低覆盖度带状人工柠条林防风阻沙效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善干旱半干旱地区生态环境,各地开展了大面积的植树造林工作。但由于西北地区降水资源匮乏,土壤水储量有限,大面积造林往往造成土壤水环境恶化,致使许多人工林生态系统衰退并功能丧失。本研究在“最大限度防止风蚀的同时尽量减小土壤水分过渡消耗”的前提下,探讨灌木防护林的最佳配置模式以及其合理密度,本研究通过野外观测、野外模拟实验、风洞实验、生物量调查等研究方法进行研究,旨在解决沙区生态建设中柠条防护林建设的配置问题,并为沙区退化草场生态建设提供科学依据。研究结果表明:
     (1)根据对研究区风沙运动基本参数的律定结果,研究区在观测时期内风力强劲,侵蚀发生频繁,且主要风向为NW、WNW或者NNW。研究区流沙地2m高度起动风速为冲击起动瞬时风速观测值变化于4.73~4.94 m/s之间,平均为4.83 m/s。退化草地起动瞬时风速观测值变化于6.46~6.62 m/s之间,平均为6.54 m/s。退化草地粗糙度在1.61~2.57 cm内,平均粗糙度为2.09 cm,流沙地的粗糙度比较小,流沙地粗糙度在0.37~0.64 cm,平均粗糙度为0.51 cm。在流沙地和退化草地两种不同的下垫面上,风速都随着高度的上升而增加,且两者符合对数相关关系。输沙率随着风速的增加而增加,且二者符合乘幂函数相关关系。
     (2)单株柠条周围风场基本符合圆柱绕流模型,其防护效应发挥最佳的部位位于植株的中下部,防护范围在背风面2H以内。不同行数林带的防风阻沙效应相比较,三行>双行>单行。其中单行配置防风阻沙能力最弱,三行配置林带略优于双行。不同带距配置的带状柠条林,随着带距的增加,防护效应有所下降。
     (3)风洞实验结果表明,不同带距柠条林模型防护距离分别是带距4H配置:19H;带距6H配置:15H;带距8H配置:13H;带距10H配置:9H;带距12H配置:8H。风洞实验弥补了野外模拟实验中大气紊流和精度不高的缺陷,是野外观测的支持和补充,二者结果拟合较好,风洞实验方法和材料是有效可行的。
     (4)通过对不同带距柠条林带间的风场、输沙率进行的野外观测与调查,从不同带距柠条林实际表现论证了模拟实验的可靠性。随着带距的增加,林内输沙率呈上升趋势。
     (5)不同带距柠条林带间植物多样性分析结果表明,带距越小、带间植物多样性越低。在干旱半干旱区的退化草地营造灌木防护林时,应合理控制带状柠条林带距和盖度,以利于带间草地植被恢复与正向演替。
     (6)综上所述,通过合理配置,低覆盖度带状柠条林能够满足防风阻沙和植被恢复的需求。在沙区植被建设中应选择双行配置,使其疏透度在0.5左右,带距以8H至10H之间为宜。
     本研究以沙区人工灌木防护林为研究对象,采用野外实测、野外模拟试验、风洞试验相结合的方法,探索了灌木林的适宜配置规格和密度问题,在研究方法上有一定创新,结果对干旱、半干旱地区防护林建设类型、适宜盖度、配置方式的确定,具有一定的指导意义。
There are a lot of large-scale afforestation work in China in order to improve the ecological environment in arid and semi arid areas. However, lack of precipitation and soil moisture reserves in the Northwest region of China limits afforestation area and often results soil degradation of the environment, causing many plantation ecosystem decline and loss of function. On the Premise of "maximum wind erosion control while minimizing excessive moisture consumption", the research discuss most optimum and reasonable coverage of Caragana windbreak using method of field observation, field simulation experiment, wind tunnel experiment and biomass survey. The research purpose is solving the problem of configuration mode and providing scientific basis for ecological construction of degraded grassland in desertification area. The results show as follows.
     (1) According to determination results of basic aeolian physical parameter, the main wind direction of research area in observation time is NW, WNW or NNW, wind power of research area in observation time strong and frequent. Threshold instantaneous velocity of shifting sandy land changes between 4.73~4.94 m/s,4.83 m/s; threshold instantaneous velocity of degraded grassland changes between 6.46~6.62 m/s, average value 6.54 m/s. Roughness of shifting sandy land changes between 1.61-2.57 cm, average value 0.51 cm; roughness of degraded grassland changes between 6.46~6.62 cm; average value 2.09 cm. Wind speed increases with heigt rising, and they are logarithmic correlation. Sediment transport rate increases with wind speed rising, and they are power function relative.
     (2) Wind field around per plant shrub is in conformity with flow around cylinder model. The best protective effect of per plant appears on the lower part of lee side. The protected range is within 2 times of plant height (2H) and the effect of shrub on wind finite on 1.5 m height. Effect on windspeed reduction and sand-break by shelterbelt with different number of row is triple rows>double rows> single row in sequence. Effect on windspeed reduction and sand-break by single row is minimum, triple rows shelterbelt is slightly better than double rows. Effect on windspeed reduction and sand-break by shelterbelt with different band spacing decreases with band spacing increasing.
     (3) The wind tunnel test results show that shelterbelt models with different band spacing have different protective distances. The protective distances of 4H band spacing configuration is 19H; the protective distances of 6H band spacing configuration is 15H; the protective distances of 8H band spacing configuration is 13H; the protective distances of 10H band spacing configuration is 9H; the protective distances of 12H band spacing configuration is 8H. Wind tunnel simulation experiments make up the deficiency of field simulation experiment, such as effect of atmospheric turbulence and low precision. The wind tunnel test is effective supplement and support of field simulation experiment.
     (4) Reliability demonstration of simulation experiment is done by field survey of wind field and sediment transport rate between shelterbelts with different band spacing, the results show that sediment transport rate increases by band spacing extension.
     (5) The results of biodiversity analysis between the shelterbelts with different band spacing show that biodiversity and species richness increase while band spacing extension. We should control shelterbelts with reasonable coverage and band spacing in order to promoting vegetation restoration and positive succession.
     (6)Low coverage belt Caragana Korshinskii kom. Plantation can reduce windspeed and break sand effectively if the shelterbelt is rational allocated.We suggest shrub afforestation in arid and semi arid areas allocates with belts. Recommended row number is 2, recommended transparence degree is 0.5 and recommended belt spacing is 8H~10H.
     In this study, research object is belt Caragana Korshinskii kom. plantation. Using method of field observation, field simulation experiment, wind tunnel experiment and biomass survey, making a exploration of reasonable configuration mode and coverage of belt Caragana Korshinskii kom. plantation. There is a innovative point of research method. The research results are meaningful to guide the type, configuration mode and reasonable coverage of plantation in arid and semi arid areas.
引文
1.Anderson R S, HaffP K. Simulation of aeolian saltation[J]. Science,1988,241:820-823.
    2.Ash J E, Wasson R J. Vegetation and sand mobility in the australian desert dunefield[J]. Zeitschift Geomorphologie Geomorphologie Supplementband,1983,45:7-25.
    3.BagnoldRA.风沙和荒漠沙丘物理学[M].北京:科学出版社,1959.
    4.Brandle J R, Finch S. How windbreaks work?[M]. Lincoln,Nebraska,USA:University of Nebraska Extension Bulletin EC 91-1763-B,1988.
    5.Buerkert A, Lamers J P A. Soil erosion and deposition effects on surface characteristics and pearl millet growth in the west african sahel[J]. Plant and Soil,1995,215:239-253.
    6.Butterfield G R. Grain transpo rt rates in steady and unsteady turbulent airflows[J]. ActaMech, 1991, Supp 1.(1):97-122.
    7.Chepil W S. Milne r a. Cmparative study of so il drifting in the field and in a wind funnel[J]. Scientific Agriculture,1939,19:249-257.
    8.Chepil W S. Dynamics of wind erosion:i. Nature of movement of soil by wind[J]. Soil Science, 1945,60:305-320.
    9.Chepil W S, Woodruff P N. Climatic for estimating wind erodibility[J]. Journal of Soil and Water Conservation,1962,17(4):162-165.
    10.Cook R U. Desert geomorphology[M]. London:UCL Press,1993.
    11.Dial R, Roughgarden J. Theory of marine communities:the inter-mediate disturbance hypothesis[J]. Ecology,1998,79:1412-1424.
    12.Findlater P A, Carter D J, Seott W D. A model to predict the effects of prostrate ground cover on wind erosion[J]. Australian Journal of Soil Research,1990,28:609-622.
    13.Fryrear D W. Wind erosion research:accomplishmenta and needs[J]. Transactions of the ASAE, 1985,20(5):916-918.
    14.Greely R, Iverson J D. Wind as geological process on earth,mars,venus andtitan [M]. Cambridge: Cambridge University,1985.
    15.Heisler G M, DeWalle D R. Effects of windbreak structure on wind flow.[J]. Agr For Meteorol, 1988,22(23):41-69.
    16.Horvath G, Gordon A M, Knowles R L, Optical porosity and wind flow dynamics of radiate pine (pinus radiata d.don) shelterbelts in new zealand.in; ehrenreich,j.h.,Ehrenreich,d.l. And lee,h.w.(Eds).[M].23-28 July 1995,University of Idaho,Boise,1996:164-168.
    17.Huang N, Zheng X. Theoretical simulation of developing process of wind-blown sand movement[J]. Key Engineering Materials,2003,243:589-594.
    18.Kenney W A. The effect of inter-tree spacing on the porosity of shelterbelts and windbreaks.[D]Guelph,Ontario:University of Guelph,1985.
    19.Kenney W A. A method for estimating windbreak porosity using digitized photographic silhouettes.[J]. Agricultural and Forest Meteorology,1987,39:91-94.
    20.Kort J. Benefits of windbreaks to field and forage crops[J]. Agriculture,Ecosystems and Environment,1988,22(23):165-190.
    21.Lancaster N, Baas A. Influence of vegetation cover on sand transport by wind:field studies at owens lake, california[J]. Earth Surface Processes and Landforms,1998,23:69-82.
    22.Li F, Zhang H, Zhang O. Variations of sand t ransportation rates in sandy grasslands along a desertification gradient in nort hern china[J]. Catena,2003,53:255-272.
    23.Loeffler A E, Gordon A M, Gillespie T J. Optical porosity and windspeed reduction by coniferous windbreaks in southern ontario.[J]. Agroforestry Systems,1992,17:195-199.
    24.Lottau H. Note on aerodynamic roughness partametors estimation on the basis of roughness element description[J]. J.Appl.Meteorol,1969,8:828-832.
    25.McNaughton K. Effects of windbreaks on turbulent transport and microclimate[J]. Agriculture,Ecosystems and Environment,1988,22(23):17-40.
    26.Mull K R,乌兰.横向沙丘迎风坡风速廓线的测定[J].世界沙漠研究,1990,(1):12-14.
    27.Nair, R P K. An introduction to agroforestry [J]. Kluwer,Dordrecht, The Netherlands,1993, (36): 499.
    28.NRCS U. Windbreak/shelterbelt establishment.[M]. National Handbook for Conservation Practices,USA,1994.
    29.Raupach M S. A wind tunnle study of bulent flow close to regulary arrayed toughness surfaces[J]. Boundary-layer Meteorol,1980,18:373-397.
    30.Sharp R P. Wind-driven sand in coachella valley[M]. California. Geological Society of America: Bulletin,1964.
    31.Sorensen M, McEwan I. Study on the effect of mid-air collisions on aeo lian saltation[J]. Sedimentology,1996,43:65-76.
    32.Tanner C D. Potention evapotranspration estimates by the approximate energy balance method of penman[J]. J.Geophys.Res.,1990,65:3391-3413.
    33.Tibke G. Basic principles of wind erosion control [J]. Agriculture,Ecosystems and Environment, 1988,22(23):123-132.
    34.Vande V, A M T, Fryrear D W,et al. Vegetation characteristics and soil loss by wind[J]. Journal of Soil and Water Conservation,1989,44:347-349.
    35.Wang H, Takle S. On shelter efficiency of shelterbelts in oblique wind[J]. Agricultural and Forest Meteorology,1996,81(1-2):95-117.
    36.Wang Z, Zheng X. Theoretical prediction of creep flux in aeolian sand t ransport[J]. Powder Technology,2004,139:123-128.
    37.Wasson G J, Nanninga P M. Estimating wind transport of sand on vegetation surface[J]. Earth surface Processes and Landforms,1996, N(1):505-514.
    38.Wieriringa J. An objective exposure correction method for average wind speed measurement at a sheltered location[J]. Meteorol Soc, 1976,102:241-253.
    39.Williams G. Some aspects of the aeolian saltation load[J]. Sedimentology,1964, (3):257-287.
    40.Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Proceedings,1965,39:602-608.
    41.Zahner R. Water deficit and growth of tree[A]. London:Academic Press,1968:191-254.
    42.Zheng X, He L, Wu J. The feature of st ratification in the blowing sand cloud[J]. Chinese Science Bulletin,2003,48(14):493-1498.
    43.Zheng X, He L, Wu J. The vertical profiles of mass flux for windblown sand movement at steady state[J]. Journal of Geophysical Research,2004,109:B1106.
    44.Zhou Y, Guo X, Zheng X. Experimental measurement of wind-sand flux and sand t ransport for nat urally mixed sands[J]. Physical Review E,2002,66(2):1305.
    45.Zingg A W. Wind tunnel studies of the movement of sedimentary material[A]. Iowa City:Inst of Hydraulics,1953:111-135.
    46.曾德慧.樟子松人工固沙林经营基础研究兼论樟子松沙地引种区划[M].沈阳:中国科学院沈阳应用生态研究所,1996.
    47.陈渭南,董光荣.中国北方土壤风蚀问题研究的进展与趋势[J].地球科学进展,1994,(05):6-12.
    48.程宏,邹学勇,张春来.摩阻风速与平均风速的转化关系研究[J].水土保持研究,2007,(02):137-138.
    49.慈龙骏,梁远强.对喀什平原地区人民公社营造防护林的几点意见[J].新疆农业科学,1965,(03):16-19.
    50.崔强,高甲荣,何明月.Effects of farmland shelterbelts in controlling wind and sand in sandy landofyanchi[J].生态与农村环境学报,2009,(03):23-28.
    51.丁国栋.地表粗糙度确定方法的研究[J].内蒙古林业,1994,(6):27.
    52.董光荣,李长治,金炯.关于土壤风蚀风洞模拟实验的某些结果[J].科学通报,1987,32(4):297-301.
    53.董光荣,陈惠忠,王贵勇,等.150ka以来中国北方沙漠、沙地演化和气候变化[J].中国科学B辑,1995,(12):73-82.
    54.董治宝,李振山,严平.国外土壤风蚀的研究历史与特点[J].中国沙漠,1995,15(1):100-104.
    55.董治宝,董光荣,陈广庭.风沙物理学研究进展与展望[J].大自然探索,1995,14(53):30-38.
    56.董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报,1998,4(4):1-5.
    57.董治宝,高尚玉,Fryrear D W. Drag coefficient sand roughness lengt h as disturbed by standing vegetation[J]. Journal of Arid environments,2001,49(3):485-505.
    58.董治宝,屈建军,刘小平.戈壁表面阻力系数的实验研究[J].中国科学(D),2001,31(11):953-958.
    59.董治宝,王训明,刘连友.Aerodynamic roughness of fixed sandy beds[J]. Journal of Geophysical Research,2001,106(6):11001-11011.
    60.董治宝,刘小平,王训明.Wind initiation threshold of the moistened sand[J]. Geophysical Research Ltters,2002,29(12):21-25.
    61.董治宝,刘小平,李方.Impact/entrainment relationship in a saltating cloud[J]. Earth Surface Processes and Land forms,2002,27(6):641-685.
    62.董治宝,刘小平,王洪涛.The flux profile of a blowing sand cloud:a wind tunnel investigation[J]. Geomorphology,2002,49(3-4):219-230.
    63.董治宝,刘小平,王训明.Aerodynamic roughness of gravel beds[J]. Geomorphology,2002,43(1-2):17-31.
    64.董治宝,屈建军,刘小平.Experimental investigation of the drag coefficient s of gobi surfaces[J]. Science in China (Series D),2002,45(7):609-615.
    65.董治宝,王洪涛,张晓杭.Height profile of particle concent ration in an aeolian saltating cloud:a wind tunnel investigation by piv msd[J]. Geophysical Research Letters,2003,30(19):2004, 10-1029.
    66.董治宝,孙宏义,赵爱国.WITSEG集沙仪:风洞用多路集沙仪[J].中国沙漠,2003,23(6):714-720.
    67.董治宝,刘小平,王洪涛.The blown sand flux over a sandy surface:a wind tunnel investigation on the fetch effect[J]. Geomorphology,2004,57(1-2):117-127.
    68.董治宝,王洪涛,刘小平.A wind tunnel investigation of the influence of fetch length on the flux profile of a sand cloud blowing over a gravel surface[J]. Earth Surface Processes and Land forms, 2004,29(13):1616-1626.
    69.董治宝.中国风沙物理五十年(Ⅰ)[J].中国沙漠,2005,25(3):293-305.
    70.董治宝,郑晓静.中国风沙物理研究50 a(Ⅱ)[J].中国沙漠,2005,25(6):795-815.
    71.段云,童淑敏,陈智,等.风洞内近地表风速廓线模拟方法的研究[J].农村牧区机械化,2006,(01):23-25.
    72.冯瑞,吴发启,雷金银.Protection benefits in different types of shelter belts studied by using piv system[J].水土保持通报,2007,(02).
    73.高尚武.治沙造林学[M].北京:中国林业出版社,1984:34-46.
    74.国家林业局.中国荒漠化和沙化土地图集[M].北京出版社:科学出版社,2009:22.
    75.韩德儒,杨文斌.人工柠条固沙林生长期水量平衡分析[J].干旱区资源与环境,1995,9(1):78-85.
    76.韩致文.半湿润地区风沙流结构的定量研究——以豫北沙地为例[J].中国沙漠,1993,13(3):25-31.
    77.何丽红,武建军,郑晓静.影响拜格诺结的若干因素分析[J].中国沙漠,2003,(04):13-20.
    78.贺大良,凌裕泉.风沙研究的重要设备——沙风洞[J].中国沙漠,1981,1(1):49-51.
    79.贺大良.输沙量与风速关系的几个问题[J].中国沙漠,1993,13(2):14-18.
    80.胡孟春,刘玉璋,乌兰.科尔沁沙地土壤风蚀的风洞实验研究[J].中国沙漠,1991,11(1):22-29.
    81.黄富祥,牛海山,王明星.毛乌素沙地植被覆盖率与风蚀输沙率定量关系[J].地理学报,2001,56(6):700-710.
    82.黄富祥,王明星,王跃思.植被覆盖对风蚀地表保护作用研究的某些新进展[J].植物生态学报,2002,26(5):627-633.
    83.李孝泽,董光荣.浑善达克沙地的形成时代与成因初步研究[J].中国沙漠,1998,(01):18-23.
    84.李振山,倪晋仁.挟沙气流输沙率研究[J].泥沙研究,2001,(1):1-10.
    85.廖汝棠,张文军.毛乌素沙地适宜覆盖率研究-1.沙生植物的分布及盖度状况[A].呼和浩特:内蒙古大学出版社,1992:93-97.
    86.廖汝棠,张文军.毛乌素流动沙地植物的水分关系与适宜种植规模[J].内蒙古林业科技,1996,3(4):22-26.
    87.凌裕泉,吴正.沙粒运动的动态摄影实验[J].地理学报,1980,35(2):174-181.
    88.凌裕泉,屈建军,金炯.稀疏天然植被对输沙量的影响[J].中国沙漠,2003,23(1):12-17.
    89.刘光祖.沙荒区造林树种选择与造林技术试验总结[A].1987:23-28.
    90.刘君然.林分密度理论及其应用[M].北京:中国林业出版社,1994.
    91.刘贤万.沙漠所野外风洞论证会在兰州召开[J].中国沙漠,1985,5(1):45.
    92.刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995.
    93.刘小平,董治宝.湿沙的风蚀起动风速实验研究[J].水土保持通报,2002,22(2):1-4.
    94.刘小平,董治宝.直立植被粗糙度和阻力分解的风洞实验研究[J].中国沙漠,2002,22(1):82-87.
    95.刘小平,董治宝.零平面位移高度Marquart的算法[J].中国沙漠,2002,22(3):233-236.
    96.刘小平,董治宝.固定沙质床面空气动力学粗糙度研究[J].中国沙漠,2003,23(2):111-117.
    97.刘小平,董治宝.空气动力学粗糙度的物理与实践意义[J].中国沙漠,2003,23(4):337-346.
    98.刘小平,董治宝.Experimental investigation of the concent ration profile of a blowing sand cloud[J]. Geomorphology,2004,60(3-4):371-381.
    99.刘媖心.沙坡头流动沙丘固沙植物引种栽培三十五年[J].中国沙漠,1991,11(1):24-31.
    100.刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992,12(4):41-49.
    101.楼同茂.沙漠成因类型及风沙移动特征[A].北京:中国科学出版社,1962:19-30.
    102.马世威.风沙流结构的研究[J].中国沙漠,1988,8(2):8-22.
    103.倪晋仁,李振山.挟沙气流中输沙量垂线分布的实验研究[J].泥沙研究,2001,(1):30-35.
    104.倪晋仁,李振山.风洞中挟沙气流水平集沙实验研究[J].泥沙研究,2001,(4):19-23.
    105.倪晋仁,李振山,Mendoza C. Vertical profiles of aeolian sand mass flux[J]. Geomorphology,2002,49:205-218.
    106.齐志伟,童淑敏,田建川,等.基于Fluent的风洞典型风蚀地表风速廓线的模拟[J].农机化研究,2009,(01):41-43.
    107.钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    108.盛伟彤.我国人工用材林发展中的生态问题及治理对策[J].世界林业研究,1995,8(2):51-55.
    109.史培军,严平,袁艺.中国土壤风蚀研究的现状与展望[M].2002:1-9.
    110.苏人琼.黄土高原水资源问题及其对策[M].北京:中国科学技术出版社,1990.
    111.汪殿蓓,暨淑仪,陈飞鹏.深圳南山区天然森林群落多样性及演替现状[J].生态学报,2003,23(7):1415-1422.
    112.王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996:17-31.
    113.王洪涛,董治宝,钱广强.关于风沙流中风速廓线的进一步实验研究[J].中国沙漠,2003,23(6):721-724.
    114.王礼先.全球荒漠化防治现状及发展趋势[J].世界林业研究,1994,7(1):10-17.
    115.王贤,周心澄,丁国栋.对我国荒漠化防治现状的一些认识与建议[J].北京林业大学学报,1999,21(5):62-68.
    116.王训明,董治宝.起沙风统计与输沙量计算中的若干问题[J].干旱区资源与环境,2000,14(3):41-45.
    117.吴增志.植物种群合理密度[M].北京:中国农业大学出版社,1996.
    118.吴正,凌裕泉.风沙运动的若干规律及防止危害问题的初步研究[J].治沙研究,1965,7:7-14.
    119.吴正.风沙地貌学[M].北京:科学出版社,1987.
    120.吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003.
    121.武建军,郑晓静,何丽红.跃移层中沙粒浓度分布特征的研究[J].兰州大学学报(自然科学版),2008,38(3):15-21.
    122.向开馥.防护林学[M].哈尔滨:东北林业大学出版社,1991:19.
    123.严平,董光荣,董治宝.青海共和盆地达连海沉积物示踪的初步研究[J].地球化学,2000,29(5):469-474.
    124.盐池县生态建设志编纂委员会.盐池县生态建设志[M].银川:宁夏人民出版社,宁夏人民教育出版社,2004.
    125.杨具瑞,方铎,毕慈芬.沟谷坡面风沙起动规律研究[J].力学与实践,2003,25(5):14-17.
    126.杨具瑞,方铎,毕慈芬.非均匀风沙起动规律[J].中国沙漠,2004,24(2):248-251.
    127.杨维西.论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,31(1):78-84.
    128.杨文斌,丁国栋,王晶莹,等.行带式柠条固沙林防风效果[J].生态学报,2006,26(12): 4106-4112.
    129.杨文斌,赵爱国,王晶莹,等.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究[J].中国沙漠,2006,26(1):108-112.
    130.姚洪林,廖茂彩.毛乌素流动沙地适宜植被覆盖率研究[A].中国治沙及沙产业学会主编.北京:北京师范大学出版社,1995.
    131.岳高伟,黄宁,郑晓静.风沙运动的沙粒带电机理及影响的研究进展[J].力学进展,2004,34(1):77-86.
    132.岳天祥,王薇,于强,等.中性条件下垂直风速廓线及其参数模拟分析[J].资源科学,2006,28(1):136-144.
    133.张春来,邹学勇,董光荣.植被对土壤风蚀影响的风洞实验研究[J].水土保持学报,2003,17(3):32-33.
    134.张劲松,孟平,宋兆民.“京九”铁路大兴段绿化模式动力效应的研究[J].林业科学研究,2002,15(3):317-322.
    135.张克存,屈建军,俎瑞平,等.戈壁风沙流结构和风速廓线特征研究[J].水土保持研究,2005,(01):55-56.
    136.张维江.盐池沙地水分动态及区域荒漠化特征研究[D].北京:北京林业大学,2004.
    137.张正偲,董治宝,赵爱国,等.沙漠地区风沙活动特征——以中国科学院风沙观测场为例[J].干旱区研究,2007,(04):138-143.
    138.赵文智,刘志民,常学礼.奈曼沙区植被土壤水分状况的研究[J].干旱区研究,1992,9(3):40-44.
    139.赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857.
    140.中国科学院兰州沙漠研究所沙坡头沙漠科学研究站.腾格里沙漠沙坡头地区流沙治理研究[M].银川:宁夏人民出版社,1980:280.
    141.中国植被编辑委员会.中国植被[M].北京:科学出版社,1995.
    142.朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社,1992:65.
    143.朱教君,李秀芬,Yutaka G,等.树木、林内、林冠上与森林区风速廓线研究(英文)[J].Journal of Forestry Research,2004,15(04).
    144.朱廷曜,关德新,周广胜.农田防护林生态工程学[M].北京:中国林业出版社,2001.
    145.朱廷曜,关德新,吴家兵,等.论林带防风效应结构参数及其应用[J].林业科学,2004,40(4):9-14.
    146.朱震达.应用实验方法研究风沙地貌形成过程的若干特征[J].治沙研究,1962,4:48-61.
    147.朱震达,刘恕,赵兴梁.从沙漠化角度看“三北”防护林体系的建设问题[J].林业实用技术,1980,(3):6-10.
    148.朱震达,刘恕.中国北方地区的沙漠化过程及其治理区划[M].北京:中国林业出版社,1981: 3-7.
    149.朱震达,刘恕.中国的荒漠化及其治理[M].北京:科学出版社,1989.
    150.朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社,1994.
    151.兹纳门斯基.沙地风蚀过程的实验研究及沙堆防止问题[M].北京:科学出版社,1960.
    152.邹学勇,朱九江,董光荣.风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报,1992,37(23):2175-2177.
    153.邹学勇,董光荣.风沙物理学的发展与展望[J].地球科学进展,1993,8(6):44-49.