可吸入颗粒物浓度的遥感监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可吸入颗粒物PM10浓度是表征空气质量最为重要的污染指标之一,快速了解其浓度和大范围的分布状况,有利于控制PM10质量浓度,并最终提高空气质量。对可吸入颗粒物在地面建立观测站,并进行全天候连续观测能够直接得到反映PM10地面浓度及其时间变化较为准确的信息。但是仅采用有限的地面观测站点资料尚不能全面反映可吸入颗粒物的空间分布,因此近年来开展了采用大面积覆盖卫星遥感数据进行可吸入颗粒物监测的研究以弥补地面观测的这一局限性。当前,卫星数据已在气溶胶产品光学厚度反演、污染物监测、突发性大气污染事件监测以及污染物的区域输送等方面开展了广泛应用。
     常见的可吸入颗粒物遥感监测方法,首先通过多光谱遥感影像(如MODIS)反演出气溶胶光学厚度产品AOD,然后建立AOD与可吸入颗粒物PM10质量浓度的关系。但是MODIS的业务化反演产品的空间分辨率较低,难以反映PM10地面分布的细节。如果采用日平均数据建立模型,两者更难保证较高的相关性。
     本文针对上述问题,以浙江省为例,采用时空序列分析,统计学习方法,以及基于大气辐射传输模型的大气校正方法,开展可吸入物浓度的MODIS数据遥感监测方法研究,并取得了以下主要成果:(1)探索性地采用图像特征技术,结合小波分析技术,对遥感子图像的空间信息进行定量描述,通过对图像的灰度、边缘能量等多种特征向量与空气环境质量进行对比分析,找到这些特征向量与空气环境质量的对应关系,识别当地的大气污染状况,进行大气污染的遥感监测。(2)结合地面气溶胶遥感资料对MODIS气溶胶光学厚度产品进行对比订正,建立气溶胶光学厚度与地面PM1o浓度的回归关系并对其进行反演。(3)针对NASA的气溶胶光学厚度的业务化反演算法,结合浙江省的实际情况,对算法进行了改进,提高了反演结果的分辨率,并在此基础上对地面PM10浓度进行了反演(4)通过对辐射传输方程的分析,选取大气纠正差值为自变量,建立了基于SVR的PM10反演模型,为PM10的遥感监测提供了新的技术手段。
concentration is one of the most important quantitative indicators to air quality. Efficient collection of the concentration and distribution information of PM10 at a large scale benefits to control and improve air quality. PM10 can be measured using ground instruments that provide accurate information reflecting the spatial and temporal change of pollutants in a single location. However, ground observation is impractical if measurements are to be made over relatively large areas or for continuous monitoring. Therefore, satelite remote sensing has been administered to compensate for the limitations of ground instruments. Currently, the satellite data has been successfully applied atmosphere research, e.g. inversion of aerosol products, pollutant monitoring, study of sudden atmospheric pollution events, study of pollutant regional transportation etc.
     Conventional PM10 inversion algorithms are executed in two steps. Firstly, aerosol optical depth (AOD) data is extracted from satellite images; then, PM10 is estimated by modeling between AOD and ground measured data. However,due to nasa's operatinal aod product has low spatial resolution,the PM10 inversion result based on this can not reflect the details of the distribution of ground's PM10. Therefore, it is difficult to guarantee a high correlation between them while using the average daily as input for the model.
     Aim to provide new solutions to the above issue, a new approach for monitoring PM10 concentration using satellite data (e.g. MODIS) is proposed. In this approach, two analysis methods i.e. time-frequency analysis, statistical learning and an atmospheric correction algorithm based on radiative transfer model are evaluated. Major contributions of this thesis are as follows:(1) image (including images after wavelet analysis) characteristics, e.g. grayscale, edge energy etc. together are quantitatively measured; and the correlations between these measurements and PM10 concentration are studied; (2) generating the regression relationship between AOD and filed measured PM10 concentration via using filed-based aerosol remote sensing data to modify MODIS AOD product. An AOD inversion procedure is then followed. (3) considering the atmospheric conditions of Zhejiang Province, NASA's operational AO-D inversion algorithm is modified to a better output with higher spatial resolution. Base-d on this modified algorithm, field PM10 concentration is then inversed. (4) modeling the difference map (difference between before and after atmospheric correction) from MODIS imagery with PM10 concentration using support vector machine regression (SVR).
引文
Barbieri, R., Montgomery, H. Draft of The MODIS Level 1B Algorithm Theoretical Basis Document Version 2.0[EB/OL]. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod01.pdf,1997.
    Baron, P. A., Willeke, K. Aerosol Measurement:Principles, Techniques, and Applications (2nd Edition) [M]. john Wiley & Sons,2005.
    Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R. Y., Perkins, T. C., Berk, A., Ratkowski, A. J., and Hoke, M.L. A new method for atmospheric correction and aerosol property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors[C]. Proceedings of the 2004 AVIRIS Workshop, Jet Propulsion Laboratory:Pasadena, CA, USA,2004.
    Christopher, S. A., Liche, D. V., Chou, J.,& Welch, R. M. First estimates of the radiative forcing of aerosols generated from biomass burning using satellite data[J]. Journal of Geophysical Research,1996,101:21265-21273.
    Chu, D. A., Kaufman, Y. J., Zibordi, G., et al. Global monitoring of air pollution over land from the earth observing system-terra moderate resolution imaging spectroradiometer (MODIS)[J]. Journal of Geophysical Research,2003,108 (D21):4661-4679.
    Chung, C., Ramanathan, V., Kim, D., and Podgomy, I. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations[J]. Journal of Geophysical Research,2005,110:D24207.
    Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J.-F.,& Zender, C. S. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals:methodology for INDOEX[J]. Journal of Geophysical Research,2001,106:7313-7336.
    Debasish, B., Srimanta, P., Dipak, C. P. Support Vector Regression[J]. Neural Information Processing,2007,11(10):203-224.
    Durkee, P. A., Jensen, D. R. Hindman E. E., Vonder Haar, T. H. The relationship between marine aerosols and satellite detected radiance[J]. Journal of Geophysical Reserch,1986,91(D3):4063-4072.
    Engel-Cox, J. A., Holloman, C. H., Countant, B. W., et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality[J]. Atmospheric Environment,2004,38(16):2495-2509.
    Fraser, R. S. Satellite measurement of mass of Sahara dust in the atmosphere[J]. Applied Optics,1976,15(10):2471-2479.
    Fraser, R. S., Mahoney R. L. Satellite measurements of aerosol mass and ransport[J]. Atmospheric Environment,1984,18(12):2577-2584.
    Fuji, T., Hayashi, S., Hogg, J. C., et al. Particulate matter induces cytokine expression in human bronchial epithelial cells[J]. American Journal of Respiratory Cell and Molecular Biology,2001,25(3):265-271.
    Gao, B. C., Heidebrecht, K. B., Goetz, A. F. H. Derivation of Scaled surface Reflectances from AVIRIS Data[J]. Remote Sensing of Environment,1993, 44(2-3):165-178.
    Ghan, S., Easter, R., Hudson, J.,& Bre'on, F. M. Evaluation of aerosol indirect radiative forcing in MIRAGE[J]. Journal of Geophysical Research,2001,106: 5317-5334.
    Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chap- man, E., Zhang, Y.,& Leung, R. Evaluation of aerosol direct radiative forcing in MIRAGE[J]. Journal of Geophysical Research,2001,106:5295-5316.
    Green, R. O., Roberts, D. A., Conel, J. E. Characterization and Compensation of the Atmosphere for Inversion of AVIRIS Calibrated Radiance to Apparent Surface Reflectance[C]. Summaries of the Sixth Annual JPL Earth Science Workshop, 1996,4(1):135-146.
    Griggs, M. Measurement of atmospheric aerosol optical thickmess over water using ERTS-1 data[J]. Air Pollut,1975,25:622-626.
    Gupta, P., Christopher, S. A.,& Wang, J. Satellite remote sensing of particulate matter and air quality assessment over global cities[J]. Atmospheric Environment,2006, 40,5880-5892.
    Haar, A. Zur Theorie der orthogonalen Funktionensysteme[J], Mathematische Annalen, 1910,69:331-371.
    Holben, B. N., Vermote, E., Kaufinan, Y. J., Tanre, D., Kalb, V. Aerosol retrieval over land from AVHRR data -Application for atmospheric correction[J]. Geoscience and Remote Sensing,1992,30:212-222.
    Hsu, N. C., Si-Chee Tsay King, Herma, M. D. Aerosol properties over bright-reflecting source regions[J]. Geoscience and Remote Sensing,2004,42(3):557-569.
    Hsu, N. C., Tsay, S.C., King, M.D., Herman, J. R. Aerosol Properties Over Bright-Reflecting Source Regions[J]. Geoscience and Remote Sensing,2004, 42(3):557-569.
    Intergovernmental Panel on Climate Change (IPCC). The scientific basis. In J. T.Houghton, Y. Ding,& D. J. Griggs (Eds.), Contribution of the working group I tothe third assessment report of the intergovernmental panel on climate change[R]. Cambridge University Press, New York,2001,289-348.
    Jacobson, M. Z. Global direct radiative forcing due to multicom- ponent anthropogenic and natural aerosols[J]. Journal of Geophysical Research,2001,106:1551-1568.
    Kaufman, Y. J., Joseph, J. H. Determination of surface albedos and aerosol extinction characteristics from satellite imagery[J]. Journal of Geophysical Research,1982, 87(C2):1287-1299.
    Kaufman, Y. J., Remer, L. A. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. Geoscience and Remote Sensing,1992,32(5):672-683.
    Kaufman, Y. J., Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery [J]. International Journal of Remote Sensing,1988, 9(8):1357-1381.
    Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C, Li, R. R., Flynn L. The MODIS 2.1um Channel Correlation with visible reflectance for use in remote sensing of aerosol[J]. Geoscience and Remote Sensing,1997,35(5):1286-1298.
    Kaufman, Y. J.,& Fraser, R. S. Confirmation of the smoke particles effect on cloud and climate[J]. Science,1997,277:1636-1639.
    Kaufman, Y. J., Tanre, D., Dubovik, O., Karnieli, A.,& Remer, L. A. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing[J]. Geophysical Research Letters,2001,28(8):1479-1482.
    Kaufman, Y. J., Tanre, D., Gordon, H. R., Nakajima, T., Lenoble, J., Frouin, R., et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect[J]. Journal of Geophysical Research,1997,102:16815-16830.
    Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A.,& Holben, B. N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectrometer[J]. Journal of Geophysical Research,1997,102: 17051-17067.
    Kaufman, Y. J., Tanre, D.,& Boucher, O. A satellite view of aerosols in the climate system[J]. Nature,2002,419:215-223.
    Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R.,& Flynn, L. The MODIS 2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997c,355:1286-1298.
    Kaufman, Y., Tanre, D., and Boucher, O. A satellite view of aerosols in the climate system[J]. Nature,2002,419:215-223.
    Koelemeijer, R. B., Homan, C. D.,& Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe[J]. Atmospheric Environment,2006,40:5304-5315.
    King, M. D., Kaufman, Y. J., Menzel, W. P., Tanre, D. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer(MODIS)[J]. Geoscience and Remote Sensing,1992,30(1):2-27.
    Leroy, M., Deuze, J. L., et al. Retrieval of aerosol properties and surface bidirectional reflectances from POLDER/ADEOS[J]. Jurnal of Geophysical Reseach,1997, 102(D14):17023-17037.
    Levin, Z. and Cotton, W. R. Aerosol pollution impact on precipitation:A scientific review. Report from the WMO/IUGG International Aerosol Precipitation Science, Assessment Group (IAPSAG)[J]. Geneva, Switzerland:World Meteorological Organization,2008.
    Levy, R. C., Remer, L. A., Martins, J. V., Kaufman, Y. J., Plana-Fattori, A., Redemann, J., et al. Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS[J]. Journal of Atmospheric Sciences,2005,62(4):974-992.
    Liang, S. Quantitative Remote Sensing of Land Surfaces[M], John Wiley and Sons, Inc.,2004,195-196.
    Martonchik, J. V., Diner, D. J. Retrieval of aerosol optical properties from mufti-angle stellite imagery[J]. Geoscience and Remote Sensing,1992,30(2):223-230.
    Matthew, M. W., Adler-Golden, S. M., Berk, A, Richtsmeier, S. C., Levine, R. Y., Bernstein, L. S., Acharya, P. K., Anderson, G. P., Felde, G. W., Hoke, M. P., Ratkowski, A., Burke, H. H., Kaiser, R. D., and Miller, D. P. Status of Atmospheric Correction Using a MODTRAN4-based Algorithm[C]. SPIE Proceeding, Algorithms for Multispectral, Hyperspectra, and Ultraspectral Imagery Ⅵ,2000,4049:199-207.
    Matthew, M. W., Adler-Golden, S. M., Berk, A., Felde, G, Anderson, G. P., Gorodetzky, D., Paswaters, S., Shippert, M. Atmospheric Correction of Spectral Imagery: Evaluation of the FLAASH Algorithm with AVIRIS Data[C]. SPIE Proceeding, Algorithms and Technologies for Multispectral, Hyperspectra, and Ultraspectral Imagery IX,2003,5093:474-482.
    Miller, C. J. Performance assessment of ACORN atmospheric correction algorithm[C]. SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery Ⅷ,2002,4725:438-449.
    Mishchenko, M., et al. Long-term satellite record reveals likely recent aerosol trend[J]. Science,2007,315:1543-1543.
    Mitchell. Machine learning [M]. The McGraw-Hill Companies, Inc.1997.
    Montes, M. J., Gao B. C., Davis C. O. A new algorithm for atmospheric correction of hyperspectral remote data[C]. SPIE Proceeding,2001,4383:243-259.
    Pelletier, B., Sater, R., Vidot, J. Retrieving of particulate matter from optical measurement:A semiparametric approach[J]. Journal of Geophysics Research, 2007,112:1-18.
    Pope, C. A., Thun, M. J., Namboodiri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., et al. Particulate air pollution as a predictor of mortality in a prospective-study of US adults[J]. American Journal of Respiratory and Critical Care Medicine,1995,151(3):669-674.
    Qianshan He, Chengcai Li, Xu Tang, Huiling Li, Fuhai Geng and Yongli Wu. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China[J] Remote Sensing of Environment,2010,114(8):1649-1661.
    Remer, L. A., Tanre, D., Kaufman, Y. J. Algorthm for remote sensing of tropospheric aerosol from MODIS[EB/OL]. http://modis.gsfc.nasa.gov/data/,2006
    Remer, L. A., Kaufmann, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J. V., et al. The MODIS aerosol algorithm, products, and validation. Journal of Atmospheric Sciences[J],2005,62(4):947-973.
    Remer, L. A., Tanre, D., Kaufmann, Y. J., Ichoku, C., Mattoo, S., Levy, R., et al. Validation of MODIS aerosol retrieval over ocean[J]. Geophysical Research Letters,2002,29(12):8008.
    Remer, L., et al., An emerging aerosol climatology from the MODIS satellite sensors[C]. Journal of Geophysical Research,2008,113:D14S01.
    Richter, R. and Schlaepfer D. Geo-atmospheric processing of airborne imaging spectrometry data Part 2:atmospheric/topographic correction[J]. Journal of Remote Sensing,2002,23:2631-2649.
    Seinfeld, J. Atmospheric science:Black carbon and brown clouds[J]. Nature Geoscience,2008,1:15-16.
    Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O.,& Slutsker, I. Cloud screening and quality control algorithms for the AERONET data base[J]. Remote Sensing of Environment,2000,73:337-349.
    Slater, J. F., Dibb, J. E., Campbell, J. W., et al. Physical and chemical properties of surface and column aerosols at a rural New England site during MODIS overpass[J]. Remote Sensing Environment,2004,92:173-180.
    Steinwart, A. C. Support Vector Machines[M]. New York:Springer,2008.
    Sun, J. Q.,& Zhang, F. H. A theoretical analysis of remote measurement of mass concentration of atmospheric dust using LIDAR[J]. Acta Scientiae Circumstantiae, 1982,2:36-43.
    Tanre, D., legrand, M. on the satellite retrieval of Saharan dust optical thickness over land:Two different approaches[J]. Journal of Geophysical Reseach,1991,96(D3): 5221-5227.
    Tanre, D., Kaufman, Y. J., Mattoo, S., Hobbs, P. V., Livingston, J. M., Russell, P. B. and Smirnov, A. Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS Airborne Simulator during TARFOX[J]. Journal of Geophysical Research,1999,104(D2):2261-2278.
    Vapnik, V. N., Levin, E, Cun, Y. L. Measuring the VC-Dimension of a Learning Machine[J]. Neural Computation,1994,6(5):851-876.
    Vapnik, V. N. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995.
    Varotsos, C. Atmospheric pollution and remote sensing:implications for the southern hemisphere ozone hole split in 2002 and the northern mid-latitude ozone trend [J]. Remote Sensing of Environment,1994,33(3):249-253.
    Veefkind, J. P., and Durkee, P. A. Retrieval of aerosol optical depth over land using two-angle view radiometry during TARFOX[J]. Geophys.Res.Lett.,1998,25: 3135-3138.
    Wang, J, Christopher, S. A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:implications for air quality studies[J]. Geophysical Research Letters,2003,30(21):2095.
    Wang, Z. F., Chen, L. F., Tao, J. H., Zhang, Y., Su L. a Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sensing of Environment,2010,114:50-63.
    韩志刚.草地上空对流层气溶胶特性的卫星偏振遥感-正问题模式系统和反演初步实验[D]:[博士学位论文].北京:中国科学院大气物理研究所,1999.
    杭州市地方志编纂委员会.杭州市志[M].北京:中华书局出版社,1995.
    李成才,邓兆泽,成才等. MODIS气溶胶光学厚度产品在地面PM10监测方面的应用研究[J].北京大学学报(自然科学版),2010,46(2):178-184.
    李成才,毛节泰,刘启汉.利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度[J].大气科学,2005,29(3):336-342.
    李成才,毛节泰等.利用MODIS光学厚度遥感产品在北京及周边地区大气污染[J].大气科学,2003,27(5):869-880.
    李成才.MODIS遥感气溶胶光学厚度及应用于区域环境大气污染研究[D]:[博士学位论文].北京:北京大学大气科学系,2002.
    李先华,徐丽华等.利用MODIS大气程辐射遥感图像与城市大气污染监测研究[J].遥感学报,2008,12(5):780-785.
    刘桂青,李成才等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染[J].环境保护,2003,(8):50-54.
    毛节泰,刘莉,张军华.GMS5卫星遥感气溶胶光学厚度的试验研究[J].气象学报,2001,59(3):352-359.
    祁国伟,曹军骥,卓里欣等.杭州市空气中PM10的化学组成特征[J].环境化学,2005,24(5):603-608.
    邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度Ⅰ:理论[J].大气科学,1995,19(5):385-394.
    邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度Ⅱ:实验研究[J].大气科学,1995,19(4):586-596.
    王浩.南京市区空气污染指数与MODIS气溶胶光学厚度的回归分析[D]:[硕士学位论文].南京:南京师范大学地理科学学院,2006.
    赵柏林,俞小鼎.海上大气气溶胶的卫星遥感研究[J].科学通报,1986,31:1645-1649.