[J]. Eur Heart J, 2005, 26(20):2193-2199
    1 Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population[J]. JAMA, 2004, 292(3):344-350
    2 Redfield MM, Jacobsen SJ, Burnett JC, Jr., et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic[J]. JAMA, 2003, 289(2):194-202
    3 Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based survey of a population sample[J]. Eur Heart J, 2003, 24(4):320-328
    4 Hunt SA, Baker DW, Chin MH, et al. ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America[J]. Circulation, 2001, 104(24):2996-3007
    5 Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society[J]. Circulation, 2005, 112(12):e154-235
    6 Ren X, Ristow B, Na B, et al. Prevalence and prognosis of asymptomatic left ventricular diastolic dysfunction in ambulatory patients with coronary heart disease[J]. Am J Cardiol, 2007, 99(12):1643-1647
    7 Hamlin SK, Villars PS, Kanusky JT, et al. Role of diastole in left ventricular function, II: diagnosis and treatment[J]. Am J Crit Care, 2004, 13(6):453-466
    8 Pickering TG. Heart Failure and Hypertension: The Diastolic Dilemma[J]. J Clin Hypertens, 2004, 6(11):647-650
    9 Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment[J]. Circulation, 2002, 105(12):1503-1508
    10 Villars PS, Hamlin SK, Shaw AD, et al. Role of diastole in left ventricular function, I: Biochemical and biomechanical events[J]. Am J Crit Care, 2004, 13(5):394-403
    11 Tian R, Nascimben L, Ingwall JS, et al. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts[J]. Circulation, 1997, 96(4):1313-1319
    12 Cazorla O, Freiburg A, Helmes M, et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness[J]. Circ Res, 2000, 86(1):59-67
    13 Opitz CA, Linke WA. Plasticity of cardiac titin/connectin in heart development[J]. J Muscle Res Cell Motil, 2005, 26(6-8):333-342
    14 Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction[J]. Circulation, 2007, 115(7):888-895
    15 Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function[J]. Eur J Cardiothorac Surg, 2006, 30(4):604-610
    16 Jalil JE, Doering CW, Janicki JS, et al. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle[J]. Circ Res, 1989, 64(6):1041-1050
    17 Osadchii OE. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects[J]. Heart Fail Rev, 2007, 12(1):66-86
    18 Higaki J, Aoki M, Morishita R, et al. In vivo evidence of the importance of cardiac angiotensin-converting enzyme in the pathogenesis of cardiac hypertrophy[J]. Arterioscler Thromb Vasc Biol, 2000, 20(2):428-434
    19 Young MJ, Lam EY, Rickard AJ. Mineralocorticoid receptor activation and cardiac fibrosis[J]. Clin Sci (Lond), 2007, 112(9):467-475
    20 Rickard AJ, Funder JW, Fuller PJ, et al. The role of the glucocorticoid receptor in mineralocorticoid/salt-mediated cardiac fibrosis[J]. Endocrinology, 2006, 147(12):5901-5906
    21 Paulus WJ, Bronzwaer JG. Nitric oxide's role in the heart: control of beating or breathing?[J]. Am J Physiol--Heart Circ Physiol, 2004, 287(1):H8-13
    22 Paulus WJ. Beneficial effects of nitric oxide on cardiac diastolic function: 'the flip side of the coin'[J]. Heart Fail Rev, 2000, 5(4):337-344
    23 Aurigemma GP, Zile MR, Gaasch WH. Contractile Behavior of the Left Ventricle in Diastolic Heart Failure: With Emphasis on Regional Systolic Function[J]. Circulation, 2006, 113(2):296-304
    24 Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle[J]. N Engl J Med, 2004, 350(19):1953-1959
    25 Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure[J]. Circulation, 2005, 111(18):2306-2312
    26 Zile MR, Lewinter MM. Left ventricular end-diastolic volume is normal in patients with heart failure and a normal ejection fraction: a renewed consensus in diastolic heart failure[J]. J Am Coll Cardiol, 2007, 49(9):982-985
    27 De Keulenaer GW, Brutsaert DL. Systolic and diastolic heart failure: different phenotypes of the same disease?[J]. Eur J Heart Fail, 2007, 9(2):136-143
    28 Yu CM, Lin H, Yang H, et al. Progression of systolic abnormalities in patients with "isolated" diastolic heart failure and diastolic dysfunction[J]. Circulation, 2002, 105(10):1195-1201
    29 Petrie MC, Caruana L, Berry C, et al. "Diastolic heart failure" or heart failure caused by subtle left ventricular systolic dysfunction?[J]. Heart, 2002, 87(1):29-31
    30 Sanderson JE. Diastolic heart failure: fact or fiction?[J]. Heart, 2003,89(11):1281-1282
    31 Fox JM, Maurer MS. Ventriculovascular coupling in systolic and diastolic heart failure[J]. Curr Cardiol Rep, 2006, 8(3):232-239
    32 Maciver DH, Townsend M. A novel mechanism of heart failure with normal ejection fraction[J]. Heart, 2007, 4:4( Epub ahead of print)
    33 Yip G, Wang M, Zhang Y, et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition?[J]. Heart, 2002, 87(2):121-125
    34 Wu EB, Yu CM. Management of diastolic heart failure--a practical review of pathophysiology and treatment trial data[J]. Int J Clin Pract, 2005, 59(10):1239-1246
    35 Prithwish B, Clark; AL, Cleland JGF. Diastolic Heart Failure: A Difficult Problem in the Elderly[J]. Am J Geriatr Cardiol, 2004, 13(1):16-21
    36 Aurigemma GP, Zile MR, Gaasch WH. Contractile Behavior of the Left Ventricle in Diastolic Heart Failure With Emphasis on Regional Systolic Function[J]. Circulation, 2006, 113(2):296-304
    37 Grossman W. Defining diastolic dysfunction[J]. Circulation, 2000, 101(17):2020-2021
    38 Anonymous. How to diagnose diastolic heart failure. European Study Group on Diastolic Heart Failure[J]. Eur Heart J, 1998, 19(7):990-1003
    39 Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology[J]. Eur Heart J, 2007, 28(20):2539-2550
    40 Mottram PM, Marwick TH. Assessment of diastolic function: what the general cardiologist needs to know[J]. Heart, 2005, 91(5):681-695
    41 Osranek M, Seward JB, Buschenreithner B, et al. Diastolic function assessment in clinical practice: the value of 2-dimensional echocardiography[J]. Am Heart J, 2007, 154(1):130-136
    42 Gibson DG, Francis DP. Clinical assessment of left ventricular diastolicfunction[J]. Heart, 2003, 89(2):231-238
    43 Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study[J]. Circulation, 2000, 102(15):1788-1794
    44 Paraskevaidis IA, Tsiapras DP, Karavolias GK, et al. Doppler-derived left ventricular end-diastolic pressure prediction model using the combined analysis of mitral and pulmonary A waves in patients with coronary artery disease and preserved left ventricular systolic function[J]. Am J Cardiol, 2002, 90(7):720-724
    45 Temporelli PL, Giannuzzi P, Nicolosi GL, et al. Doppler-derived mitral deceleration time as a strong prognostic marker of left ventricular remodeling and survival after acute myocardial infarction: results of the GISSI-3 echo substudy[J]. J Am Coll Cardiol, 2004, 43(9):1646-1653
    46 Jensen JL, Williams FE, Beilby BJ, et al. Feasibility of obtaining pulmonary venous flow velocity in cardiac patients using transthoracic pulsed wave Doppler technique[J]. J Am Soc Echocardiogr, 1997, 10(1):60-66
    47 Hyodo E, Hiata K, Hirose M, et al. Clinical Use of Doppler Echocardiography and Doppler Tissue Imaging in the Estimation of Myocardial Ischemia During Dobutamine Stress Echocardiography[J]. J Am Soc Echocardiogr, 2007(Epub ahead of print)
    48 Hori Y, Kunihiro S, Hoshi F, et al. Comparison of the myocardial performance index derived by use of pulsed Doppler echocardiography and tissue Doppler imaging in dogs with volume overload[J]. Am J Vet Res, 2007, 68(11):1177-1182
    49 Galderisi M, Olibet M, Sidiropulos M, et al. Currently available technology for echocardiographic assessment of left ventricular function[J]. Expert Rev Med Devices, 2006, 3(2):207-214
    50 Alam M, Witt N, Nordlander R, et al. Detection of abnormal left ventricular function by Doppler tissue imaging in patients with a firstmyocardial infarction and showing normal function assessed by conventional echocardiography[J]. Eur J Echocardiogr, 2007, 8(1):37-41
    51 Kasner M, Westermann D, Steendijk P, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study[J]. Circulation, 2007, 116(6):637-647
    52 Hillis GS, Moller JE, Pellikka PA, et al. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction[J]. J Am Coll Cardiol, 2004, 43(3):360-367
    53 Dokainish H, Zoghbi WA, Lakkis NM, et al. Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters[J]. Circulation, 2004, 109(20):2432-2439
    54 Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures[J]. J Am Coll Cardiol, 1997, 30(6):1527-1533
    55 Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time?[J]. J Am Coll Cardiol, 2006, 47(7):1313-1327
    56 Pislaru C, Abraham TP, Belohlavek M. Strain and strain rate echocardiography[J]. Curr Opin Cardiol, 2002, 17(5):443-454
    57 Stoylen A, Slordahl S, Skjelvan GK, et al. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus[J]. J Am Soc Echocardiogr, 2001, 14(4):264-274
    58 Abidov A, Hachamovitch R, Berman DS. Modern nuclear cardiac imaging in diagnosis and clinical management of patients with left ventricular dysfunction[J]. Minerva Cardioangiol, 2004, 52(6):505-519
    59 Bonow RO. Radionuclide angiographic evaluation of left ventricular diastolic function[J]. Circulation, 1991, 84(3 Suppl):I208-215
    60 Mirsky I. Assessment of diastolic function: suggested methods and future considerations[J]. Circulation, 1984, 69(4):836-841
    61 Yellin EL, Hori M, Yoran C, et al. Left ventricular relaxation in the filling and nonfilling intact canine heart[J]. Am J Physiol, 1986, 250(4 Pt 2):H620-629
    62 Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation[J]. Circ Res, 1989, 64(5):827-852
    63 Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure[J]. J Clin Invest, 1976, 58(3):751-760
    64 Rousseau MF, Veriter C, Detry JM, et al. Impaired early left ventricular relaxation in coronary artery disease: effects of intracornary nifedipine[J]. Circulation, 1980, 62(4):764-772
    65 Raff GL, Glantz SA. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart[J]. Circ Res, 1981, 48(6 Pt 1):813-824
    66 Little WC, Downes TR. Clinical evaluation of left ventricular diastolic performance[J]. Prog Cardiovasc Dis, 1990, 32(4):273-290
    67 Marino P, Little WC, Rossi A, et al. Can left ventricular diastolic stiffness be measured noninvasively?[J]. J Am Soc Echocardiogr, 2002, 15(9):935-943
    68 Lubarsky L, Mandell K. B-type natriuretic peptide: practical diagnostic use for evaluating ventricular dysfunction[J]. Congest Heart Fail, 2004, 10(3):140-143
    69 Mueller C, Scholer A, Laule-Kilian K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea[J]. N Engl J Med, 2004, 350(7):647-654
    70 Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure[J]. N Engl J Med, 2002, 347(3):161-167
    71 Stanek B, Frey B, Hulsmann M, et al. Prognostic evaluation ofneurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction[J]. J Am Coll Cardiol, 2001, 38(2):436-442
    72 Roongsritong C, Qaddour A, Cox SL, et al. Brain natriuretic peptide and diastolic dysfunction in the elderly: influence of gender[J]. Congest Heart Fail, 2005, 11(2):65-67
    73 Loke I, Squire IB, Davies JE, et al. Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate[J]. Eur J Heart Fail, 2003, 5(5):599-606
    74 Bibbins-Domingo K, Ansari M, Schiller NB, et al. Is B-type natriuretic peptide a useful screening test for systolic or diastolic dysfunction in patients with coronary disease? Data from the Heart and Soul Study[J]. Am J Med, 2004, 116(8):509-516
    75 Shimabukuro M, Higa N, Oshiro Y, et al. Diagnostic utility of brain-natriuretic peptide for left ventricular diastolic dysfunction in asymptomatic type 2 diabetic patients[J]. Diabetes Obes Metab, 2007, 9(3):323-329
    76 Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system[J]. Circulation, 1991, 83(6):1849-1865
    77 Wilke A, Funck R, Rupp H, et al. Effect of the renin-angiotensin-aldosterone system on the cardiac interstitium in heart failure[J]. Basic Res Cardiol, 1996, 91(Suppl 2):79-84
    78 Weber KT, Sun Y, Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones[J]. Hypertension, 1994, 23(6 Pt 2):869-877
    79 Ostergren JB. Angiotensin receptor blockade with candesartan in heart failure: findings from the Candesartan in Heart failure--assessment of reduction in mortality and morbidity (CHARM) programme[J]. J Hypertens Suppl, 2006, 24(1):S3-7
    80 Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients
    with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial[J]. Lancet, 2003, 362(9386):777-781
    81 Liu CP, Ting CT, Lawrence W, et al. Diminished contractile response to increased heart rate in intact human left ventricular hypertrophy. Systolic versus diastolic determinants[J]. Circulation, 1993, 88(4 Pt 1):1893-1906
    82 Mulieri LA, Hasenfuss G, Leavitt B, et al. Altered myocardial force-frequency relation in human heart failure[J]. Circulation, 1992, 85(5):1743-1750
    83 Gwathmey JK, Warren SE, Briggs GM, et al. Diastolic dysfunction in hypertrophic cardiomyopathy. Effect on active force generation during systole[J]. J Clin Invest, 1991, 87(3):1023-1031
    84 Thackray SD, Ghosh JM, Wright GA, et al. The effect of altering heart rate on ventricular function in patients with heart failure treated with beta-blockers[J]. Am Heart J, 2006, 152(4):713 e719-713
    85 Cuocolo A, Sax FL, Brush JE, et al. Left ventricular hypertrophy and impaired diastolic filling in essential hypertension. Diastolic mechanisms for systolic dysfunction during exercise[J]. Circulation, 1990, 81(3):978-986
    86 Fukuta H, Little WC. Contribution of systolic and diastolic abnormalities to heart failure with a normal and a reduced ejection fraction[J]. Prog Cardiovasc Dis, 2007, 49(4):229-240
    87 Little WC, Kitzman DW, Cheng CP. Diastolic dysfunction as a cause of exercise intolerance[J]. Heart Fail Rev, 2000, 5(4):301-306
    88 Aronow WS. Epidemiology, pathophysiology, prognosis, and treatment of systolic and diastolic heart failure[J]. Cardiol Rev, 2006, 14(3):108-124
    89 Lorell BH, Isoyama S, Grice WN, et al. Effects of ouabain and isoproterenol on left ventricular diastolic function during low-flow ischemia in isolated, blood-perfused rabbit hearts[J]. Circ Res, 1988, 63(2):457-467
    90 Udelson JE, Cannon RO, Bacharach SL, et al. Beta-adrenergic stimulation with isoproterenol enhances left ventricular diastolic performance inhypertrophic cardiomyopathy despite potentiation of myocardial ischemia. Comparison to rapid atrial pacing[J]. Circulation, 1989, 79(2):371-382
    91 Lang RM, Carroll JD, Nakamura S, et al. Role of adrenoceptors and dopamine receptors in modulating left ventricular diastolic function[J]. Circ Res, 1988, 63(1):126-134
    92 The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure[J]. The New England Journal of Medicine(N Engl J Med), 1997, 336(8):525-533
    93 Ahmed A, Aronow WS, Fleg JL. Predictors of mortality and hospitalization in women with heart failure in the Digitalis Investigation Group trial[J]. Am J Ther, 2006, 13(4):325-331
    94 Ahmed A, Aronow WS, Fleg JL. Higher New York Heart Association classes and increased mortality and hospitalization in patients with heart failure and preserved left ventricular function[J]. Am Heart J, 2006, 151(2):444-450
    95 Ahmed A, Rich MW, Love TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure: a comprehensive post hoc analysis of the DIG trial[J]. Eur Heart J, 2006, 27(2):178-186
    96 Yamamoto K, Mano T, Yoshida J, et al. ACE inhibitor and angiotensin II type 1 receptor blocker differently regulate ventricular fibrosis in hypertensive diastolic heart failure[J]. J Hypertens, 2005, 23(2):393-400
    97 Wake R, Kim-Mitsuyama S, Izumi Y, et al. Beneficial effect of candesartan on rat diastolic heart failure[J]. J Pharmacol Sci, 2005, 98(4):372-379
    98 Carson P, Massie BM, McKelvie R, et al. The irbesartan in heart failure with preserved systolic function (I-PRESERVE) trial: rationale and design[J]. J Card Fail, 2005, 11(8):576-585
    99 Bertram P, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure[J]. N Engl J Med, 1999, 341(2):709-717
    100Thohan V, Torre-Amione G, Koerner MM. Aldosterone antagonism and congestive heart failure: a new look at an old therapy[J]. Curr OpinCardiol, 2004, 19(4):301-308
    101Cohn JN, Colucci W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology[J]. Am J Cardiol, 2006, 97(10A):4F-12F
    102Pitt B. Effect of aldosterone blockade in patients with systolic left ventricular dysfunction: implications of the RALES and EPHESUS studies[J]. Mol Cell Endocrinol, 2004, 217(1-2):53-58
    103MacFadyen RJ, Lee AF, Morton JJ, et al. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure?[J]. Heart, 1999, 82(1):57-61
    104Cohn JN, Anand IS, Latini R, et al. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial[J]. Circulation, 2003, 108(11):1306-1309
    105Bauersachs J, Heck M, Fraccarollo D, et al. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: role of vascular superoxide anion formation and endothelial nitric oxide synthase expression[J]. J Am Coll Cardiol, 2002, 39(2):351-358
    106Rajagopalan S, Duquaine D, King S, et al. Mineralocorticoid receptor antagonism in experimental atherosclerosis[J]. Circulation, 2002,
    105(18):2212-2216
    107Suzuki G, Morita H, Mishima T, et al. Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure[J]. Circulation, 2002, 106(23):2967-2972
    108De Angelis N, Fiordaliso F, Latini R, et al. Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat[J]. J Mol Cell Cardiol, 2002, 34(12):1655-1665
    109Hayashi M, Tsutamoto T, Wada A, et al. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarctleft ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction[J]. Circulation, 2003, 107(20):2559-2565
    110Modena MG, Aveta P, Menozzi A, et al. Aldosterone inhibition limits collagen synthesis and progressive left ventricular enlargement after anterior myocardial infarction[J]. Am Heart J, 2001, 141(1):41-46
    111Di Pasquale P, Cannizzaro S, Giubilato A, et al. Additional beneficial effects of canrenoate in patients with anterior myocardial infarction on ACE-inhibitor treatment. A pilot study[J]. Ital Heart J, 2001, 2(2):121-129
    112Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease[J]. Am J Cardiol, 1995, 76(17):1259-1265
    113MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients[J]. Cardiovasc Res, 1997, 35(1):30-34.
    114Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure[J]. Circulation, 2000, 101(6):594-597
    115Tsutamoto T, Wada A, Maeda K, et al. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure[J]. J Am Coll Cardiol, 2001, 37(5):1228-1233
    116Abiose AK, Mansoor GA, Barry M, et al. Effect of spironolactone on endothelial function in patients with congestive heart failure on conventional medical therapy[J]. Am J Cardiol, 2004, 93(12):1564-1566
    117Cicoira M, Zanolla L, Rossi A, et al. Long-term, dose-dependent effects of spironolactone on left ventricular function and exercise tolerance in patients with chronic heart failure[J]. J Am Coll Cardiol, 2002, 40(2):304-310
    118Kasama S, Toyama T, Kumakura H, et al. Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy[J]. J Am Coll Cardiol, 2003, 41(4):574-581
    119Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction[J]. N Engl J Med, 2003, 348(14):1309-1321
    120Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study[J]. N Engl J Med, 2004, 351(6):543-551
    121Elkayam U, Amin J, Mehra A, et al. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure[J]. Circulation, 1990, 82(6):1954-1961
    122Setaro JF, Zaret BL, Schulman DS, et al. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance[J]. Am J Cardiol, 1990, 66(12):981-986
    123Terpstra WF, May JF, Smit AJ, et al. Long-term effects of amlodipine and lisinopril on left ventricular mass and diastolic function in elderly, previously untreated hypertensive patients: the ELVERA trial[J]. J Hypertens, 2001, 19(2):303-309
    124Bergstrom A, Andersson B, Edner M, et al. Effect of carvedilol on diastolic function in patients with diastolic heart failure and preserved systolic function. Results of the Swedish Doppler-echocardiographic study (SWEDIC)[J]. Eur J Heart Fail, 2004, 6(4):453-461
    125Turner MJ, Spina RJ, Kohrt WM, et al. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension[J]. J Gerontol A Biol Sci Med Sci, 2000, 55(4):M245-251
    126Giannuzzi P, Temporelli PL, Corra U, et al. Antiremodeling effect oflong-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial[J]. Circulation, 2003, 108(5):554-559
    127Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study[J]. Circulation, 2007, 115(24):3086-3094