区域水土流失评价的遥感与核素示踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是人类社会所面临的最重要的环境问题之一,水土流失现状调查和定量评价是预防水土流失、掌握水土流失动态的一项重要手段,从而为制定水土保持规划、布设水土保持措施和水土保持与生态建设宏观决策提供准确的信息和科学的依据。本论文将遥感技术与核示踪技术二者有机结合,利用遥感解译获取区域水土流失因子信息,以137Cs侵蚀示踪技术获取不同土地利用地块的土壤侵蚀量,基于GIS数据分析处理技术,实现区域水土流失的定量评价,为区域水土流失快速评价提供一条高效途径。取得了如下成果:
     (1)水土流失遥感调查具有宏观、快速、效率高的优点,可以实现水土流失时空动态监测,但是实际应用中存在缺乏成熟的评价估算模型和经验或观测数据,限制了水土流失评价的精度、准确性和应用范围。我国水土流失遥感调查是利用遥感获取水土流失因子信息,与土壤侵蚀分级指标表对照判断不同土地利用单元的水土流失强度,形成区域水土流失现状或强度图。本研究利用137Cs核素侵蚀示踪技术估算不同土地利用单元的土壤侵蚀量,突破了遥感水土流失调查依赖模型和观测数据的瓶颈。实现了水土流失评价的宏观与微观、点与面、估算与实测的结合。
     (2)137Cs核素示踪法能够简便、快捷地提供准确的水土流失背景值,与其它方法相比,不仅具有无时空限制、操作简便快捷的优点,而且可提供上世纪60年代以来的多空间尺度(测点到流域)年均净侵蚀量,特别是水土流失监测资料和相应的水文观测资料较缺乏的地区,核素示踪法显示出较大的优越性。本研究对锦屏水电站工程区典型土地利用地块进行了137Cs核素侵蚀示踪研究:区内坡度为18度林地,侵蚀模数为765 t·km-2·a-1; 22度灌木林地,侵蚀模数为1060t·km-2·a-1;28度草地,侵蚀模数为799 t·km-2·a-1;14度坡耕地,侵蚀模数为3463 t·km-2·a-1; 25度坡耕地,侵蚀模数为5466 t·km-2·a-1;水平梯田137Cs含量超出测量精度。
     (3)利用遥感与核素示踪联合评价技术对总面积为10 612.9 km2的锦屏二级水电站区域的水土流失现状进行了评价:土壤侵蚀面积为5 849.2 km2,占区域土地总面积的55.1%。按照侵蚀类型划分,水力侵蚀面积达3180 km2,占土壤侵蚀总面积的54.4%。冻融侵蚀面积达2 669.2 km2,占水土流失总面积的45.6%。在水力侵蚀中,轻度水力侵蚀面积1 480.6 km2,占水力侵蚀总面积的46.6%;中度水力侵蚀面积1 236.5 km2,占水力侵蚀总面积的38.9%;强度水力侵蚀面积363.1 km2,占水力侵蚀总面积的11.4%;极强度水力侵蚀面积78.6 km2,占水力侵蚀总面积的2.5%;剧烈水力侵蚀面积21.2 km2,占水力侵蚀总面积的0.7%。
Soil erosion is one of the most important environmental problems confronted with human beings. The quantitative evaluation and on-site investigation of soil erosion are the important means of preventing and controlling soil erosion, which will help establish water and soil conservation planning and provide reasonable basis for water and soil conservation construction and decisions-making. With the aid of GIS, the paper integrates the remote sensing with radionuclide tracing to quantative evaluation of regional soil erosion. The soil erosion information of the total area is obtained from remote sensing and the soil erosion amount of different fields is calculated by the 137Cs tracing technology. The method provides an effective tool for rapid and correct evaluation of regional soil erosion. The main study contents and conclusions of this study are put up as follows:
     The remote sensing technology can fastly and accurately perform the soil erosion dynamical monitoring. Radionuclide tracing not only independently offer some information of soil erosion deposition and space distribution, but also provide average annual net erosion amount from moniting sites to small watersheds since the sixties of last century. Compared with other methods, radionuclide tracing technique has the advantages of no space-time limiting and simple operation. The remote sensing combined with the radionuclide tracing, can realize soil erosion evaluation on the microcosmic and macrocosmic scales, and will extremely raise the accuracyand space-time resolution.
     Radionuclide tracing technique can fast and correctly provide background values for soil erosion. The method is better, especially to the areas with the absent observation data. Therefore, to some extent, it is effective supplement to remoting sense observation.
     The Jinping secondary hydraulic power station with the area of 10612.9 km2 is chosed as a study area. Based on GIS, the remote sensing combined with the 137Cs tracing technique was applied to valuate soil erosion in the area. By the remote sensing technique, to the study area, the soil erosion area has come to 5849.2 km2, accounting for 55.1% of the total study area. Water erosion area and freezing erison area are up to 54.4% and 45.6% of the total erosion area. As the national erosion intensity classes standard, slight, middle, intense, extreme and vilolent erosion area comes to 46.4%, 38.9%, 11.4%, 2.5% and 0.7%, respectively, of the total water erosion area.
     By using the 137Cs tracing technique, under the current land use condition, the average soil erosion rates of the grass-wood slopes, the cultivated slopes in the study area are 1125-2 535, 2 954-5 446 t·km-2·a-1. The study shows that the 137Cs tracing technique provides accurate soil loss background values, which supplys precious experience for wide application of the relative construction projects.
引文
Jain S. K., 2001. Estimation of soil erosion for a Himalayanwatershed using GIS technique, Water Resource Management,15(1), 41-54
    Bai, Z.G., Wan, G.J., Huang, R.G., Liu, T.S., 2002. A comparison on the accumulation characteristics of 7Be and 137Cs in lake sediments and surface soils in western Yunnan and central Guizhou, China. Catena, 49:253-270
    Blanquies J,M Scharff,and B Hallock. 2003. The design and construction of a rainfall simulator.International Erosion Control Association (IECA), 34th Annual Conference and Expo.,Las Vegas,Nevada,February 24-28
    Branca-Marili, Voltaggio-Mario. 1993. Erosion rate in badlands of central Italy; estimation by radiocaesium isotope ratio from Chernobyl nuclear accident. Applied Geochemistry, 8(5):437-445
    Brown R B, Kling G F, Cutshall N H. 1981. Agricultural erosion indicated by 137Cs redistribution: II. Estimates of erosion rates. Soil Science Society of America Journal, 45:1191-1197
    Bubenzer G D. 1979. Rainfall characteristics important for simulation. In: Procedings of the Rainfall Simulator Workshop (Tucson, Arizona),22~34. U.S. Department of Agriculture Science and Education Administration Agricultural Reviews and Manuals
    Campbell B L, Airey P L, Calf G E. 1987. Use of isotopic techniques in hydrological and erosion-sedimentation studies in tropical and temperate zones of the Asian-Pacific region. In: Gardiner V. (ed.), International geomorphology, Part 1. London: Wiley, 751-766
    Christopher K. Sommerfield. 2003. Mechanisms of sediment deposition, erosion and long-term accumulation in the Hudson estuary. Final Report to HUDSON RIVER FOUNDATION
    Davis, M.B. 1975. Erosion rates and land use history in Southern Michigan. Environmental Conservation 3:139-148
    de Jong E, Begg C M, Kachanoski R G. 1983. Estimates of soil erosion and deposition from some Saskatchewan soils. Canadian Journal of Soil Science, 63: 607-617
    De Roo A P J, Wesseling C G, Ritsema C J. 1996a. LISEM: A single-event physically based hydrological and erosion model for drainage basins Ⅰ: Theory, input and output. Hydrological Processes, 10(8): 1107-1118
    De Roo A P J, Wesseling C G, Ritsema C J. 1996b. LISEM: A single-event physically based hydrological and erosion model for drainage basins Ⅱ: Sensitivity analysis,validation and application. Hydrological Processes, 10(8): 1119-1126
    Dearing, J.A., Elner, J.K., and Hapney-Wood, C.M. 1981. recent sediment flux and erosional processes in a Welsh upland lake-catchment based on magnetic susceptibility measurements. Quaternary Research 16:356-372
    Dept. of Physical Geography, Univ. of Utrecht. 1995. LISEM: A user Mannual
    Dominguez-Cortazar M. A., 2001. Estimating the risk of soil erosionin a semiarid watershed of central Mexico using a geographicalinformation system. American Society of Agricultural Engineers, 703-705
    Dominik, J., Mangini, A., Muller G. 1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology 28:653-677
    Dusan Z. 1982. Soil Erosion, developments in Soil Science. New York, 10: 164-166 EI-Awar F. A., 2001. Using GIS and hydrologic modeling for erosionhazard assessment in Lebanese mountainous areas, AmericanSociety of Agricultural Engineers, 295-297
    Foster G R, F P Eppert, and L D Meyer. 1979. A programmable rainfall simulator for field plots. In: Procedings of the Rainfall Simulator Workshop (Tucson, Arizona), 45-59. USDA-SEA-AR, ARM-W-LO
    Foster, I.D.L., Walling, D.E. 1994. Using reservoirs deposits to reconstruct changing sediment yields and sources in catchment of the Old Mill reservoir, South devon, Uk, over the past 50 years. Hydrological Science 39:347-369
    Foster, I.D.L., Walling, D.E. 1996. Sediment yields and sediment delivery in the catchments of Slapton Lower Ley , South Devon, Uk, Field studies 8: 629-661
    Frere M H, Roberts H J. 1963. The loss of strontium-90 from small cultivated watersheds. Soil Science Society of America Proceedings, 27:82-83
    He Q, Walling D E. 1997. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils. Appl. Radiat. Isot., 48: 677-690
    Kachanoski R G. 1987. Comparison of measured soil 137-cesium losses and erosion rates. Canadian Journal of Soil Science, 67:199-203
    Kamiyama, K., Okuda, S., Koyama, M. 1982. Vertical distribution of 137 Cs and its accumulation rate in lake sediments. Jap. J. Limnol. 43:35-38
    Lomenick T F, Tamura T. 1965. Naturally occurring fixation of cesium-137 on sediments of lacustrine origin. Soil Science Society of America Proceedings, 27:383-386
    Lowrance R J, McIntyre S, Lance C. 1988. Erosion and deposition in a field/forest system estimated using cesium-137 activity. Journal of Soil and Water Conservation. 43: 195-199
    McHenry J R, Bubenzer G D. 1985. Field erosion estimated from 137Cs activity measurements. Transactions of American Society of Agricultural Engineers, 28: 480-483
    McHenry J R, Ritchie J C, Gill A C. 1973. Accumulation of fallout cesium-137 in soils and sediments in selected watersheds. Water Resources Research, 9: 676-686
    McHenry J R, Ritchie J C. 1977a. Estimating field erosion losses from fallout Cs-137 measurements. International Association of Hydrological Sciences Publication, 122: 26-33
    McHenry J R, Ritchie J C. 1977b. Physical and chemical parameters affecting transport of 137Cs in arid watersheds. Water Resources Research, 13: 923-925
    Menzel R G. 1960. Transport of 90Sr in runoff. Science, 131: 499-500
    Meyer L D and D L McCune. 1958. Rainfall simulator for runoff plots. Agric. Engr, 39: 644-648
    Meyer L D. 1984. Evolution of the Universal Soil Loss Equation. J. Soil and Water Cons, 32(2): 99-104
    Middleton H E. 1930. Properties of Soil Which Influence Soil Erosion. USDA Technical Bulletin, 173: 16
    Milton G M, Kramer S J, Waston W L, et a1. 2001. Qualitative estimates of soil disturbance in the Vicinity of CANDU’ station, utilizing measurements of 137Cs and 210Pb in soil core. Journal of Environmental Radioactivity, 55:195-205
    Mun-Hwan Koh, Mchenry, J.R. 1982. Determining sediment rate using Cesium-137 fallout at the Larto Lake. J. Korean Soc. Soil Sci. Fert. 15:207-211
    Mutchler C K and L L Hermsmeier. 1965. A review of rainfall simulators. The Transactions of America Society of Agricultural Engineers, 8(1): 67-68
    Nearing M A, Foster G R, Lane L J, et al. 1989. Aprocess-based soil erosion model for USDA-Water Erosion Prediction Project Technology. Trans. ASAE, 32: 1587-1593
    Ni J P, Fu T, Li R X, et al. 2001. Supplying Geographical Information System ARC/INFO to predict soil erosion of watershed. Journal of Soil and Water Conservation, 15(4):29-32
    Pennington W, Cambray J S, Fisher E M. 1973. Observation on lake sediments using fallout 137Cs as a tracer. Nature, 242: 324-326.
    Pennock D J, de Jong E. 1987. The influence of slope curvature on soil erosion and deposition in hummock terrain. Soil Science, 144: 209-217
    Quine T A, Walling D E, Zhang X et al. 1992. Investigation of soil erosion on terraced field near Yangting, Sichuan Province,China, Using caesium-137. Erosion, Debris Flows and Environment in Mountain Regions, IAHS Publ, 209: 155-168
    Renard K D, Forste G D, Weesies G A. 1997. Prediction rainfall erosion by water: a guild to conservation planning with the revised universal soil loss equation (RUSLE). USDA Agricultural Handbook No.703, Washington, D C: USDA
    Ritchie J C, McHenry J R, Gill A C et al. 1970. The use of fallout cesium-137 as a tracer of sediment movement and deposition. Mississippi Water Resources Conference Proceedings. pp149-163
    Ritchie J C, McHenry J R, Gill A C. 1972a. Dating recent reservoir sediment using radioactive fallout. ASB Bulletin. 19: 95
    Ritchie J C, McHenry J R, Gill A C. 1972b. The distribution of Cs-137 in litter and the upper 10 centimeters of soil under different vegetation types in northern Mississippi. Health Physics, 22: 197-198
    Ritchie J C, McHenry J R, Gill AC. 1974. Fallout Cs-137 in the soils and sediments of three small watersheds. Ecology, 55: 887-890
    Ritchie J C, Spraberry J A, McHenry J R. 1974. Estimating soil erosion from the redistribution of fallout Cs-137. Soil Science Society of America Proceedings, 38: 137-139
    Ritchie J R, Gill A C. 1973. Dating recent reservoir sediments. Limnology and Oceanography, 1973,18:254~263
    Ritchie, J. C. and Mchenry, J.R. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 19: 215-233
    Rogowski A S, Tamura T. 1965. Movement of 137Cs by runoff, erosion and infiltration on the alluvial Captina silt loam. Health Physics, 11:1333-1340
    Rogowski A S, Tamura T. 1970. Environmental mobility of cesium-137. Radiation Botany, 10:35-45
    Rogowski A S,Tramura T. 1965. Movement of 137Cs by runoff, erosion and infiltration on the alluvial eaptina silt loam, Health Physics, (11):1333-1340
    Talibudeen O. 1964. Natural radioactivity in soils. Soils and Fertilizer. 27:347-359
    Wallbrink P J, Murray A S. 1996. Determining soil loss using the inventory ratio of excess lead-210 to cesium-137. Soil Science Society of America Journal, 60: 1201-1208
    Walling D E, He Q. 1999. Improved models for estimating soil erosion rates from caesium-137 measurements. Journal of Environmental Quality, 28: 611-622
    Walling D E, He Q. 2001. Models for converting 137Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils (including software for model implementation). Report to IAEA. Exeter: University of Exeter
    Walling D E, Roman J S, Bradley S B. 1989. Sediment associated transport and redistribution of Chernobyl fallout radionuclides. IA HS Publ., 184: 37-45
    Walling, D.E. 2000. Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410, 223-240
    Walling, D.E. and Webb, B.W. 1996. Erosion and sediment yield: a global review. In Erosion and sediment yield: Global and regional perspectives. IAHS Publication 236:3-19
    Walling, D.E., Owens, P.N. and Leeks, G.J.L. 1999. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrological Processes 13, 955-975
    Walling, D.E., Peart, M.R., Oldfield, F., Thompson, R. 1979. Suspended sediment sources identified by magnetic measurements. Nature 281:110-113
    Wan G J, Santschi P H, Strum M et al. 1987. Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. Chemical Geology, 63: 181-196
    Whicker, J.J., Whicker F.W., Jacobi, S. 1994. 137 Cs in sediments of Utah Lake and reservoirs: Effects of elevation, sedimentation rate and fallout history. J. environ. Radioactivity 23: 265-283
    Wischmeier W H, Smith D D. 1960. A universal soil loss equation to guide conservation farm planning. Trans. 7th International Cong. Soil Sci, 1: 418-425
    Wischmeier W H, Smith D D. 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. USDA Agricultural Handbook No. 282, Washington, D C: USDA
    Wischmeier W H, Smith D D. 1978. Predicting rainfall-erosion losses: A Guide to Conservation Planning USDA Agricultural Handbook No. 537, Washington, D C: USDA
    Wischmeier W H. 1976. Use and misused of the universal soil loss equation. J. Soil and Water Cons, 31(1): 5-9
    Woodburn R, Kozachyn J. 1956. A Study of Relative Erodibility of a Group of Mississippi Gully Soils. Trans, Am. Geographical Union, 35: 745-753
    Yang H, Du M, Chang Q et al. 1998. Quantitative model of soil erosion rates using 137Cs for uncultivated soil. Soil Science, 163: 248-257.
    Yang H, Du M, Chang Q et al. 2000. A quantitative model for estimating mean annual soil loss in cultivated land using 137Cs measurements. Soil Science and Plant Nutrition, 46: 69-79
    Zapata F. 2003. Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic Publishers, Dordrecht/Boston/London, pp219
    Zhang X, Higgitt D L, Walling D E. 1990. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrological Science Journal, 35: 267-276
    Zhang X, Li S, Wang C et al. 1989. Use of caesium-137 measurements to investigate erosion and sediment sources within a small basin in the Loess Plateau of China. Hydrological Processes, 3: 317-323
    Zhang X, Walling D E, He Q. 1999, Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements. Hydrological Sciences. 44: 33-45.
    Zhang, X., Quine, T. A., Walling, D.E. 1998. Soil erosion rates on sloping cultivated land on the Loess Plateau near Ansai, Shaanxi Province, China: An investigation using 137Cs and rill measurement. Hydrological Processes, 12: 171-189
    Zhang, X., Zhang, Y., Wen, A. et al. 2003. Assessment of soil losses on cultivated land by using the 137Cs technique in the Upper Yangtze River Basin. Soil and Tillage Research, 69:99-106
    蔡强国, 陆兆熊, 王贵平. 1996. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模拟. 地理学报, 51(2): 108-116
    蔡强国, 王贵平, 陈永宗. 1998. 黄土高原小流域侵蚀产沙过程与模拟. 北京: 科学出版社
    蔡强国,陆兆熊,王贵平. 1996. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型. 地理学报, (2): 108-116
    柴宗新. 1990. 长江上游水土流失防治宏观决策研究. 地球科学进展, (4): 45-49
    长江水利委员会. 1997. 三峡工程生态环境影响研究. 武汉: 湖北科学技术出版社
    陈法扬, 王志明. 1992. 通用土壤流失方程在小良水土保持试验站的应用. 水土保持通报, 12(1): 23-41
    陈文亮, 唐克丽. SR 型野外人工模拟降雨装置. 水土保持研究, 7(4):106-110
    陈永宗, 景可, 蔡强国等. 1988. 黄土高原现代侵蚀与治理. 北京: 科学出版社
    董杰等. 2006. 137Cs 示踪三峡库区土壤侵蚀速率研究,水土保持学报, 20(6): 1-5
    杜佐华, 严国安. 1999. 三峡库区水土保持与生态环境改善. 长江流域资源与环境, 8(3): 299-304
    范荣生,李占斌. 1991. 用于降雨侵蚀的人工模拟降雨装置实验研究. 水土保持学报, 5(2): 38-45
    范瑞瑜. 1985. 黄河中游地区小流域土壤流失量计算方程的研究. 中国水土保持, (2): 12-18
    范月娇, 江晓波. 2002. 空间信息技术支持下的三峡库区土地利用时空变化分析.资源科学, 24(5): 75-80
    伏介雄, 贺秀斌, 文安邦等. 2005. 川中丘陵区小流域产沙的塘库沉积研究-以南充流溪河为例. 水土保持通报, 25(4): 50-52
    高小梅, 李兆麟, 贾雪等. 2000. 人工模拟降雨装置的研制与应用. 辐射防治, 20(1-2): 86-90
    高扬等. 2006. 不同区域土地利用与土壤侵蚀空间关系研究. 水土保持学, (11): 21-23
    李辉霞. 2006. 基于土地利用结构特征的土壤侵蚀强度预测研究——以四川省为例. 中国农业生态学报, 14(1): 93-95
    关君蔚. 1996. 水土保持原理. 北京: 中国林业出版社
    郭生练, 徐高洪, 张新田 等. 2003. 长江三峡入库径流泥沙特性变化研究. 水资源研究, 24(4): 1-3
    哈德逊. 1975. 土壤保持. 北京: 科学出版社
    哈斯. 1997. 河北坝上高原土壤风蚀物垂直分布的初步研究. 中国沙漠, 17(3): 9-14
    贺秀斌, 张信宝, 文安邦. 2004. 川中丘陵区侵蚀产沙的尺度单元及其研究方法. 水土保持通报, 24(3): 18-20
    胡良军,李锐. 2000. 基于 GIS 的区域水土流失评价研究. 水土保持通报, 20(5): 56-59
    黄诗峰等. 2001. 基于 GIS 的流域土壤侵蚀量估算指标模型方法. 水土保持学报, 15(2)
    黄炎和, 卢程隆, 付勤等. 1993. 闽东南土壤流失预报研究. 水土保持学报, 7(4): 13-18
    江忠善, 宋文经. 1980. 黄河中游黄土丘陵沟壑区小流域产沙量计算. 第一次河流泥沙国际学术讨论会论文集. 北京: 光华出版社
    江忠善, 王志强, 刘志. 1995. 应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究. 第二届全国泥沙基本理论研究学术讨论会论文集. 北京: 中国建材工业出版社
    江忠善, 王志强, 刘志. 1996. 黄土丘陵区小流域土壤侵蚀空间变化定量研究. 土壤侵蚀与水土保持学报, 2(1): 1-9
    金争平, 高志明, 王正文 等. 1992. 皇甫川流域小流域地块土壤侵蚀预报模型及其应用. 黄河皇甫川流域土壤侵蚀系统模型和治理模式. 北京: 海洋出版社, pp60-84
    金争平, 赵焕勋, 和泰等. 1991. 皇甫川小流域土壤侵蚀量预报模型方程研究. 水土保持学报, 5(1): 8-18
    景可. 2002. 长江上游泥沙输移比初探. 泥沙研究, (1): 53-59
    柯克比, 摩根. 1987. 土壤侵蚀. 北京: 水利电力出版社
    拉尔 R. 1991. 水土保持学会、黄河水利委员会宣传出版中心译. 可蚀性和侵蚀性、土壤侵蚀研究方法. 北京: 科学出版社
    李红卫, 彭补拙. 1993. 三峡库区水土流失特点及其环境危害防治措施探讨. 长江流域资源与环境, 2(4): 331-339
    李连捷, 何金海. 1946. 嘉陵江流域之土壤侵蚀及防淤问题. 土壤, 5(2): 102-110
    李青云, 孙厚才, 蒋顺清. 1995. 紫色土丘陵区小流域泥沙输移的分形特征及输移比模型. 长江科学院院报, 12(2): 30-36
    李锐, 杨勤科, 赵永安等. 1998. 现代空间信息技术在中国水土保持中的应用. 水土保持通报, 18(5): 1-5
    李英伦. 1994. 嘉陵江三江汇合区段的沙量平衡及控制三峡水库泥沙措施探讨. 西南农业大学学报, 16(3): 288-293
    廖和平等. 2002. 中国耕地资源及其可持续利用,西南师范大学学报,27(3): 408-411
    林素兰, 黄毅, 聂振刚等. 1997. 辽北低山丘陵区坡耕地土壤流失方程的建立. 土壤通报, 28(6): 261-253
    刘宝元. 1999. 土壤侵蚀过程与模型研究. 资源科学, 5: 9-18
    刘秉正, 吴发起. 1996. 土壤侵蚀. 西安: 陕西人民出版社
    刘善建. 1953. 天水水土流失测验与分析. 科学通报, 12: 59-65
    刘素媛. 1999. SB-YZCP 人工降雨模拟装置特性分析. 中国水土保持, (2): 18-20
    刘彦随, 方创琳. 2001. 区域土地利用类型的胁迫转换与优化配置—以三峡库区为例. 自然资源学报, 16(4): 334-340
    刘毅, 张平. 1995. 长江上游流域地表侵蚀与河流泥沙输移. 长江科学院院报, 12(1): 40-44
    美国土壤保持协会. 1981. 土壤侵蚀预报与控制. 北京: 农业出版社
    牟金泽, 熊贵枢. 1980. 陕北小流域产沙量预报及水土保持措施拦沙计算. 第一次河流泥沙国际学术讨论会文集. 北京: 光华出版社
    潘庆燊. 1999. 三峡工程泥沙问题研究. 北京: 中国水利水电出版社
    蒲勇平. 2003. 长江源地区水土保持预防保护及对策. 人民长江, 34 (4): 25-26
    全国政协文史资料委员会. 1999. 自然·生态·发展——百年来人类发展历程的反思. 科技文萃, (8): 112-117
    阮伏水, 吴雄海. 1996. 关于土壤可蚀性指标的讨论. 水土保持通报, 16(6): 68-72
    史德明 等. 1987. 三峡库周地区土壤侵蚀对库区泥沙来源的影响及其对策. In: 长江三峡工程对生态环境影响及其对策研究论文集, 北京: 科学出版社
    史德明等. 1990. 土壤侵蚀与土壤退化——中国土地退化防治研究. 北京:中国科学技术出版社
    史立人. 1998. 长江流域水土流失特征、防治对策及实施成效. 人民长江, 29(1): 41-43
    史立人. 1999. 长江流域的坡耕地治理. 人民长江, 30(7): 25-27
    水利部遥感技术应用中心. 1990. 全国土壤侵蚀遥感调查统计表. 北京: 中华人民共和国水利部
    四川省水土保持委员会办公室. 1991. 四川省水土保持试验观测成果汇编
    宋桂琴. 1997. 谈水土流失、土壤侵蚀两概念的区别与联系. 中国水土保持, (2): 47-49
    孙其诚, 王光谦. 2001. 沙粒起跃的动态模拟. 中国沙漠, 21(增刊): 17-21
    汤立群, 陈国祥, 蔡名扬. 1990. 黄土丘陵区小流域产沙数学模型. 河海大学学报, 18(6): 10-16
    唐克丽. 2004. 中国水土保持. 北京: 科学出版社
    唐克丽. 1999. 中国土壤侵蚀与水土保持的特点及展望. 水土保持研究, 6(2): 2-7
    唐克丽等. 1992. 黄土高原人为加速侵蚀与全球变化. 水土保持学报, 6(2): 88-96
    唐翔宇, 杨浩, 曹慧等. 2001. 137Cs 法估算南方红壤地区土壤侵蚀作用的初步研究. 水土保持学报, 15(3): 4-7
    唐政洪, 蔡强国等. 2002. 不同尺度条件下的土壤侵蚀实监测及模型研究,水科学进展, 13(6): 781-787
    万国江, 林文祝, 黄荣贵等. 1992. 红枫湖沉积物 137Cs 垂直剖面的计年特征及侵蚀示踪. 科学通报, 37(9):1490~1493
    万国江. 1995. 137Cs 及 210Pbex方法湖泊沉积计年研究新发展. 地球科学进展, 10(2): 188-92
    汪阳春, 张信宝, 李少龙等. 1991a. 黄土峁坡侵蚀的 137Cs 法研究. 水土保持通报, (3): 34-37
    汪阳春, 张信宝, 李少龙等. 1991b. 三峡高桥河滩地农田泥沙淤积厚度的 137Cs 法测定. 地理, 4(1): 63-64
    汪阳春, 张信宝, 李少龙等. 1993. 黄土峁坡侵蚀的 137Cs 法研究. 水土保持通报, (3): 34-37
    王飞, 李锐, 杨勤科. 2003. 土壤侵蚀研究的尺度转换. 水土保持研究, 10(2): 9-12
    王洁, 胡少伟, 周跃. 2005. 人工模拟降雨装置在水土保持方面的应用. 水土保持研究, 12(4):188-194
    王礼先. 1995. 水土保持学. 北京: 中国林业出版社
    王力威, 石晓燕, 李国忠. 1997. 对风蚀机理的分析与认识. 水利科技与经济, 3(2): 90-91
    王苏民, 窦鸿身. 1998. 中国湖泊志. 北京: 科学出版社
    王玉宽, 文安邦, 张信宝. 2003. 长江上游重点水土流失区坡耕地土壤侵蚀 137Cs 法研究. 水土保持学报, 17(2): 77-80
    文安邦, 张信宝, 王玉宽等. 2003. 云贵高原区龙川江上游泥沙输移比研究. 水土保持学报, 17(4): 139-141
    吴礼福. 1996. 黄土高原土壤侵蚀模型及其应用. 水土保持通报, 16(5): 29-35
    吴宁等. 1999. 长江上游地区的生态环境与可持续发展战略. 世界科技研究与发展, 21(3): 70-73
    谢树楠, 王孟楼, 张仁. 1990. 黄河中游黄土沟壑区暴雨产沙模型的研究. 北京: 清华大学出版社
    薛利红, 杨林章. 2004. 遥感技术在我国土壤侵蚀中的研究进展.水土保持学报, 18(3): 186-189
    严平, 董光荣, 董治宝等. 2000, 青海共和盆地达连海湖积物 137Cs 示踪的初步结果. 地球化学, 5: 469-473
    严平, 董光荣, 张信宝等. 2000. 137Cs 法测定青藏高原土壤风蚀的初步结果. 科学通报, 45(2): 199-204
    杨浩, 杜明远, 赵其国等. 2000, 利用 137Cs 示踪农业耕作土壤侵蚀速率的定量模型. 土壤学报, 37(3): 296-304
    杨俊平. 2003;从美国西部大平原黑风暴的控制途径论中国北方沙尘暴的预防对策,内蒙古林业科技, (3): 3-6
    杨明义, 田均良, 刘普灵等. 2001. 137Cs 示踪研究小流域土壤侵蚀与沉积空间分布特征. 自然科学进展, 11(1): 71-75
    杨武德, 陈宝林, 徐锴. 1999. 红壤坡地不同利用方式土壤侵蚀模型研究. 土壤侵蚀与水土保持学报, 5(1): 52-58
    杨艳生, 史德明, 吕喜玺. 1991. 长江三峡区的坡面土壤流失量和入江泥沙量研究. 水土保持学报, 5(3): 22-27
    杨艳生, 史德明. 1994. 长江三峡库区土壤侵蚀研究. 南京: 东南大学出版社
    杨艳生. 1990. 区域性土壤流失预测方程的初步研究.土壤学报, 27(1):73-79
    杨意诚. 1995. 三峡水库来水来沙条件的分析研究综述. 水文, (1): 11-16
    杨子生. 1999. 滇东北山区坡耕地土壤流失方程研究. 水土保持通报, 19(1): 1-9
    杨子生. 2001. 论水土流失与土壤侵蚀及其有关概念的界定. 山地学报, 19(5): 436-445
    尹国康, 陈钦峦. 1989. 黄土高原小流域特性指标与产沙统计模式. 地理学报, 44(1): 32-45
    余剑如, 史立人. 1991. 长江上游的地面侵蚀与河流泥沙. 水土保持通报, 11(1): 9-17
    袁爱萍. 2004. 美国人工降雨模拟设备的引进与应用. 北京水利, (6):36-37
    张宝信,李少龙,王成华等. 1988. 137Cs 法测算梁峁坡农耕地土壤侵蚀量的初探.水土保持通报, 8(5): 18-22
    张洪明. 二滩水电站库区防护林体系建设探讨。 云南林业调查规划设计, 1999,24(1): 35-39.
    张光科, 刘东, 方铎. 1996. 山区流域泥沙输移比计算公式. 成都科技大学学报, (6): 85-90
    张力辉, 代全厚, 刘明义. 2002. 风蚀与荒漠化防治. 吉林水利, (1): 28-30
    张宪奎, 许靖华, 邓育江 等. 1992. 黑龙江省土壤侵蚀方程的研究. 水土保持通报, 12(4): 1-9
    张信宝, D L 赫吉特, D E 沃林. 1991. 137Cs 法测算黄土高原土壤侵蚀速率的初步研究. 地球化学, 1991(3): 212-218
    张信宝, Walling, D. E., 冯明义等. 2003. 210Pbex在土壤中的深度分布和通过 210Pbex法求算土
    壤侵蚀速率模型. 科学通报, 48(5): 502-506
    张信宝, 贺秀斌, 文安邦等. 2004. 川中丘陵区小流域泥沙来源的 137Cs、210Pb 双同位素法研究. 科学通报, 49(15): 1537-1541
    张信宝, 李少龙, T A Quine 等. 1993. 犁耕作用对 137Cs 法测算农耕地土壤侵蚀量的影响. 科学通报, 38(22): 2072-2076
    张信宝, 李少龙, 王成华等. 1988. 137Cs 法测算梁峁坡农耕地土壤侵蚀量的初探. 水土保持通报, 8(5): 18-22
    张信宝, 汪阳春, 李少龙等. 1992. 蒋家沟流域土壤侵蚀及泥石流细粒物质来源的 137Cs 法
    初步研究. 中国水土保持, 1992(2): 28-31
    张信宝. 1996. 长江上游水土流失治理的思考. 水土保持科技情报, 1996(4): 7-9
    张信宝等. 1989. 黄土高原小流域泥沙来源的 137Cs 法研究. 科学通报, 34(3): 210-213
    赵帮元. 2000. TM 卫星图像几何纠正技术方法浅探. 中国水土保持, 6
    郑粉莉, 刘峰, 杨勤科等. 2001. 土壤侵蚀预报模型研究进展. 水土保持通报. 21(6): 16-18
    郑粉莉, 赵军. 2004. 人工模拟降雨大厅及模拟降雨设备简介. 水土保持研究, 11(4):177-178
    郑宏伟,李平康. 2005. 一种新型人工模拟降雨实验装置的研制. 实验技术与管理,22(4): 39-43
    中华人民共和国水利部. 2002. 全国水土流失公告. 北京
    中华人民共和国水利部. 2002. 全国水土流失公告. 北京
    重庆市科委. 2006. 重庆市生态环境保护及三峡库区发展科技问题研究
    重庆市农业局. 1998. 重庆市农林水基础设施和农业综合开发调研材料
    周伏建, 陈明华, 林福兴 等. 1995. 福建省土壤流失预报研究. 水土保持通报, 9(1): 25-30
    周佩华, 窦宝璋, 孙清芳. 1981. 降雨能量的试验研究初报. 水土保持通报, 1(1): 51-61
    朱述龙等. 2000. 遥感图像获取与分析. 北京: 科学出版社
    朱显谟. 2004. 土壤学与水土保持. 西安: 陕西人民出版社