秸秆高效沼气发酵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以玉米秸和麦秸为原料,设定30℃、35℃、40℃三个中温温度梯度和48℃、51℃、54℃、57℃四个高温温度梯度,进行静态厌氧消化产气潜力和特性研究,并确定合适的温度作为秸秆动态厌氧消化运行温度。然后对适宜温度下动态运行的发酵装置和运行工艺控制条件进行了研究,并实现相应的最高池容产气率。主要结论如下:
     (1) 35~40℃为秸秆中温静态厌氧发酵的合适温度范围。35℃下玉米秸和麦秸原料TS产气率分别为0.492 m~3·kg~(-1)和0.499 m~3·kg~(-1);40℃下分别为0.515 m~3·kg~(-1)和0.517 m~3·kg~(-1)。秸秆高温静态厌氧消化合适的温度范围为51~54℃。51℃下玉米秸和麦秸原料TS产气率分别为0.572 m~3·kg~(-1)和0.576 m~3·kg~(-1);54℃下分别为0.528 m~3·kg~(-1)和0.530 m~3·kg~(-1)。
     (2)秸秆中温动态厌氧发酵合适的发酵温度首选40℃,在SRT 17~18d,发酵温度40℃下,理想状态的池容产气率2.3~2.4m~3·m~(-3)·d~(-1),原料TS产气率0.41m~3·kg~(-1);高温动态厌氧发酵合适的发酵温度为51~54℃。在原料滞留期17~20d,发酵温度51℃下,理想状态的池容产气率2.3~2.7 m~3·m~(-3)·d~(-1),原料TS产气率0.46 m~3·kg~(-1);在原料滞留期14~15d,发酵温度54℃下,理想状态的池容产气率2.8~3.0 m~3·m~(-3)·d~(-1),原料TS产气率0.42 m~3·kg~(-1)。
     (3)秸秆动态厌氧反应器内物料呈“上部秸秆浮渣-下部发酵液”两相分布,设计底部进料反应器在上部出料;顶部进料反应器在下部出料,出料口在原料浮渣和发酵液接触面附近。
     (4)对于顶部进料反应器,适当搅拌可以显著增加产气量,平均池容产气率比不搅拌反应器提高了65%。
     (5)相对于底部进料,顶部进料方式并没有表现出运行优势,在施加搅拌下,其池容产气率仅提高了2%,并且表现出出渣困难。建议秸秆动态厌氧发酵采用“底部进料-上部出料”方式,无需搅拌。
     (6)在原料滞留期17d左右,秸秆高温(52±1℃)和中温(39±1℃)动态厌氧消化运行的最高有机负荷均为4.71kgTS/(m3·d)左右,最高池容产气率分别为1.92 m~3·m~(-3)·d~(-1)和1.63 m~3·m~(-3)·d~(-1),原料TS产气率分别为0.41 m~3·kg~(-1)和0.35 m~3·kg~(-1)。高温厌氧消化的最高池容产气率和相应原料产气率比中温提高了17%。从升温保温的代价进行考察,认为大型秸秆沼气工程经济可行的发酵温度首选40℃。
Based on corn and wheat straw for materials, setting 30℃, 35℃and 40℃three medium temperature gradient and 48℃, 54℃, 51℃and 57℃four high temperature gradient, we studied the anaerobic digestion biogas potential and characteristics, and determined the appropriate temperature as dynamic anaerobic digestion operating temperature. Then on appropriate temperature, we studied the fermentation reactors and control conditions of dynamic fermentation, and pursued the supreme gas yield of per unit digester volume. Main conclusions are as follows:
     (1) The best fit temperature range of medium temperature static anaerobic fermentation is 35~40℃. The biogas yield of corn and wheat straw at 35℃are 0.492m~3·kg~(-1) and 0.499m~3·kg~(-1) respectively; 0.515m~3·kg~(-1) and 0.517m~3·kg~(-1) respectively at 40℃. The best fit temperature range of high temperature static anaerobic fermentation is 51~54℃. The biogas yield of corn and wheat straw at 51℃are 0.572m~3·kg~(-1) and 0.576m~3·kg~(-1) respectively; 0.528m~3·kg~(-1) and 0.530m~3·kg~(-1) respectively at 54℃.
     (2) The proper fermentation temperature of medium temperature dynamic anaerobic fermentation is 40℃. Under 40℃, SRT17~18d, gas yield of per unit digester volume of the ideal state is 2.3~2.4m~3·m~(-3)·d~(-1), biogas yield is 0.41 m~3·kg~(-1). The proper fermentation temperature of high temperature dynamic anaerobic fermentation is 51~54℃. Under 51℃, SRT17~20d, gas yield of per unit digester volume of the ideal state is 2.3~2.7 m~3·m~(-3)·d~(-1), biogas yield is 0.46 m~3·kg~(-1). Under 54℃, SRT14~15d, gas yield of per unit digester volume of the ideal state is 2.8~3.0 m~3·m~(-3)·d~(-1), biogas yield is 0.42 m~3·kg~(-1).
     (3) Dynamic anaerobic reactors present "upper straw-lower liquid sludge" distribution, thus we design a top mouth for the bottom material feeding reactor and a low mouth for the top feeding reactor.
     (4) For top feeding reactor, appropriate stiring can significantly increase the biogas production, the average gas yield of per unit digester volume improved 65%.
     (5) Relative to the bottom feeding reactor, top material feeding reactor showed no operation advantagement. We suggest that straw dynamic anaerobic fermentation can use "bottom feeding-upper discharging" pattern without stirring.
     (6) Under SRT17d, the highest organic load of high temperature (52±1℃) and medium temperature (39±1℃) dynamic anaerobic digestion is 4.71 kgTS/(m3·d), supreme gas yield of per unit digester volume are 1.92m~3·m~(-3)·d~(-1) and 1.63m~3·m~(-3)·d~(-1) respectively, biogas yield are 0.41 m~3·kg~(-1) and 0.35 m~3·kg~(-1) respectively. Gas yield of per unit digester volume and biogas yield of the high temperature anaerobic digestion increased 17%. Considering the cost of heating, we suggest that the feasible fermentation temperature of large straw biogas project is 40℃.
引文
1.边炳鑫,赵由才.农业固体废弃物的处理与综合利用[M].北京:化学工业出版社,2005.
    2.边骆华,张灵芝,贾建和,等.处理制药综合有机废水活性污泥中主要厌氧微生物生理群组成的研究[J].2000年国际沼气技术与持续发展研讨会论文集,北京,2000:94~100.
    3.蔡振明,高爱忠,祁梦兰.固体废物的处理与处置[M].北京:高等教育出版社,1993:248~250.
    4.段佐亮.我国作物秸秆燃烧甲烷、氧化亚氮排放量变化趋势预测(1900~2020) [J] .农业环境保护,1995,14(3):111~116.
    5.高志坚.玉米秸秆厌氧消化实验研究[硕士学位论文].北京:北京化工大学,2004.
    6.韩天喜.加快以秸秆为主要原料的沼气发酵启动的研究[J].江苏沼气,1990,2:16~18.
    7.何仕均,王建龙,赵璇.氨氮对厌氧颗粒污泥产甲烷活性的影响[J].清华大学学报(自然科学版),2005,9.
    8.蒋展鹏.环境工程学.北京:高等教育出版社,2001.
    9.康佳丽.稻草中温高效厌氧消化生产生物气的实验研究[D].北京化工大学硕士研究生学位论文,2007.
    10.李秀金.固体废物工程[M].北京:中国环境科学出版社,2003:364~365.
    11.刘克鑫,孙国朝,连莉文,等.猪粪和稻草的中温厌氧发酵.沼气新技术应用研究[M].成都:四川科学技术出版社,1988:113~117.
    12.陆文卿,田艳峰.秸秆处理的三种方法[J].河南畜牧兽医,2006,2(27):37.
    13.潘亚杰,张雷,郭军,等.农作物秸秆生物法降解的研究[J].可再生能源,2005,(3):33~35.
    14.邱凌,席新明,卢旭珍.生物能气动搅拌沼气发酵装置与技术研究[J].农业工程学报,2002,18:72.
    15.石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11~16.
    16.史央,等.秸秆降解的微生物学机理研究及应用进展[J ] .微生物学杂志,2002 ,22(1):47~50.
    17.孙国朝,邵廷杰,郭学敏.沼气干发酵工艺必须的条件.沼气新技术应用研究[M].成都:四川科学技术出版社,1988:47~58.
    18.孙孝政,夏吉庆,田晓峰.厌氧发酵技术工厂化生产沼气的现状与展望[J].东北农业大学学报,2005,36(1):109~112.
    19.王革华.实现秸秆资源化利用的主要途径[J].上海环境科学,2002,2(11):651~661.
    20.翁伟,杨继涛,赵青玲,等.我国秸秆资源化技术现状及其发展方向[J].中国资源综合利用,2004,(7):18~21.
    21.杨永才.吉林省农业机械化可持续发展战略研究[D].长春:吉林工业大学,2001.
    22.杨玉楠.高效木质素降解菌处理秸秆类农业废弃物的资源化研究[博士学问论文].北京:中国科学院生态环境研究中心,2002.
    23.于芳芳,伍健东.氨氮对厌氧颗粒污泥产甲烷菌的毒性研究[J].化学与生物工程,2008,4 .
    24.袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005:72~745.
    25.张百良.农村能源工程学[M].北京:中国农业出版社,1999.
    26.张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    27.中国统计年鉴2006[M].北京:中国统计出版社,2006.
    28.周孟津主编.沼气生产利用技术[M].北京:中国农业大学出版社,1999:115~121.
    29.朱启红.浅谈秸秆的综合利用[J].农机化研究,2007,(6):236~238.
    30.邹元良,赵中举,金鹏飞,等.作物秸秆固体床两步消化法的研究[J].山东能源,1990,4:22~25.
    31. A.Ghosh, B.C. Bhattacharyya. Biomethanation of white rotted and brown rotted rice straw [J]. BioProcess Engineering, 1999, 20(4): 297~302.
    32. Al-Masri M. R. .Changes in biogas production due to different ratios of some animal and agricultural wastes [J]. Bio-resource Technology, 2001, (77): 97~100.
    33. Angelidaki, AhringB.K. Method of increasing the biogas Potential from the recalcitrant organic matter contained in manure [J].Water SciTech, 2000, 4(3): 189~194.
    34. Chen Hongzhang, Wang Hui, Zhang Aijun, et al. Biogasification of steam-explode wheat straw by a two-phased digestion system [J]. Transactions of the CSAE, 2005, 21(11): 116~ 120.
    35. De Baere L. Anaerobic digestion of solid waste: state-the-art [J]. Water Sci Tech, 2000, 41: 283~290.
    36. Gao Zhijian, Li Xiujin, Yang Dongyan, et al. Anaerobic digestion of corn stalk for biogas production: ambient vs. mesophilic temperature [J]. Transaction of the CSAE, 2003, 19(5): 214~217.
    37. Ghash S, Henry M P, Sajjad A, et al. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion(TPAD) [J]. Water Sci Tech, 2000, 41(3): 101~110.
    38. Hasegawa S, Shiota N, Katsura K. Solubilization of organic sludge by thermophilic aerobic bacteria as pretreatment for anaerobic digestion [J]. Water Sci Tech, 2000, 41(3): 163~169.
    39. Kubler H. Full scale co-digestion of organic waste [J]. Wat Sci Tech, 2000, 41(3): 195~202.
    40. Lars Mattias Svensson, Lovisa Bjornsson, Bo Mattiasson. Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation [J]. Bioresource Technology, 2005.
    41. Lettinga G. Laboratory work manual [A]. In: 1st Int. Course on Anaerobic and Low Cost Treatment of Wastes and Wastewaters [C]. The Netherlands: IAC and WAU, 1994.
    42. Lissens G, Vandevivere P, De Baere L. Solid waste digester: process performance and practice for municipal solid waste digestion [J]. Water Sci Tech, 2001, 44(8): 91~102.
    43. Luo Qingming, Li Xiujin, Zhu Baonin, et al. Anaerobic biogasification of NaOH-treated cornstalk [J]. Transactions of the CSAE, 2005, 21(2): 111~115.
    44. Mata-Alvarez, J. , Mace, S. , Llabres, P. . Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives [J]. Bioresource Technology, 2000, 74(l): 3~16.
    45. Muller H.W. , Trosch W. Screening of white一rot fungi for biological Pretreatment of wheat Straw for biogas Production [J]. APPl. Microbiol. Biotechnol, 1986, 24(2): 180~185.
    46. Palmowski L M, Muller J A. Influence of the size reduction of organic waste on their anaerobic digestion [J]. Water Science and Technology, 2000, 4(3): 155~162.
    47. Pavlostathis, S.G. , Miller, T.L. and Wo1in, M.J. Kinetics of Insoluble Cellulose Fermentation by Cultures of Ruminococcus albus [J]. Appl Environ Microbiol, 1988, 54(11): 2660~2663.
    48. Saint-Joly C. , Desbois S. , Lotti J. P. . Determinant impact of waste collection and composition on anaerobic digestion performance: industrial resulta [J]. Water Sci Tech, 2004, 41(3): 291~297.
    49. Walter J Wujcik. Anaerobic dry fermentation [J]. Biotechnology & Bioengineering Symp, 1980(10): 43~65.
    50. Yang Dongyan, Li Xiujin, Gao Zhijian, etal. ImProving biogas Production of corn stalk through Chemical and biological Pretreatment: a Preliminary comparison study [J]. Transactions of the CSAE, 2003, 19(5): 209~213.
    51. Zhang Ruihong, Zhang Zhiqin. Biogasification of rice straw with anaerobic-phased solids digester system [J]. Bioresource Technology, 1999, 68: 235~245.