衡水电厂300MW机组除灰系统技术改造与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂采用气力除灰技术不但可以节省大量水资源和土地资源,减少对环境污染,而且分选后的粉煤灰还可以创造较大的经济效益。本文根据衡水电厂一期两台300MW机组干除灰系统的配置及存在问题,在综合比较分析各种气力除灰技术后,提出采用“负压收集分选同时正压输送”的技术工艺流程,并进行了系统方案的设计、设备选型、工程实施和运行调试等工作。改造后系统各主要运行技术参数符合设计指标,粉煤灰分选质量细度指标符合技术要求,分选系统粗细灰、省煤器干灰输送正常,设备运行状况良好,能够满足机组额定工况下运行的生产需要,达到了工业化运行生产能力,同时分选的等级灰提高了粉煤灰综合利用的经济价值。
It will save much water and land resources and make less pollution to the environment by using pneumatic ash removal technology in the coal-fired power plant. After separation, the fly ash would make considerable benefits. Based on the arrangement and problems of the first-stage 300MW unit ash removal system of the HARV power plant, the subject put forward a new scheme of negative pressure collecting, separating and positive pressure transportation. The project includes the design of the system, construction and debugging. After renovation, the ash removal system and the unit work very well. Furthermore the ash product degree of fineness meets the specification and yields good economic returns.
引文
[1] 第九届中国北京国际科技产业博览会 2006 年中国能源战略高层论坛开幕式发言,国家电力监管委员会副主席王野平,2006.5.25
    [2] 胡秀莲.中国电力生产及环境问题,中国能源,2005,27(11):11~17
    [3] 王佩璋.燃煤电厂气力除灰系统新发展及其技术进步.电站辅机,1999(2) :39~43
    [4] 火电行业节水现状、经验及存在问题,中国电力企业联合会,国家发展和改革委员会资源节约和环境保护司《环境与资源》简报,第 109 期二00五年十月三十一日
    [5] 李国栋.粉煤灰的结构、形态与活性特征.粉煤灰综合利用,1998(3):35~37
    [6] 蒋林华.水泥浆体中〔SiO4〕4-四面体聚合结构和分形结构研究.粉煤灰综合利用, 粉煤灰 1998(1):34~37
    [7] 蒋永惠.粉煤灰粒度分布对水泥性能的影响.建筑材料学报,1998,1(3):245~250
    [8] 高风岭.超细灰风选工艺及应用效果.粉煤灰综合利用,1998(1):1~3
    [9] 孙家顺.三峡工程粉煤灰优选.粉煤灰综合利用,1998(3):11~13
    [10] 王培铭.粉煤灰与水泥浆体界面的形貌特征.硅酸盐学报,1997,25(4):475~477
    [11] 田倩.高性能水泥基复合材料的抗冻性能研究.混凝土与水泥制品,1997(93):12~14
    [12] 赵铁军.高性能混凝土的抗渗性.混凝土与水泥制品,1997(93):12~15
    [13] 冯乃谦.高性能混凝土的结构性能与粉体效应.混凝土与水泥制品,1996(88):6~9
    [14] 阎 培 瑜 . 氟 石 膏 粉 煤 灰 混 凝 土 的 水 化 特 性 及 抗 压 强 度 . 建 筑 材 料 学报,1998,1(4):320~324
    [15] 钱惠生.用粉煤灰生产砌筑水泥.粉煤灰综合利用,1998(2):34~36
    [16] 丁庆军.粉煤灰烧制低钙水泥的研究.粉煤灰综合利用,1998(2):29~31
    [17] 李连科.加压粉煤灰硅钙板.新型建筑材料,1998(12):11~13
    [18] 宁波.粉煤灰隔热耐火砖的研制.粉煤灰综合利用,1998(2):4~7
    [19] 彭苏宁.粉煤灰纤维棉防火吊顶板的研制.粉煤灰综合利用,1998(1):19~21
    [20] 冷田春.粉煤灰磁化肥的应用研究.粉煤灰综合利用,1998(2):27~29
    [21] 李巧玲.用粉灰处理造纸废水.粉煤灰综合利用,1998(1):51~53
    [22] 张昌鸣.粉煤灰净化焦化废水及其机理研究.粉煤灰综合利用,1998(4):34~36
    [23] 张云怀.铝酸酯活化粉煤灰微珠作为塑料填料的试验.粉煤灰综合利用,1998(1):43~45
    [24] 王璐,尹延辉,王斌,焦艳.我国粉煤灰综合利用现状、存在问题及其对策.粉煤灰,2004,16(4):28~31
    [25] 向新.我国粉煤灰利用研究的进展,粉煤灰综合利用,1999,13(2):50~53
    [26] 李建国.气力输送技术浅谈,机械制造,2003,41(1):30~31
    [27] 程克勤等.气力输送装置,北京:机械工业出版社,1993
    [28] 朱立平,韩东劲.电厂粉煤灰气力输送技术,煤矿机电,2002,1:21~22
    [29] 李勇.气力输送的技术进展和方式比较.塑料加工应用,2002,24(3): 20~28
    [30] 原永涛.火力发电厂气力除灰技术及其应用.北京:中国电力出版社,2002
    [31] 王涌.气力除灰系统相似模化试验及数值模拟[学位论文]:西安交通大学:2003.1
    [32] T. Ramakrishnan, K. Ramakoteswara Rao, M. A. Parameswaran, etc. Experimental investigation of a dense-phase pneumatic transport system. Chemical Engineering and Processing, 1993, 32(3): 141-147
    [33] Agarwal, V. K. The influence of conveying distance on low velocity pneumatic conveying of fly ash. Powder Handl Process, 1999, 11(1): 57-60
    [34] L. Clerc, M. A. Minoux, A. Benhassaine. Pneumatic selection of fly ash: selection methods — influence of the operating parameters. Powder Technology, 1999, 105(3):172-178
    [35] C. D. Woolard, J. Strong, C. R. Erasmus. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Applied Geochemistry, 2002, 17(8):1159-1164
    [36] Guijian Liu, Haoyuan Zhang, Lianfen Gao, etc. Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district. Fuel Processing Technology, 2004, 85(15):1635-1646
    [37] R. Cioffi, M. Marroccoli, L. Sansone, L. Santoro. Potential application of coal–fuel oil ash for the manufacture of building materials. Journal of Hazardous Materials, 2005, 124(3):101-106
    [38] Mónica Aineto, Anselmo Acosta, Isabel Iglesias. The role of a coal gasification fly ash as clay additive in building ceramic. Journal of the European Ceramic Society, 2006, 26(16):3783-3787
    [39] M.R. Jones, A. McCarthy. Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11):1398-1409
    [40] Ichiro Naruse, Daisuke Kamihashira, Khairil, etc. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions. Fuel, 84(4):405-410
    [41] Akira Iwashita, Tsunenori Nakajima, Hirokazu Takanashi, etc. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES. Fuel, 85(2):257-263
    [42] B.J.P. Buhre, J.T. Hinkley, R.P. Gupta, etc. Fine ash formation during combustion of pulverised coal–coal property impacts. Fuel, 85(2):185-193
    [43] B.J.P. Buhre, J.T. Hinkley, R.P. Gupta, etc. Submicron ash formation from coal combustion. Fuel, 84(10): 1206-1214
    [44] A. Olgun, Y. Erdogan, Y. Ayhan, etc. Development of ceramic tiles from coal fly ash and tincal ore waste. Ceramics International, 31(1):153-158
    [45] I. A.M. Yunusa, D. Eamus, D.L. DeSilva, etc. Fly-ash: An exploitable resource for management of Australian agricultural soils. 2006, Fuel, 85(16):2337-2344
    [46] Federico Cangialosi, Lorenzo Liberti, Michele Notarnicola, etc. Monte Carlo simulation of pneumatic tribocharging in two-phase flow for high-inertia particles. Powder Technology, 165(1):39-51