共和盆地末次盛冰期以来的风沙活动历史与气候变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共和盆地位于青藏高原东北部的祁连山、昆仑山和秦岭之间,是一个山间断陷盆地。盆地东西长约210km,南北宽约60km,总面积约13800km2,大部分地区海拔高度在2600-3400m之间;年均气温2.0-3.3℃,年均降水量311.1~402.1mm,年均潜在蒸发量1528-1937mm。共和盆地位于我国季风边缘区,对气候和环境变化敏感,是深入研究我国全新世气候变化模式的理想区域。本文选择共和盆地4个风成沉积剖面为研究对象,通过光释光(OSL)测年与沉积地层层序变化,结合粒度组成、元素含量、磁化率和烧失量等代用指标,重建了共和盆地末次盛冰期以来的风沙活动历史及其与气候变化的联系,并与青藏高原东北部风成沉积和湖泊沉积记录的气候环境变化开展对比研究。得出以下结论和初步认识:
     1、共和盆地腹地风成沉积CIA值小于65,处于初等化学风化程度。后期风化成壤作用对粒度改造作用不显著,剖面中粗颗粒含量变化可用来指示风沙活动历史。相比于A1元素,剖面中其他常量元素均没有明显的迁移和富集,基本保持了沉积过程的原始信息。
     2、根据地层的层序变化,结合>63μm颗粒含量、敏感粒级组分含量以及Si02/Ti02比值的变化情况,发现共和盆地末次盛冰期以来存在4个风沙活动强烈时期,分别为20-18ka BP、12-11ka BP、9.4-7.8ka BP与6-5ka BP,4.5ka BP以来古土壤广泛发育。总体而言,共和盆地早-中全新世风沙活动强烈,晚全新世以来风沙活动受到一定程度的遏制。
     3、共和盆地腹地TGM、MGTA和MGTB等3个剖面与位于盆地东南缘山前的GMY剖面在粒度、化学蚀变指数和磁化率等指标上呈现出不一致的变化,表明在区域范围内,海拔和地形对水热组合的重新分配,形成差异明显的气候环境,对粉尘的释放及沉积后改造具有重要影响。
     4、在我国西北干旱-半干旱区,温度控制的区域有效湿度状况可能是风沙活动强度的主要控制因素。青海湖盆地和共和盆地风成沉积记录表明,早-中全新世风沙活动强烈,晚全新世风沙活动受到遏制。然而,青藏高原东北部大量的湖泊沉积记录却显示了早中全新世气候暖湿,晚全新世气候冷干的环境变化模式。风成沉积与湖泊沉积记录的青藏高原东北部的气候相反的变化事实,本质上反映了风成沉积和湖泊沉积对气候变化的差异响应。西北季风边缘区湖泊水位变化可能主要响应于亚洲季风影响的降水量变化。风沙活动强度受区域有效湿度控制,更多地响应于太阳辐射调节的温度变化。
The Gonghe Basin, located in the northeastern Qinghai-Tibetan Plateau, is an intermountain fault basin. The basin is about210km long from east to west and60km wide from north to south, with a total area of about13800km2. The elevation of most parts of the basin is between2600and3400m. In the basin, average annual temperature is2.0~3.3℃, average annual precipitation is311.1~402.1mm and average annual potential evaporation is1528~1937mm. Due to its unique geographical location, the basin is sensitive to the climatic and environmental changes, and is an ideal site for the researches into the pattern of climatic changes during the Holocene. In this paper, four aeolian deposition sections in the Gonghe Basin were studied. Based on the optically stimulated luminescence (OSL) dating and the sedimentary stratigraphic sequences of the aeolian deposits, the history of aeolian activity and climatic changes in the Gonghe Basin since the last glacial maximum were reconstructed, in combination with climatic proxies, such as grain size, element content, magnetic susceptibility and loss on ignition. Meanwhile, the results were compared with climatic changes recorded by the aeolian depositions and lake sediments in the northeastern Qinghai-Tibetan Plateau. The major conclusions are reached as follows:
     1. For aeolian deposits in the hinterland of the Gonghe Basin, the chemical weathering is primary. Alternation of the pedogenesis on particle size is not significant. Coarse particles in the deposits can be used to indicate aeolian activity. Compared to the Al, the major elements in the profile have no obvious migration and enrichment and basically represent the pristine signals of dust depositions.
     2. According to the stratigraphic changes, the>63μm particle content, the genetically sensitive components and the SiO2/TiO2ratio, four periods of the intense aeolian activity were identified in the Gonghe Basin since the last glacial maximum, namely,20~18,12~11,9.4~7.8and6-5ka BP. After4.5ka BP, paleosols widely developed in the basin. The aeolian activity was intensive in the early to middle Holocene, whereas it became weak during the late Holocene.
     3. Changes in grain size, CIA and magnetic susceptibility of the TGM, MGTA and MGTB sections in the hinterland of the basin are different from those of the GMY section, which is located in the southeastern margin of the Gonghe Basin, close to the pedimonts. The difference suggests that moist and thermal redistributions due to elevation and topography across the basin can lead to distinctly different environments, which has an important influence on dust emission and its chemical alternation after deposition.
     4. Dust emission is mainly affected by the wind strength and vegetation cover. In this study, surface soil humidity is likely to be the major controlling factor for aeolian activity. In the Qinghai Lake Basin and the Gonghe Basin, the aeolian activity was intensive during the early-middle Holocene and appeared to weaken during the late Holocene. However, a large number of climatic records from lake sediments in the northeastern Qinghai-Tibetan Plateau show an opposite climate change pattern:warm and humid during the early to middle Holocene, cold and dry during the late Holocene. Actually, this difference could be ascribed to the different responses of aeolian deposits and lake sediments to climatic changes. Water-level fluctuations in the marginal area affected by the Asian summer monsoon may be mainly in response to regional precipitation, whereas aeolian activity intensity may be controlled by the regional effective moisture, most likely in response to temperature changes regulated by the solar radiation.
引文
[1]Pye K. Aeolian Dust and Dust Deposits [M]. Beijing:China Ocean Press,1991.
    [2]Maher, B.A., Prospero, J.M., Mackie, D., et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum [J]. Earth-Science Reviews 2010,99:61-97.
    [3]Intergovernmental Panel on Climate Change, Changes in atmospheric constituents and in radiative forcing. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,2007.
    [4]Spracklen, D.V., Carslaw, K.S., Kulmala, M., et al. Contribution of particle formation to global cloud condensation nuclei concentrations [J]. Geophysical Research Letters 2008,35: L06808. Doi:10.1029/2007GL033038.
    [5]Martin J.H., Coale K.H., Johnson K.S., et al. Testing the Iron Hypothesis in Ecosystems of the Equatorial Pacific Ocean [J]. Nature,1994,371:123-129.
    [6]Kumar N., Anderson R.F., Mortlock R.A., et al. Increased Biological Productivity and Export Production in the Glacial Southern Ocean [J]. Nature,1995,378:675-680.
    [7]Boyd P.W., Law C.S., Wong C.S., et al. The Decline and Fate of an Iron-induced Subarctic Phytoplankton Bloom [J]. Nature,2004,428:549-553.
    [8]Jickells, T.D., An, Z.S., Anderson, K.K., et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science,2005,308:67-71.
    [9]Wolff, E.W., Fischer, H., Fundel, F., et al. Southern ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles [J]. Nature,2006,440:491-496.
    [10]Boyd, P.W., Ellwood, M.J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience 2010,3:675-682.
    [11]Ridgwell A.J. Dust in the Earth system:the biogeochemical linking of land, air and sea [J]. Phil. Trans. R. Soc. Lond. A.,2002,360(1801):2905-2924.
    [12]张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2001,21(1):29-40.
    [13]Zhang X.Y., Gong S.L., Zhao T.L., et al. Sources of Asian Dust and Role of Climate Change versus Desertification in Asian Dust Emission [J]. Geophys. Res. Lett.,2003,30:2272, doi: 10.1029/2003GL018206.
    [14]邬光剑,姚檀栋,徐柏清等.慕士塔格冰芯中大气粉尘记录的季节变化[J].科学通报,2008(13):1576-1581.
    [15]Biscaye, P.E., Grousset F.E., Revel M., et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice core, summit, Greenland [J]. Journal of Geophysical Research,1997,102(C12):26765-26781.
    [16]Radczewski, O.E. Eolian deposites in marine sediments. In P. D. Trask (ed.) Recent Marine Sediments [J]. American Association of Petroleum Geologists, Tulsa,1939:496-502.
    [17]Pisias N.G., Leinen M. Milankovitch forcing of the oceanic system:Evidence from the northwest Pacific. Milankovitch and Climate:Understanding the Response to Astronomical Forcing [J],1984:307-330.
    [18]Rea, D.K. The paleoclimatic record provided by eolian deposition in the deep sea:the geologic history of the wind [J]. Review of Geophysics 1994,32:159-195.
    [19]Rea, D.K., Leinen, M.. Asian aridity and the zonal westerlies:Late Pleistocene and Holocene record of eolian deposition in the North West Pacific Ocean. Palaeogeogr, Palaeocliamtol, Palaeoecol [J].1988,66:1-8.
    [20]Pye K., Johnson R. Stratigraphy geochemistry and thermoluminescence ages of Lower Mississippi Valley loess [J]. Earth Surface Processes and Landforms,1988,13:103-124.
    [21]Pye K., Zhou L.P. Late Pleistocene and Holocene aeolian dust deposition in north China and the northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology [J],1989, 73:11-23.
    [22]Rea, D.K., Leinenand, M., Janecek, T.R. Geologic Approach to the Long-Term History of Atmospheric Circulation [J]. Science,1985,227:721-725.
    [23]Petit, J.R., Mounier, L., Jouzel, J., et.al. Palaeoclimatological and chronological implications of the Vostok core dust record [J]. Nature 1990,343:56-58.
    [24]Hammer C.U., Clausen H.B., Dansgaard W., et al. Continuous impurity analysis along the Dye-3 deep core [J]. Greenland Ice Core:Geophysics, Geochemistry, and the Environment, 1985:90-94.
    [25]O'Brien S.R., Mayewski P.A., Meeker L.D., et al. Complexity of Holocene climate as reconstructed from a Greenland Ice Core [J]. Science,1995,270:1962-1964.
    [26]Kohfeld, K.E., Harrison, S.P. DIRTMAP:the geological record of dust [J]. Earth-Science Reviews 2001,54:81-114.
    [27]Ruth U., Bigler M., Rothlishberger R., et al. Ice core evidence for a very tight link between North Atlantic and East Asian glacial climate [J]. Geophysical Research Letter,2007,34: L03706, doi:10.1029./2006GL027876.
    [28]Mahowald N., Kohfeld K., Hansson, M., et al. Dust sources and deposition during the last glacial maximum and current climate:a comparison of model results with paleodata from ice cores and marine sediments [J]. Journal of Geophysical Research,1999,104(D13): 15895-15916.
    [29]邬光剑,姚檀栋,徐柏清等.慕士塔格冰芯中微粒的粒度记录[J].中国科学(D辑:地球科学),2006,36(1):9-16.
    [30]Li Z.Q., Yao T.D., Xie Z.C. Modern atmospheric environmental records in Guliya ice cap of Qinghai-Xizang Plateau [J]. Chinese Science Bulletin,1995,40:874-875.
    [31]张自银,杨保.中国北方过去2000年沙尘事件与气候变化[J].第四纪研究,2006,26(6):905-914.
    [32]Yang M.X., Yao T.D., Wang H.J. Microparticle content records of the Dunde ice core and dust storms in northwestern China [J]. Journal of Asian Earth Sciences,2006,27:223-229.
    [33]刘东生.黄十与环境[M].北京:科学出版社,1985.
    [34]Porter S.C., An Z.S. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature,1995,375:305-308.
    [35]郭正堂,刘东生,吴乃琴等,最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,1996,1:21-30.
    [36]Chen F.H., Bloemendal J., Wang J.M., et al. High-resolution mufti-proxy climate record from Chinese loess:evidence for rapid climatic changes over the last 75 kyr BP [J]. Palaeogeography Palaeoclimatologe Palaeoecolige,1997,130:323-335.
    [37]鹿化煜,Thomas Stevens,弋双文 等.高密度光释光测年揭示的距今约15-10 ka黄土高原侵蚀事件[J].科学通报.2006,51(23):2767-2772
    [38]王苏民,张振克.中国湖泊沉积与环境演变研究的新进展[J].科学通报,1999,44(6):579-587.
    [39]强明瑞,陈发虎,周爱锋等,苏干湖沉积物粒度组成记录尘暴事件的初步研究.第四纪研究[J],2006.26(6):915-922.
    [40]金章东,王苏民,沈吉等.岱海地区近400年来的“尘暴”事件——来自岱海沉积物粒度的证据[J].湖泊科学,2000,12(3):193-198.
    [41]Zhang D.E., Synoptic-climatic studies of dust fall in China since historic time [J]. Scientia Sinica (Series B),1984,27(8):825-836.
    [42]强明瑞,鲁瑞洁,张家武等,柴达木盆地苏干湖表层沉积与尘暴事件——元素示踪的初步结果[J].湖泊科学,2006.18(6):590-596.
    [43]王永波,刘兴起,张恩楼等.青藏高原北部可可西里地区近4000年来尘暴事件初探——来自库赛湖沉积物粒度的证据[J].沉积学报,2009,27(4):691-696.
    [44]肖舜,陈发虎,强明瑞等.青海苏干湖表层沉积物粒度分布模式与大气粉尘记录[J].地理学报,2007,62(11):1153-1164.
    [45]王式功,董光荣,陈惠忠等.沙尘暴研究的进展[J].中国沙漠,2000,20(04):349-356.
    [46]张德二.我国历史时期以来降尘的天气气候初步分析[J].中国科学(B辑),1984.(3):278-287.
    [47]夏训诚,杨根生等.中国西北地区沙尘暴灾害及防治[M].北京:中国环境科学出版社,1996.
    [48]钱止安,贺慧霞,瞿章等.我国西北沙尘暴的分级标准[A].方宗义,等编.中国沙尘暴研究[M].北京:气象出版社,1997.
    [49]Duce R.A., Unni C.K., Ray B.J., et al. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific:Temporal variability [J]. Science,1980,209:1522-1524.
    [50]Gong S.L., Zhang X.Y., Zhao T.L., et al. Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia 2. Model Simulation and Validation [J]. J. Geophys. Res.,2003,108(D9):4262. Doi:10.1029/2002JD002633.
    [51]Liu M., Westphal D.L., Wang S., et al. A high-resolution numerical study of the Asian dust storms of April 2001 [J]. J. Geophys Res.,2003,108:8653, doi:10.1029/2002JD003178.
    [52]Holzer M., McKendry I.G., Jaffe D.A. Springtime trans-Pacific atmospheric transport from East Asia:A transit-time probability density function approach [J]. J. Geophys Res.,2003, 108:4708, doi:10.1029/2003JD003558.
    [53]Brazel A.J., Nicking W.G. The relationship of weather types to dust storm generation in Arisona (1965-1980) [J]. Climatology,1986,6(3):255-275.
    [54]Qian, W.H., Quan, L.S., Shi, S.Y. Variations of the Dust Storm in China and its Climatic Control [J]. JOURNAL OF CLIMATE,2002,15:1216-1228.
    [55]王式功,董光荣,杨德保等.中国北方地区沙尘暴变化趋势初探[J].自然灾害学报,1996,5(2):86-94.
    [56]刘景涛,郑明倩.内蒙古中西部强和特强沙尘暴的气候学特征[J].高原气象,2003,22(1):51-64.
    [57]郑广芬,赵光平,姚宗国等,北极涛动异常对西北地区东部沙尘暴频次的影响[J].中国沙漠,2009,(03):551-557.
    [58]宋连春,俞亚勋,孙旭映等.北极涛动与我国北方强沙尘暴的关系[J].高原气象,2004,(06):835-839.
    [59]李森,杨萍,董玉祥等.西藏土地沙漠化及其防治.北京:科学出版社,2010.
    [60]施雅风,孔昭寰,王苏民等,中国全新世大暖期的气候波动与重要事件[J].中国科学(B辑化学生命科学地学),1992(12):1300-1308.
    [61]曾永年,冯兆东,曹广超.末次冰期以来柴达木盆地沙漠形成与演化[J].地理学报,2003(3):452-457.
    [62]高尚玉,王贵勇,哈斯等.末次冰期以来中国季风区西北边缘沙漠演化研究[J].第四纪研究,2001(1):66-71.
    [63]徐叔鹰,徐德馥,石生仁.青海共和盆地的风沙堆积[J].中国沙漠,1982,(3):1-8.
    [64]陈永福,顾兆炎,储国强等.浑善达克沙地近50年来风沙活动的湖泊记录[J].第四纪研究,2009,(4):774-780.
    [65]Gao Y., Arimoto R., Zhou M.Y., et al. Relationships between the dust concentrations over Eastern Asian and the remote North Pacific [J]. Journal of Geophysical Research,1992,97: 9867-9872.
    [66]Biscaye, P.E., Grousset, F.E., Revel, M., et al. Asian provenance of glacial dust (stage2) in the Greenland Ice Sheet Project-Ice core, summit, Greenland [J]. Journal of geophysical Research 1997,102(C12):26765-26781.
    [67]Jones, C.E., Halliday, A.N., Rea, D.K., et al. Eolian inputs of lead to the North Pacific. Geochimicaet Cosmochimica Acta 2000,64(8):1405-1416.
    [68]Bory, A.J.-M, Biscaye, P.E., Grousset, F.E. Two distinct seasonal Asian source regions for mineral dust deposited in the Greenland (North GRIP). Geophysical Research Letters 2003, 30(4):1167, doi:10.1029/2002GL016446.
    [69]Chen, J., Li, G., Yang, J., et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimicaet Cosmochimica Acta 2007,71: 3904-3914.
    [70]Lu, H.Y., Miao, X.D., Zhou,Y.L., et al. Late Quaternary Aeolian activity in the MuUs and Otindag dune fields (north China) and lagged response to insolation forcing. Geophysical Research Letter 2005,32, L21716. Doi:10.1029/2005GL024560.
    [71]陈发虎,张家武,程波等.青海共和盆地达连海晚第四纪高湖面与末次冰消期以来的环境变化[J].第四纪研究,2012,32(1):122-130.
    [72]徐叔鹰,徐德馥,石生仁.共和盆地地貌发育与环境演化探讨[J].兰州大学学报,1984(1):146-157.
    [73]董光荣,高尚玉,金炯.青海共和盆地十地沙漠化与防治途径[M].北京:科学出版社,1993.
    [74]张登山.青海共和盆地土地沙漠化影响因子的定量分析[J].中国沙漠,2000,(1):60-63.
    [75]孙建光.青海共和盆地水分时空分异与水土资源生产力[博士论文],北京:中国农业大学,2004.
    [76]叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.
    [77]Murray A.S., Olley J.M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz:A status review [J]. Geochronometria,2002,21:1-16.
    [78]Boulay S., Colin C., Trentesaux A., et al. Mineralogy and sedimentology of Pleistocene sediments on the South China Sea (ODP Site 1144) Proceedings of the Ocean Drilling [J] Program. Scientific Results,2003,184:1-21.
    [79]孙东怀,鹿化煜, Rea,D.等,中国黄土粒度的双峰分布及其古气候意义[J].沉积学报,2000,(3):327-335.
    [80]孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质,2001,21(1):92-95.
    [81]戴雪荣,李吉均,俞立中等.兰州风成沉积的粒度分布模式及其古气候意义[J].沉积学报,2000,18(1):36-42.
    [82]An Z.S., Kukla G., Porter S.C., et al. Late Quaternary dust flow on the Chinese loess plateau [J]. Catena,1991,18:125-132.
    [83]Xiao J.L, Porter S.C., An Z.S., et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr [J]. Quaternary Research,1995,43:22-29.
    [84]孙东怀,鹿化煜.晚新生代黄十高原风成序列的粒度和沉积速率与中国北方大气环流演变[J].第四纪研究,2007,(2):251-262.
    [85]鹿化煜,安芷生.洛川黄十粒度组成的古气候意义[J].科学通报,1997,(1):66-69.
    [86]汪海斌,陈发虎,张家武.黄十高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,(1):21-26.
    [87]Ding Z.L., Sun J.M., Rutter N.W., et al. Changes in sand contend of loess deposits along a north-south transect of the Chinese Loess Plateau and the implications for desert variations [J]. Quaternary Research,1999,52 (1):56-62.
    [88]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑:地球科学),1998,(03):278-283.
    [89]Heller F., Liu T.S. Magnetost ratigraphical dating of loess deposits in China [J]. Nature,1982, 300:431-433.
    [90]杨晓强,李华梅.泥河湾盆地典型剖面沉积物磁化率特征及其意义[J].海洋地质与第四纪地质,1999,19(1):75-84
    [91]Maher B.A. Magnetic properties of some synt hetic submicron magnetics [J]. Geophys J Int, 1988,94:83-96.
    [92]李志文,李保生,孙丽等,影响中国黄土磁化率差异的多因素评述[J].中国沙漠,2008,28(2):231-237.
    [93]Zhou L.P., Oldfield F., Wintle A.G., et al. Partly pedogenic origin of magnetic variations in Chinese loess [J]. Nature,1990,36:737-739.
    [94]Zhou W.J, Donahue D., Porter S.C., et al. variability of monsoon climate in east Asia at the end of the last glaciation [J]. Quaternary Research,1996,46:219-229.
    [95]Guo Z.T., Peng S.Z., Hao Q.Z., et al. Origin of the Miocene Pliocene Red-Earth Formation at Xifeng in Northern China and impications for paleoenvironments [J]. Paleogeography, Palaeoclimatology, Plaeoecology,2001,170:11-26.
    [96]张虎才.元素表生地球化学特征及理论基础[M].兰州:兰州大学出版社,1997.
    [97]叶玮,Sadaya, Y., Shinji, K.中国西风区黄土常量元素地球化学行为与古环境[J].干旱区地理,2003,(1):23-29.
    [98]刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1985.
    [99]郭正堂,魏兰英,吕厚远等.晚第四纪风成物质成分的变化及其环境意义[J].第四纪研究,1999,19(1):41-48.
    [100]杨守业,李从先.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质,1999,19(2):19-25.
    [101]赵锦慧,王丹,鹿化煜等.西宁地区黄土地球化学元素所揭示的古气候变化[J].干旱区资源与环境,2006,(5):104-108.
    [102]刘连文,陈骏,王洪涛等,一个不受风力分选作用影响的化学风化指标:黄十酸不溶物中Fe/Mg值[J].科学通报,2001,(7):578-582.
    [103]Talor, S.R., McLennan, S.M. The continental crust:Its Composition and Evolution[M]. Geoscience Texts, Blackwell, Oxford,1985.
    [104]陈骏,季峻峰,仇纲等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,27(6):531-536.
    [105]文启忠,刁桂仪,贾蓉芬等.黄土剖面中古气候变化的地球化学记录[J].第四纪研究,]995,6(3):223-231.
    [106]Gallet S., Jahn B.M., Torri M. Geochemical characterization of loess paleosol sequence from the Luochuan section, China, and its paleoclimatic implications [J]. Geochemical Geology,1996,133:67-88.
    [107]Nesbitt H.W., Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments [J] Geochimica et Cosmochimica Acta,1997,61(8):1653-1670.
    [108]刁桂仪,文启忠.黄土风化成土过程中主要元素迁移序列[J].地质地球化学,1999,27(1):21-26.
    [109]赵锦慧,王丹,樊宝生等.延安地区黄土堆积的地球化学特征与最近13万年东亚季风气候的波动[J].地球化学,2004,33(5):495-500.
    [110]李徐生,韩志勇,杨守业等.镇江下蜀土剖面的化学风化强度与元素迁移特征[J].地理学报,2007,(11):1174-1184.
    [111]Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature,1982,299:715-717.
    [112]McLennan S.M. Weathering and global denudation [J]. Journal of Geology,1993,101: 295-303.
    [113]杨守业,李从先,李徐生等.长江下游下蜀黄土化学风化的地球化学研究[J].地球化学.2001(4):402-406.
    [114]冯连君,储雪蕾,张启锐等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544.
    [115]陈肠,陈骏,刘连文.甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J].地质 力学学报,2001,7(2):167-175.
    [116]陈骏等,安芷生,刘连文等.最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J].中国科学(D辑),2001,31(2):136-145.
    [117]Liu T.S., Guo Z.T., Liu J.Q., et al. Variation of eastern Asian monsoon over the last 140000 years [J]. Bulletin Societ geologique France,1995,166:221-229.
    [118]Marticorena B., Bergametti G., Aumont B., et al. modeling the atmospheric dust cycle: 2-Simulation of Saharan sources [J]. Journal of Geophysical Research,1997,102: 4387-4404.
    [119]Shao Y. A model formineral dust emission [J]. Journal of Geophysical Research,2001,106: 20239-20254.
    [120]An, Z.S., Kukla, G.J., Porter, S.C., et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years [J]. Quaternary Research,1991 36(1):29-36.
    [121]中国科学院地学部.关于我国华北沙尘天气的成因与治理对策[J].地球科学进展,2000,15(4):361-364.
    [122]史培军,严平,袁艺.中国北方风沙活动的驱动力分析[J].第四纪研究,2001,21(1):41-47.
    [123]Mason, J. A., Lu, Y., Zhou, Y., et al. Dune mobility and aridity at the desert margin of the northern China at a time of peak monsoon strength [J]. Geology,2009,37(10):947-950.
    [124]Lu, H.Y., Zhao, C.F., Mason J., et al. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms [J]. The Holocene,2011,21(2):297-304.
    [125]Liu, X.Q., Dong, H.L., Rech, J.A., et al. Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene-Holocene [J]. Quaternary Science Review,2008,27:867-879.
    [126]Mischke, S., Kramer, M., Zhang, C., et al. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,267:59-76.
    [127]Wischnewski, J., Mischke S., Wang Y., et al, Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial-a multi-proxy, dual-site approach comparing terrestrial and aquatic signals [J]. Quaternary Science Reviews,2011,30:82-97.
    [128]Ji, J.F., Shen, J., William B., et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments [J]. Earth and Planetary Science Letters,2005, (233):61-70.
    [129]Dykoski, C.A., Lawrence Edwards, R., Chenga, H., et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters,2005, (233):71-86.