石羊河下游民勤盆地地下水位动态模拟及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于我国西北典型内陆干旱区石羊河流域下游的民勤盆地,由于地表来水量逐年减少,为了维持绿洲经济社会的发展,不得不大量开采地下水,导致地下水位大幅下降,引发了一系列生态环境问题,其危害程度和范围日益扩大。这不仅威胁民勤盆地自身的生存与发展,而且对甘肃省乃至西北地区的生态环境都会产生重大影响。研究和揭示该区地下水位动态的时空分布及变化规律,并对其进行合理调控,可为该区水资源合理开发利用和科学管理提供依据,对该区乃至广大西北内陆干旱区社会经济的可持续发展及生态环境重建有重要的意义。
     本研究分析了民勤盆地地下水位动态变化机理,在建立水文地质概念模型和数学模型的基础上,利用Feflow软件对模型进行了求解,模拟并预报了民勤盆地地下水位时空分布和动态变化过程。据预报结果选择了利于地下水位恢复的情景方案,对地下水位进行了调控,从而为该区的水资源管理和生态环境恢复与重建提供了理论依据。主要研究结果如下:
     (1)民勤盆地地下水系统是一个开放性的自然-人工复合系统。近二十多年来,受人类活动强烈干扰的区域地下水位逐年下降,年内呈季节性波动,且地下水位下降速度从绿洲腹地到绿洲边缘再向荒漠区逐渐减缓。自然因素(降水和蒸发)对民勤盆地地下水位动态变化的影响较小,而人为因素(渠系及田间入渗补给与地下水的开采)是驱动地下水位变化的主要因子。
     (2)在民勤盆地水文地质概念模型概化的基础上,构建了地下水位Feflow数值模拟模型。以GIS平台为依托,实现了民勤盆地地下水系统源汇项和含水层水文地质参数的模型输入,通过模型校验和模拟不仅获取了更合理和准确的水文地质参数,还实现了该区地下水位动态时空变化的可视化模拟。模型模拟效果良好,平均误差为0.9768m,模拟值与实测值之间的相关系数为0.977。
     (3)采用随机时间序列分析方法,对民勤盆地地下水系统源汇项进行了模拟预报,为实现用Feflow数值模拟模型进行地下水位预报提供了计算依据。该方法可有效解决资料缺少地区地下水系统源汇项的确定问题。
     (4)以2001年末民勤盆地地下水位实测值作为初始条件,采用Feflow和时间序列分析耦合的方法预报了2010年地下水位动态变化。与2001年相比,地下水位年内变化特征一致,即在开采灌溉期地下水位下降,在非灌溉期地下水位抬升,整体呈下降趋势,而在同地面高程下绿洲区水位较绿洲外围区水位低的程度更大,说明绿洲区水位下降速度大于绿洲外围区的趋势也越来越明显。同时,地下水位降落漏斗规模扩大,中心区地下水位埋深在增加。
     (5)根据《石羊河流域近期重点治理规划》,结合民勤盆地水资源开发利用现状,将2002年~2010年和2011年~2020年分别设定为地下水位下降减缓控制期和水位恢复期,并利用已建的Feflow模型对不同时期不同调控方案的地下水位动态过程分别进行模拟。结果表明,实现近期的地下水位下降减缓主要以确保红崖山水库年出库水量不减少和采取节水措施为主,使年出库水量和地下水开采量分别保持为7476万m~3和3.94亿m~3,并分别提高渠灌和井灌渠系利用系数至0.6和0.8。而恢复民勤盆地地下水位需在控制该区用水量和采取节水措施的前提下,通过外流域调水增大民勤盆地地表水量来实现。当年出库水量达2.7亿m~3时,盆地内地下水基本实现采补平衡,而当年出库水量为3.5亿m~3时,民勤盆地地下水位可得以有效恢复,特别是绿洲区域。
The Minqin Basin is located in lower reaches of the Shiyang River Basin, which is a typical inland arid area in the Northwest China. As the surface water from upper reaches has been decreasing year after year, the groundwater has had to be over-exploited, which has made much decline of groundwater table, and has induced a series of eco-environment problems. The rapid deterioration of eco-environment is not only a threat to existing and development of the Minqin Basin, but also has significant influence on eco-environment of Gansu Province and even the Northwest China. Study on simulation and regulation of groundwater table dynamics of this area can provide guidance for reasonable exploitation and use and appropriate management of water resources, which is significant for sustainable development of social economy and rebuilding of eco-environment in this area and even northwest inland arid areas.
     This research analysed the mechanisms of groundwater table dynamics in the Minqin Basin. Based on the hydrogeological conceptual model and the mathematical model, the groundwater table Feflow numerical model was constructed, which simulated and predicted the space-time dynamics of groundwater table in the Minqin Basin. To effectively recover the groundwater table, the best scene of water resources exploitation and use was chosen, and the groundwater table was regulated, which can provide a theoretical guidance for water resources management in this area. The main research conclusions are as follows:
     (1) The Minqin Basin groundwater system is an open and compound system influenced by both nature and human. In the past twenty years, the groundwater table of this region influenced by intensive human activities declined year by year and fluctuated with seasons. The speed of groundwater table declination gradually got less and less from the oasis center to the deserts. The natural factors, including rainfall, evaporation and transpiration, had less influence on the variation of groundwater table, and the human activities, including ditch and field infiltration are the key driving factors in regulation of groundwater table dynamics.
     (2) Based on the hydrogeological conceptual model, the Feflow groundwater table numerical simulation model of the Minqin Basin was constructed. With the help of GIS plat, the in/out flow on top/bottom of the groundwater system and hydrogeological parameters were imported into the model. Via the simulation, not only the groundwater table space-time dynamics, but also the accurate hydrogeological parameters (conductivity and storativity) were acquired. Meanwhile, the viewdata of groundwater space-time dynamics could be acquired. In general, the model performed effectively with the mean error of 0.9768m and the correlation coefficient of 0.977 between the simulated and observed data.
     (3) In/out flow on top/bottom of the groundwater system was predicted with the time series analysis, which can provide important data for the Feflow model simulation. The method can effectively solve the problem of determining in/out flow on top/bottom of the groundwater system in the areas lacking data.
     (4) The groundwater table observed data of the Minqin Basin at the end of 2001 were set as flow initials, and the Feflow model and time series analysis were coupled to predict groundwater table dynamics in 2010. The groundwater table will have the same seasonal variation as that in 2001. The table will decline in exploitation and irrigation period, and will ascend in non-irrigation period, but in general, it will decline in the year. The water table in the oasis will all be lower than that out of the oasis with the same elevation, and their difference will be siginificant in 2010, which indicated that the water table in the oasis would be declining obviously faster and faster with time than that out of the oasis. Meanwhile, the groundwater depression cones would be expanding continuously, and their center depths would be increasing.
     (5) According to“the Current Key Fathering Layout of the Shiyang River Basin”and the reality of exploitation and use of water resources of the Minqin Basin, the period of 2002~2010 and 2011~2020 were respectively set as the phase of alleviating the water table declination and the recovery phase of water table, and the dynamic processes of water table in different periods under the different regulation schemes were predicted respectively with the built Feflow model. To alleviate the water table declination in 2002~2010, it is necessary to keep the output flux of the reservoir as 7476×104m~3/a and the exploitation of groundwater as 3.94×108m~3/a, and to take some water-saving measures by respectively increasing water use efficiency of ditch and well irrigation to 0.6 and 0.8. To recover the water table in 2011~2020, the control of water consumption and water saving are the prerequisite. Meanwhile, it is necessary to increase output flux by delivering water from the other river basins. Under the output flux of 2.7×108m~3/a, a balance state between recharge and discharge of groundwater will be possible; under the output flux with 3.5×108m~3/a, the water table of the Minqin Basin will rise again significantly, especially in the oasis.
引文
[1]陈家琦,王浩,杨小柳.水资源学[M].北京:科学出版社, 2002.
    [2] WCED. Sustainable Development and Water. Statement on the WCED Report“Our Common Future”. Water International, 1989, 14(3): 151-152.
    [3] Margat J. Water Resource and Hydrogeology of Arid and Semi-arid Regions [J]. Bull. Soc. Geol. Fr. 1985, (7).
    [4]曾瑜.基于空间插值模型的绿洲地下水时空变化研究——以奇台绿洲为例[D].新疆大学硕士论文. 2005.
    [5]杨旭.基于GIS的地下水资源评价模型研究——以常州、武进地区为例[D].南京师范大学硕士论文. 2003.
    [6]程娟,孙淑云,聂建平.中国地下水资源的开发利用与保护[J].水利水电技术, 2003, 34(5): 1-3.
    [7]张祥伟,竹内邦良.大区域地下水模拟的理论和方法[J].水利学报, 2004, (6): 7-13.
    [8]钱正英,张光斗.中国可持续发展水资源研究综合报告[J].中国工程科学, 2000, 2(8): 1-17.
    [9]郝治福.石羊河流域邓马营湖区地下水位动态变化特征及数值模拟与预报[D].中国农业大学硕士论文. 2006.
    [10]汤奇成,张捷斌.西北干旱地区水资源与生态环境保护[J].地理科学进展, 2001, 20(3): 227-233.
    [11]崔亚莉,邵景力,韩双平.西北地区地下水的地质生态环境调节作用研究[J].地学前缘, 2001, 8(1): 191-196.
    [12]马兴旺,李保国,程远.干旱区水土资源时空变化的定量研究[J].干旱区地理, 2002, 25(2): 109-114.
    [13]钟华平,刘恒,顾颖.石羊河下游民勤水资源与生态环境治理对策[J].西北水资源与水工程, 2002, 13(1): 10-13.
    [14]魏晓妹,康绍忠,粟晓玲,等.石羊河流域绿洲农业发展对地表水与地下水转化关系的影响[J].农业工程学报, 2005, 21(5): 38-41.
    [15]马岚,魏晓妹.石羊河下游年径流序列的变异点分析[J].干旱地区农业研究, 2006, 24(2): 174-177.
    [16]马岚,魏晓妹.石羊河下游民勤县地下水水位时间序列模拟[J].灌溉排水学报, 2008, 27 (4): 89-91.
    [17]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社, 2002.
    [18]杨军.地下水流可视化模拟系统研究[D].河海大学硕士论文. 2005.
    [19]李涛.子牙河流域地表水与地下水联合模拟[D].吉林大学硕士论文. 2005.
    [20]陈崇希,等.地下水开采——地面沉降数值模拟及防治对策研究[M].武汉:中国地质大学出版社, 2001.
    [21]魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报(自然科学版), 2000, 23(增刊): 50-52.
    [22]周仰效.国外地下水流及传输的模拟[C].现状与趋势, 1995: 200-209.
    [23]陈南祥,吴林娜.灌区地下水位动态预报模型分析[J].山西水利科技, 1998, (3): 5-9, 63.
    [24]薛禹群,谢春红.水文地质学的数值法[M].北京:煤炭工业出版社, 1980.
    [25]郝治福,康绍忠.地下水系统数值模拟的研究现状和发展趋势[J].水利水电科技进展, 2006, 26(1): 77-81.
    [26] Anderson M. P., Woessner W. W.. Applied Groundwater Modeling-Simulation of Flow and Advective Transport [M]. New York: Academic Press Inc., 1992.
    [27] Richard E. Ewing. Multidisciplinary Interactions in Energy and Environmental Modeling [J]. Journal of Computational and Applied Mathematics, 1996, 74: 193-215.
    [28] Jun-Mo Kim, Richard R. Parizek. Numerical Simulation of the Noordbergum Effect Resulting from Groundwater Pumping in a Layered Aquifer System [J]. Journal of Hydrology, 1997, 202: 231-243.
    [29] Timothy Scheibe, Steven Yabusaki. Scaling of Flow and Transport Behavior in Heterogeneous Groundwater Systems [J]. Advances in Water Resources, 1998, 22(3): 223-238.
    [30] A. Mazzia, M. Puttii. Mixed-finite Element and Finite Volume Discretization for Heavy Brine Simulations in Groundwater [J]. Journal of Computational and Applied Mathematics, 2002, 147: 191-213.
    [31] Shu-Guang Li, Dennis McLaughlin, Hua-Sheng Liao. A Computationally Practical Method for Stochastic Groundwater Modeling [J]. Advances in Water Resources, 2003, 26: 1137-1148.
    [32] B. Ataie-Ashtiani, R. E. Volker, D. A. Lockington. Numerical and Experimental Study of Seepage in Unconfined Aquifers with a Periodic Boundary Condition [J]. Journal of Hydrology, 1999, 222: 165-184.
    [33] Hassan Smaouia, Lahcen Zouhrib, Abdellatif Ouahsine. Flux-limiting Techniques for Simulation of Pollutant Transport in Porous Media: Application to Groundwater Management [J]. Mathematical and Computer Modelling, 2008, 47: 47-59.
    [34] B. Ataie-Ashtiani. MODSharp: Regional-scale Numerical Model for Quantifying Groundwater Flux and Contaminant Discharge into the Coastal Zone [J]. Environmental Modelling & Software, 2007, 22(9): 1307-1315.
    [35] Beatrice M. S. Giambastiani, Marco Antonellini, Gualbert H. P. Oude Essink, etc. Saltwater Intrusion in the Unconfined Coastal Aquifer of Ravenna (Italy): A Numerical Model [J]. Journal of Hydrology, 2007, 340: 91-104.
    [36]杨春玲,邢世录,韩爱中.地下水系统数值模拟的研究进展[J].内蒙古科技与经济, 2007, (21): 305-307.
    [37]陈家军,王红旗,张征,等.地质统计学方法在地下水水位估值中应用[J].水文地质工程地质, 1998, (6): 7-10, 26.
    [38]卞锦宇,薛禹群,程诚,等.上海市浦西地区地下水三维数值模拟[J].中国岩溶, 2002, 21(3): 182-187.
    [39]卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报, 2003, (3): 33-36.
    [40]武强,徐华.地下水模拟的可视化设计环境[J].计算机工程, 2003, 29(6): 69-70, 190.
    [41]张明江,门国发,陈崇希.渭干河流域三维地下水流数值模拟[J].新疆地质, 2004, 22(3): 238-243.
    [42]张石峰,李茜,高佩玲,等.地下水系统的动态模拟[J].新疆大学学报(理工版), 2001, 18(2): 165-168.
    [43]崔亚莉,邵景力,李慈君,等.玛纳斯河流域山前平原地下水系统分析及其模拟[J].水文地质工程地质, 2003, (5): 18-22.
    [44]韩宇平,许拯民,蒋任飞.银川平原地下水流的数值模拟[J].西北农林科技大学学报(自然科学版), 2007, 35(12): 222-226.
    [45]赵国红,宁立波,王现国.新郑市浅层地下水流数值模拟及评价[J].地下水, 2007, 29(6): 43-46.
    [46]俄有浩.民勤盆地地下水时空动态及其对生态环境变化影响过程的GIS辅助模拟[D].兰州大学博士论文. 2005.
    [47] Chengyi Zhao, Yuchao Wang, Xi Chen, etc. Simulation of the Effects of Groundwater Level on Vegetation Change by Combining FEFLOW Software [J]. Ecological Modeling, 2005, 187: 341-351.
    [48] Douglas P. Dufresne, Charles W. Drake. Regional Groundwater Flow Model Construction and Wellfield Site Selection in a Karst Area, Lake City, Florida [J]. Engineering Geology, 1999, 52: 129-139.
    [49] LI Yong, WANG Chao, YANG Lin-zhang, etc. Influence of Seepage Face Obliquity on Discharge of Groundwater and Its Pollutant into Lake from a Typical Unconfined Aquifer [J]. Journal of Hydrodynamics, 2007, 19(6): 756-761.
    [50] Laura K. Lautz, Donald I. Siegel. Modeling Surface and Ground Water Mixing in the Hyporheic Zone Using MODFLOW and MT3D [J]. Advances in Water Resources, 2006, 29: 1618–1633.
    [51] M. M. Saeed, M. Ashraf. Feasible Design and Operational Guidelines for Skimming Wells in the Indus Basin, Pakistan [J]. Agricultural Water Management, 2005, 74: 165-188.
    [52] Xi Chen, Xunhong Chen. Stream Water Infiltration, Bank Storage, and Storage Zone Changes Due to Stream-stage Fluctuations [J]. Journal of Hydrology, 2003, 280: 246-264.
    [53]毛军,贾绍凤,张克斌. FEFLOW软件在地下水数值模拟中的应用——以柴达木盆地香日德绿洲为例[J].中国水土保持科学, 2007, 5(4): 44-48.
    [54]陈冬琴. GMS软件在杭嘉湖地下水资源评价中的应用[J].软件导刊, 2007, (9): 49-51.
    [55]祝晓彬,吴吉春,叶淑君,等. GMS在长江三角洲(长江以南)深层地下水资源评价中的应用[J].工程勘察, 2005, (1): 26-29, 33.
    [56]武强,朱斌,徐华,等. MODFLOW在淮北地下水数值模拟中的应用[J].辽宁工程技术大学学报, 2005, 24(4): 500-503.
    [57]余维,王博,陈真林. MODFLOW在井灌区地下水数值模拟中的应用[J].中国农村水利水电, 2006, (11): 17-21.
    [58]马驰,石辉,卢玉东. MODFLOW在西北地区地下水资源评价中的应用——以甘肃西华水源地地下水数值模拟计算为例[J].干旱区资源与环境, 2006, 20(2): 89-93.
    [59]魏国孝,王刚,李常斌,等.秦王川盆地南部地下水流场数值模拟[J].兰州大学学报(自然科学版), 2006, 42(6): 16-21.
    [60]吴红燕,王云智,董新光,等.新疆平原区井渠结合地下水数值模拟与分析[J].地下水, 2007, 29(2): 23-26, 124.
    [61]贺国平,周东,赵月芬,等.遥感技术和FEFLOW在北京市平原区地下水合理开发利用中的应用[J].地球学报, 2006, 27(3): 277-282.
    [62]贺国平,邵景力,崔亚莉,等. FEFLOW在地下水流模拟方面的应用[J].成都理工大学学报(自然科学版), 2003, 30(4): 356-361.
    [63]杨旭,杨树才,黄家柱.基于GIS的地下水数值模拟模型拟合方法[J].计算机工程, 2004,30(11): 50-51.
    [64] Ross S. Brodie. Integrating GIS and RDBMS Technologies during Construction of a Regional Groundwater Model [J]. Environmental Modeling & Software, 1999, 14: 119-128.
    [65] A. Facchi, B.Ortuani, D. Maggi, etc. Coupled SVAT-groundwater Model for Water Resources Simulation in Irrigated Alluvial Plains [J]. Environmental Modeling & Software, 2004, 19: 1053-1063.
    [66] Carma San Juan, Kenneth E. Kolm. Conceptualization, Characterization and Numerical Modeling of the Jackson Hole Alluvial Aquifer Using ARC/INFO and MODFLOW [J]. Engineering Geology, 1996, 42: 119-137.
    [67] Atiqur Rahman. A GIS Based DRASTIC Model for Assessing Groundwater Vulnerability in Shallow Aquifer in Aligarh, India [J]. Applied Geography, 2008, 28: 32-53.
    [68] L. Lucas, M. Jauzein. Use of Principal Component Analysis to Profile Temporal and Spatial Variations of Chlorinated Solvent Concentration in Groundwater [J]. Environmental Pollution, 2008, 151: 205-212.
    [69]陈锁忠,马千程.苏锡常地区GIS与地下水开采及地面沉降模型系统集成分析[J].水文地质工程地质, 1999, (5): 8-10, 13.
    [70]陈锁忠,黄家柱,张金善.基于GIS的孔隙水文地质层三维空间离散方法[J].水科学进展, 2004, 15(5): 634-639.
    [71]杨旭,黄家柱,陶建岳.基于GIS的地下水流可视化模拟系统研究[J].现代测绘, 2005, 28(2): 12-16.
    [72]魏国孝,王德军,王刚,等. GIS技术和FEFLOW在酒泉东盆地地下水系统数值模拟中的应用[J].兰州大学学报(自然科学版), 2007, 43(6): 1-6.
    [73]桑学锋,张明泉,王浩,等.敦煌盆地地下水数值模拟及可视化与管理[J].兰州大学学报(自然科学版), 2007, 43(3): 18-22.
    [74]葛斐.新疆奇台县平原区地下水流数值模拟与超采区评价[D].新疆农业大学硕士论文. 2006.
    [75]林学钰,廖资生,等.地下水管理[M].北京:地质出版社, 1995.
    [76]王明娜,向友珍.我国灌区地下水调控研究现状及其发展态势[J].地下水, 2008, 30(4): 21-23.
    [77]李昕,刘江.山东省引黄灌区地下水调控研究[J].地下水, 2007, 29(4): 68-70.
    [78]王富根.采用井、黄结合灌溉调控地下水位的实践与探索[J].内蒙古水利, 2008, (1): 37.
    [79]孙才志,刘玉兰,杨俊.辽河流域平原区地下水生态水位及水量调控研究[J].水利水电科技进展, 2007, 27(4): 15-19.
    [80]魏晓妹,李佩成.灌区地下水动态调控数学模型的建立及求解[J].西北农业大学学报, 1999, 27(2): 62-66.
    [81]肖长来,范伟,梁秀娟.沈阳市城区地下水位调控模拟研究[J].干旱区资源与环境, 2007, 21(11): 31-34.
    [82]冶雪艳.黄河下游悬河段地下水开发风险评价与调控研究[D].吉林大学博士论文. 2006.
    [83]林迎德.民勤盆地水资源开发引起的环境地质问题及改善措施[J].发展, 2001, (9): 59-61.
    [84]冯绳武.民勤绿洲及其水系[J].地理学报, 1963, 29(3): 241-249.
    [85]严平,俄有浩,韩福贵,等.民勤沙井子地区四十年来风沙活动状况及其与治沙造林的关系[J].甘肃林业科技, 1996, 21(3): 20-23.
    [86]汤奇成,曲耀光,周聿超.中国干旱区水文及水资源利用[M].北京:科学出版社, 1992.
    [87]中国科学院兰州沙漠研究所石羊河流域综合考察队.石羊河流域水土资源及其合理利用[J].中国科学院兰州沙漠研究所集刊, 1986, (3): 49-62.
    [88]李洋.石羊河流域水循环要素变化特征研究[D].西北农林科技大学硕士论文. 2008.
    [89]孙艳伟.石羊河流域地下水系统脆弱性研究[D].西北农林科技大学硕士论文. 2007.
    [90]颉耀文,郭英,矫树春.基于遥感与GIS的民勤盆地荒漠垦殖研究[J].遥感技术与应用, 2004, 19(5): 334-338.
    [91]魏怀东,高志海,丁峰.民勤县土地利用的空间变化分析[A].中国西北荒漠区持续农业与沙漠综合治理国际学术论文集[C].兰州:兰州大学出版社, 1998. 166-172.
    [92]朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社, 1994.
    [93]甘肃省民勤治沙综合试验站.甘肃沙漠与治理[M].兰州:甘肃人民出版社, 1974.
    [94]颉耀文.近2000年来民勤绿洲土地利用/覆盖变化研究[D].兰州大学博士论文. 2003.
    [95]杨自辉.民勤沙井子地区40a来荒漠植被变迁初探[J].中国沙漠, 1999, 19(4): 395-398.
    [96]魏晓妹,康绍忠,马岚,等.石羊河流域绿洲农业发展对水资源转化的影响及其生态环境效应[J].灌溉排水学报, 2006, 25(4): 28-32.
    [97]魏晓妹,粟晓玲,陈俭煌.石羊河流域水资源特征及开发利用研究[J].水利水电技术, 2004, 35(12): 1-4.
    [98]李宗礼,杨贤远,冯起.西北干旱内陆河流域水资源利用与绿洲生态安全关系研究[A].中国水利学会2005学术年会论文集——水环境保护及生态修复的研究与实践[C]. 2005. 114-120.
    [99]范锡鹏.内陆河流域和山间盆地地下水资源评价.中国干旱半干旱地区地下水资源评价. 1979: 345-385.
    [100]魏红.民勤盆地水资源承载力研究[D].兰州大学硕士论文. 2004.
    [101]马金珠,魏红.民勤地下水资源开发引起的生态与环境问题[J].干旱区研究, 2003, 20(4): 261-265.
    [102]甘肃省地矿局第二水文地质工程地质队.甘肃省河西走廊地下水分布规律与合理开发利用研究报告[R]. 1988.
    [103]马兴旺,李保国,吴春荣,等.绿洲区土地利用对地下水影响的数值模拟分析——以民勤绿洲为例[J].资源科学, 2002, 24(2): 49-55.
    [104]甘肃省地勘局水文地质工程地质勘察院.石羊河流域平原区地质环境监测报告(1996-2000年) [R]. 2002.
    [105]马兴旺,李保国,吴春荣,等.民勤绿洲现状土地利用模式影响下地下水位时空变化的预测[J].水科学进展, 2003, 14(1): 85-90.
    [106]赵微.基于GIS的北京市平原区浅层地下水动态变化研究[D].首都师范大学硕士论文. 2005.
    [107]孙佐辉.黄河下游河南段水循环模式的同位素研究[D].吉林大学博士论文. 2003.
    [108]高佩玲.山前洪积扇与冲洪积平原多层结构含水层地下水模型的研究及应用[D].新疆大学硕士论文. 2001.
    [109]霍再林.基于ANN与FEFLOW的民勤绿洲地下水位动态模拟研究[D].中国农业大学博士论文. 2007.
    [110]陈隆亨,曲耀光.河西地区水土资源及其合理开发利用[M].北京:科学出版社, 1992.
    [111]甘肃省水利水电勘测设计研究院.石羊河流域水资源利用与节水规划[R]. 2002.
    [112]甘肃民勤县水利局.甘肃省民勤县“九五”节水灌溉规划报告[R]. 1996.
    [113]王继和.民勤沙区主要乔灌木蒸腾强度的测定及其耗水量的初步估算. 1996.
    [114]谷源泽,张胜红,郭书英,等译. FEFLOW有限元地下水流系统(第二册)[M].徐州:中国矿业大学出版社, 2001.
    [115]甘肃省水利水电勘测设计研究院,清华大学.石羊河流域近期重点治理规划[R]. 2005.
    [116]王振龙.时间序列分析[M].北京:中国统计出版社, 2000.
    [117]杨忠平,卢文喜,李平.时间序列模型在吉林西部地下水动态变化预测中的应用[J].水利学报, 2005, 36(12): 1475-1479.
    [118]卢晓燕,施鑫源,眭克仁.地下水资源系统时序管理模型[J].工程勘察, 1999, (4): 5-38.
    [119]杨金忠,蔡树英.一种区域地下水预报的时间序列分析方法[J].武汉水利电力大学学报, 1996, 29(4): 6-10.
    [120]唐五湘,程桂枝. Excel在预测中的应用[M].北京:电子工业出版社, 2001.
    [121]杨志霞.时间序列模型在深层地下水水位预测中的应用[J].河北工程技术高等专科学校学报, 2000, (3): 34-38.
    [122]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社, 1986.
    [123]陈南祥,苏万益,吴林娜.地下水位动态的随机模型研究[J].山西水利科技, 1994, 24(1): l2-l7.
    [124]黄忠恕.波谱分析方法及其在水文气象中的应用[M].北京:气象出版社, 1983.
    [125]杨金忠,蔡树英.地下水动态预报的多层递阶组合模型[J].水科学进展, 1995, 6(2): 100 -106.
    [126]丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报, 2004, (12): 15-20.