彩泥层状试样物理模拟法及其在连杆楔横轧精制坯中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术飞速发展,人类文明和进步达到了较高的境界,而其中制造业占有极其重要的地位,已成为国家经济和综合国力的基础。由于塑性加工技术具有生产效率高、产品质量好、节材、节能、成本低等特点,因而己成为制造技术的重要发展方向,国内外市场对精密塑性加工技术提出新的挑战和要求。
    中国汽车业具有巨大发展前景,而汽车零部件是构成汽车的单元和细胞,在汽车零部件的加工制造业中,节材、高效、提高质量、降低成本是现代制造技术中十分关注的问题,而且在理论、设备和工艺诸方面都存在一些难题,它们的逐步解决,对推动汽车工业的发展具有极其重要的战略性意义。
    人们在进行金属塑性成形理论研究、生产与模具设计时,特别是对于重要性高、投入大的制件,为了在实物加工前有某种预测性数据或结果,通常先进行一定的模拟实验。模拟技术包括几何物理模拟技术和数值模拟技术。物理模拟是以相似理论为基础的实验分析方法,由于其简单易行、直观方便等优点,在生产中有数值模拟难以替代的作用,是金属塑性成形成形模拟的重要方法,现有的物理模拟方法仍旧需要不断的发展与完善。
    依据我的导师宋玉泉教授已申请的国家专利“彩泥层状试样的制备和对楔横轧成形的物理模拟”,使用采用全新的模拟手段。采用的陶土塑泥作为模拟材料,取材方便,克服了商品化塑泥性质随生产批次不同而变化的缺点;不同种类的陶土塑泥具有多种不同的颜色,不需要额外加入颜料。采用不同颜色的塑泥制坯,便于观察和分析塑泥的变形情况;陶土塑泥的粘性好,不同的层和不同的部分可用泥浆粘结在一起。采用彩泥层状塑泥局部分层试样的方法,即采用不同颜色的塑泥进行分段分层制坯。对于需考察的部位,采用不同颜色的塑泥进行分层制坯,而对其余部位则采用一
    
    
    种颜色的塑泥即可。层状塑泥试件成形剖开后可以观察在轴向方向上材料的流动情况和中心材料状况,克服了传统网格法的弊端,适合于此次轴对称件的研究。设计、制造的模拟实验装置具有与板压成形具有相似的运动特点,可以用来模拟板压塑性成形过程;保证上下模板的导向精度;可以通过调节试验机中间悬架,以实现不同直径毛坯的成形和相同毛坯在不同断面收缩率时的成形。另外,设计、制造了毛坯制备装置,满足了毛坯分层制坯的要求。
    此种物理模拟实验方法在板式楔横轧中得到了检验,是可行的,彩泥层状塑泥局部分层法可以很好的再现材料的流动情况,为以后应用于更加复杂的塑性变形研究打下基础。
    连续局部塑性成形是金属压力加工领域中一个重要的方面,在轧制领域的应用已经相当成熟,楔横轧成形技术是连续局部塑性成形工艺的一种,是一种高效率的轴类件成形方法,在多个行业得到了广泛的应用。
    相对于辊式楔横轧工艺,板式楔横轧具有模具加工简单、成形精度较高,但设备机刚度差等特点。针对板式楔横轧技术的特点,在分析了其基本原理、旋转条件的基础上,使用彩泥局部分层试样模拟方法,对展宽角β,成形角α和断面收缩率ψ这三个主要参数对楔横轧成形效果的影响进行了模拟,得到了三个参数对于成形情况的影响及其一些典型缺陷的产生原因等一些有益的结论。这几个参数是影响轧件成形的主要因素,对轧件的颈缩、轧细、端头凹心、中心疏松等有着很大的影响,同时它们相互影响,只有各参数间匹配适当才能使轧件获得良好的成形效果。
    连杆是发动机中重要的部件之一,锻造成形汽车连杆在工业生产中得到了广泛的应用。制坯过程是连杆锻造成形过程中重要的一环,制坯过程能保证分配材料,使金属材料接近于计算毛坯,是实现连杆锻件精密成形工艺的关键。
    随着科学技术的发展,出现了楔横轧生产连杆毛坯的新工艺。我的导师宋玉泉教授指导的同届研究生潘孝勇利用有限元数值模拟方法得到了传
    
    
    统楔横轧工艺下连杆制坯工艺流程。实验模具采用数值模拟得到的成形角α、展宽角β和两次断面收缩率ψ,利用物理几何模拟方法对成形过程进行分析,发现成形效果不好。在轧制的第一阶段,采用的工艺参数是合理的,能避免小变形情况下的中心疏松。但是在第二阶段,存在较大断面收缩率时,采用展宽角β=9.1°,会产生拉断颈缩现象。进行对比实验,设计、制造了展宽角β=6° 的新模具,其它参数设计不变,成形效果得到改善。
    但是,这种方法毛坯形状局限于利用楔横轧的轧细功能成形简单的圆棒料,对于如连杆锻件这类沿长度方向的横截面变化很大的零件,断面收缩率ψ很大,需要多步轧制,难以保证成形的连续性,稳定性差,成形效率低,设计、加工模具时较为繁琐。
    针对目前国内外连杆制坯存在的问题,我的导师宋玉泉教授在其专利“连杆辊压塑性精成形的工艺和装置”(专利号:97100921.X,证书号:60233)中提出了一种新的连杆毛坯形状,将原有毛坯两端的圆棒形改为扁椭球形或旋转扁多面体,是一种工艺上的创新,其制坯工步同样在宋玉泉教授所获专利“板压滚动塑性精成形机”(专利号:95109500.5,证书号:61808)上完成。新工艺工艺的技术创新点在于它不是通过大直径坯料的轧细来完成细杆部的成形,而是通过楔横轧的聚料功能将细部的余料挤向两端头部,这也是工艺?
With the quickly development of science technology, men’s civilization and advancement have reach a high altitude,especially, manufacturing is weigh a lot, manufacturing has become the base of the nation’s economy and general power. For the plastic forming technology has many merits, such as high production, good quality , economization. It has become a important develop orientation of the advanced manufacture technology. The world market’s demand will have a new challenge on precision plastic forming technology.
    China’s production of car is showing a great developing foreground. Car’s accessory is the cell of the car. To the manufacture of the car’s cell, economization ,high efficiency and quality ,low cost ,all are most attention questions of the technology of manufacture in the modern times . And it has difficult problems in the aspects of theory, facility and technology. Settling them has a stratagem meaning for driving the development of the car industry.
    When people are carrying through the theory disquisition , produce of the metal plastic forming and the design of mould, especially for the more important and expensive product , people always make a simulation in advance. So they can get forecast results before the practical manufacture. The simulation technology includes geometry physical and numerical modelling.
    Physical modelling is a experimental analyzing way in the base of similar theory . As it has the virtues of simpleness, easiness, it also has more important functions than numerical modelling , and it is a important way of the modelling of the metal plastic forming. In recent years, it also needs continual development and perfecting.
    According to my teacher Professor Song Yuquan’s patent “the preparation of the colour clay sandwich sample and use to the physical modelling of the
    
    
    cross wedge rolling”. Aim at the actuality of the physical modelling and the purpose of this investigation use new modelling ways. Using argil plasticine as modelling material is easy to get, also its additive is little, and every time the coherence of the experimental material is good , so it can get over the disadvantage of the commercial plasticine that always change with process of the production. Plasticine each has different colour ,and needn’t accede to dye. So that can be sure that material is coherence better .Using different colour plasticine is easy to observe the distortion of plasticine. If the glutinosity of the argil plasticine is good, then different parts of the slop can felt into together without superfluity glutinosity, that can be satisfied the require of the modelling experiment very well. Using the way delaminate colour clay sandwich plasticine, namely using different plasticine to make billet by the way of subsection and delamination. For the parts need to review, when use different plasticine to make delamination billet, we can make the other parts with one same colour. In the section of the sandwich plasticine, we can observe the flow circs of the material in axes and the status of the central material, conquering over the disadvantage of tradition gridding way and is fit into the study of axes symmetry. Design and make the set of the modelling experiment machine, has the locomotion characteristic similar to plate forming ,can use to model the forming process of the plasticine billet. It has the merits of high precision oriented. And can change the distance of the fluctuated plates by adjust the middle hang beam of the experiment machine , so can make the forming of the different diameter and the contractility of different section of the same rough be true. Design and make the set of tool to satisfy the need of clay sandwich sample.
    This kind of physical modelling experiment has been proved by plate cross wedge rolling. Colour clay sandwich plasticine been delaminated in local can reappear the movement of the material very well. It sets a base for it been used in more complex plastic forming latter .
    
    Continuous local plastic forming is important in the field of met
引文
盛晓敏,邓朝晖. 先进制造技术. 北京:机械工业出版社,2000. 10~ 11
    K.Abdul Ghani,V.Jayabalan.Advanced manufacturing technology and planned organizational change,Journal of High Technology Management Research. 2000,(11):1~18
    J.Batlle.Advanced technology in manufacturing. Microprocessors and Microsystems,1999,(2):59~60
    Hongyi Sun.Current and future patterns of using advanced manufacturing technologies. Tech Innovation,2000,(20): 631~641
    Magdy Gabdel,Kader,David Dugdale.Investment in advanced manufacturing technology: a study of practice in large U.K. companies. Management Accounting Research,1998, 9:261~284
    海锦涛. 塑性成形技术的新思路. 中国机械工程,2000,11(1~2): 180~182
    R.Kopp. Some current development trends in mental-forming technology. Journal of Materials Processing Technology. 1996, (60): 1~9
    李德群. 塑性加工技术发展状况及趋势. 航空制造技术,2000,(3):27~28
    Shinsaku Onodera. ISO9000 conformance in respect of precision cold forging manufacturing. Journal of Materials Processing Technology. 1997(71):71~75
    Hyoji Yoshimura ,Katsuhisa Tanaka . Precision forging of aluminum and steel. Journal of Materials Processing Technology. 2000, (98): 196~204
    周贤宾. 塑性加工技术的发展——更精、更省、更净. 中国机械工程,2003, 14(1): 87~91
    许言午. 金属塑性加工在汽车工业中的应用. 锻压装备与制造技术,2000,(3):13~20
    宋玉泉. 连续局部塑性成形的发展前景. 中国机械工程,2000,(11): 65~67
    宋玉泉. 连杆辊压塑性精成形的工艺和装置. 中国专利,97100921.X,2000-11-15
    宋玉泉. 辊压塑性精成形机. 中国专利,95109871.3,2001-01-03
    胡正寰,张康生,王宝雨. 楔横轧理论与应用. 北京:冶金工业出版社,1996.6~7
    宋玉泉. 板压滚动塑性精成形机. 中国专利,95109500.5,2001-01-03
    宋玉泉. 彩泥层状试样的制备和对楔横轧成形的物理模拟(已申请).
    
    胡亚民. 回转塑性成形技术的应用. 锻压机械,1996,(6):3~5
    艾方. 旋压成形技术. 模具技术,1998,(2):94~96
    傅沛福. 辊锻理论与工艺. 长春:吉林人民出版社,1982.10~11
    李东平,隋振,蔡中义,李明哲. 板材多点成形技术研究综述. 塑性工程学报,2000,8(2):46~48
    胡正寰. 楔横轧技术的现状与展望.锻压技术,1995,(5):25~27
    Zb.Pater.Theoretical and experimental analysis of cross wedge rolling process. International Journal of Machine Tools & Manufacture .2000, 40: 49~ 63
    李志刚. 高精度、高强度板压滚动塑性精成形机的研制:[硕士学位论文]. 长春:吉林大学超塑性与塑性研究所,2003
    袁文生,李继赞. 楔横轧技术的应用. 锻压机械,1997,(1): 15
    Yaomin Dong,Kaveh A.Tagavi,Michael R.Lovell. Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation. Journal of Materials Processing Technology. 2000,97: 44~ 53
    袁文生.楔横轧工艺在摩托车锻造行业的应用.锻压机械,1995,(3): 24~25
    张康生,王宝雨,刘晋平,胡正寰.楔横轧工艺在内燃机凸轮轴制坯上的应用.锻压技术,2000,(3):28~30
    Yamion Dong,Kaveh A.Tagavi,Michael R.Lovell,Zhi Deng.Analysis of stress in cross wedge rolling with application to failure.International Journal of Mechanical Sciences.2000,42:1233~1253
    Zb.Pater.Numerical simulation of the cross wedge rolling process including upsetting.Journal of Materials Processing Technology.1999, 92:468~473
    Zb.Pater.A study of cross wedge rolling process.Journal of Materials Processing Technology.1998,(80~81):370~375
    Zb.Pater,W.Weronski,J.Kazanecki,A.Gontarz.Study of the process stability of cross wedge rolling.Journal of Materials Processing Technology.1999, (92-93): 458~462
    洪慎章,曾振鹏.楔横轧工艺的应用和进展. 模具技术,2002,(2):36~40
    方瑞华.楔横轧轧制汽车变速器第二轴研究.江苏理工大学学报,1999,20(3): 47~49
    刘晋平,张康生,王宝雨,胡正寰.楔横轧技术在喷油器壳体锻件制坯中的应用.锻压技术,2001,(2):25~27
    
    李东平,梁继才,白志斌,刘化民.楔横轧工艺在双头呆扳手制坯上的应用.吉林工业大学学报,1997,27(3):83~86
    Zb.Pater.Theoretical method for estimation of mean pressure on contact area between rolling tools and workpiece in cross wedge rolling process.International Journal of Mechanical Sciences .1997, 39:233~243
    Qiang Li,Michael R Lovell,William Slaughter,K.Investigation of the morphology of internal defects in cross wedge rolling. Journal of Materials Processing Technology .2002, 125~ 126: 248~ 257
    余柏林. 楔横轧工艺在上柴公司的应用. 柴油机设计与制造,1999,4:34-36
    李东平.连杆锻件的楔横轧制坯.锻压技术,1997,(6):42~45
    刘英杰.6102凸轮轴的楔横轧工艺. 锻压技术,1999,(1):36~37
    万贤毅,虞跃生. 平板楔横轧工艺在汽车生产中的应用. 汽车工艺与材料,1997,(6):17~20
    宋明正. 卧式平板楔横轧机. 锻压机械,2000,(5):26
    Neugebauer Reimund, Glass Roland, Kolbe Matthias. Optimisation of processing routes for cross rolling and spin extrusion. Journal of Materials Processing Technology , 2003, 125~ 126: 856~862
    于鸣. 提高复杂阶梯轴类楔横轧件制造精度工艺的技术经济分析. 技术经济,1994,(7):37~39
    石鑫. 楔横轧在连杆生产中的应用. 汽车工艺与材料,1995,(6):4~6
    何约洁. 国外发动机连杆生产现状. 内燃机,1994,(6):6~9
    Vazquez Victor, Altan Taylan . Die design for flashless forging of complex parts. Journal of Materials Processing Technology. 2000, 98(1): 81~89
    Yin F, Wang G.X, Hong, S.Z. Zeng, Z.P. Technological study of liquid die forging for the aluminum alloy connecting rod of an air compressor . Journal of Materials Processing Technology. 2003,139 (1~3): 462~464
    马晓春,姚建华,陈琍,郑晓华. 连杆锻件的生产现状及发展对策. 浙江工业大学学报,2001,29(2):156~160
    Whittaker David .The competition for automotive connecting rod markets . Metal Powder Report. 2001,56(5):32~34,36,37
    Vazquez, Victor, Altan, Taylan . New concepts in die design — physical and computer modeling applications. Journal of Materials Processing Technology. 2000, 98(2):212~223
    
    李绍忠. 发动机连杆生产工艺的进展. 汽车科技,2000,(1):7~20
    王强,雷家琨. 连杆精密锻造新技术. 济南大学学报(自然科学版),2003,16(2): 156~158
    蒋鹏,陆玛玲. 摩托车连杆锻造生产线的工艺设计. 锻压技术,1998,(3):6~8
    Ishihara, Sadao . Development of high strength connecting rod-the process of selection between powder forging and forging . JSAE Review. 1996,17(4) :449
    Manabe, Toyohisa; Mori, Motohide;etc. Development of high strength connecting rod by forging. JSAE Review.1996,17(4):442
    Takemasu, Teruie Vazquez ,etc. Investigation of metal flow and preform optimization in flashless forging of a connecting rod .Journal of Materials Processing Technology. 1996,59(1~2): 95~105
    Soga, Ryuji, Kihara, Takashi .A case study of the closed die forging system- production technology for high accuracy and light weight connecting rod . JSAE Review.1996,17(4):449
    Doege E, Bohnsack R. Closed die technologies for hot forging . Journal of Materials Processing Technology.2000,98(2):165~170
    罗晴岚. 连杆锻造工艺技术的进步. 锻压机械,2000,(4):1~3
    王章忠. 粉末冶金热锻连杆. 机械制造,2001,39(1):33~34
    Jinka, A.G.K, Bellet, M . Shot forging of a PM connecting rod -a three-dimensional computer model . Metal Powder Report. 1997, 52(2):37
    Lu Xian, Balendra, Raj. Finite element simulation for die-cavity compensation . Journal of Materials Processing Technology. 2001,115(2): 227~ 232
    Chitkara, N. R, Bhutta, M. A. Computer simulation to predict stresses and die loads during metal flow in incremental heading of shaped heads from cylindrical rods and some experiments. International Journal of Mechanical Sciences. 1995, 37(12): 1223~1245
    Nielsen, L.S, Lassen S, Andersen,etc. Development of a flexible tool system for small quantity production in cold forging. Journal of Materials Processing Technology. 1997, 71(1):36~42
    Kawaberi, M, Yamamoto, Y, Asoh K. Improvement of properties of rods and bars by continuous forging process. International Journal of Fatigue. 1995,17(2) : 157
    刘业成,王红广,宋吉浩. 轿车连杆锻件的生产工艺及质量控制. 汽车工艺与材料,2002,(1):8~10
    
    郭成宝. 白城通业集团公司建成高质量连杆精锻生产线. 汽车工艺与材料,1994,(8):35
    黄虹,胡亚民. 中小型连杆模锻一次加热成形. 现代制造工程,2002,(12): 44~ 45
    Hasan Sofuoglu, Jahan Rasty. Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribology Internation, 2000, (33): 523~529
    张士宏,M.Arentoft,尚彦凌. 金属塑性加工的物理模拟. 塑性工程学报,2000,7(1): 45~49
    Zhang Shaoxiong , Chen Binkang , Zhao Chenbi , Cao Weisong. Rigid- plastic FEM analysis for axi-symmetric cold extrusion. Journal of Wuhan Transportation University, 2002,23(5):567~570
    H.So, Y.F Lin, K.W.Huang . Comparison of flow patterns between plasticine and aluminum alloy in hot-precision forging . Journal of Materials Processing Technology . 1997(66): 39~48
    郭会光,刘建生,张巧丽. 金属塑性加工模拟与控制的研究. 太原重型机械学院学报,1997,18(3):195~200
    Mei Zhan ,Yuli Liu ,He Yang . Physical modelling of the forging of a blade with a damper platform using plasticine. Journal of Materials Processing Technology, 2001(117):62~65
    Hidehiko Tsukamoto,Yoshiharu Taura . 用蜡泥塑料和铅模拟热钢的塑性加工. 世界塑性加工最新论文集. 北京:机械工业出版社,1988. 798~ 803
    Moon Y.H, Van Tyne. Validation via FEM and plasticine modeling of upper bound criteria of a process-induced side-surface defect in forgings . Journal of Materials Processing Technology. 2000,99(1~3): 185~196
    Segawa, Akio, Kawanami, Takao. Rolling-deformation characteristics of clad materials determined by model experiment and numerical simulation: experimental rolling tests using plasticine . Journal of Materials Processing Technology. 1995, 47(3~4): 375~384
    Schefer, Martin P.J, Zulauf, Gernold .Strain-dependent theology and the memory of plasticine . Tectonophysics, 2002,354(1~2): 85~99
    A.E.M. Pertence , P.R. Cetlin. Analysis of a new model material for the physical simulation of metal forming. Journal of Materials Processing Technology. 1998,(84):261~267
    
    J.R. Cho, W.B. Bae, Y.H. Kim. Analysis of the cogging process for heavy ingots by finite element method and physical modeling method, Journal of Materials Processing Technology. 1998,(80~81):161~165
    Mogens Arentofta. Physical and mathematical modeling of extrusion processes. Journal of Materials Processing echnology.2000,(106):2~7
    Xiong Shangwu, Rodrigues. Rigid-plastic boundary element analysis of the upsetting of slabs. Engineering Analysis with Boundary Elements. 2002,(26):367~374
    赵健,陈拂晓,上官林健. 金属体积成形模拟技术. 热加工工艺,2001,(3):49~52
    王乐安. 锻压过程的物理模拟技术. 材料工程,1994,(7):32~35
    赵文奇,谢冰,曹起骧. 模拟热钢塑性变形的非金属软材料及若干试验技术. 力学与实践,1997,19(2):52~54
    王连生,董仕深. 塑性泥在模拟热钢塑性成形中的应用. 金属成形工艺,1992,10(2): 63~66
    胡忠. 材料加工过程计算机模拟的现状与未来. 塑性工程学报,1998,5(2):1~8
    朱有利. 用有限变形弹塑性有限元法对金属塑性成形工艺的分析和优化. 机械工程学报,1996,32(6): 37~44
    束学道,张康生,胡正寰. 楔横轧力能参数影响因素分析. 重型机械,2002,4: 29~33
    刘桂华,徐春国,任广升. 楔横轧三维变形过程的有限元数值模拟研究. 锻压技术,2001,(6):32~35
    潘孝勇. 轴对称典型件楔橫轧精制坯的有限元模拟:[硕士学位论文]. 杭州:浙江工业大学,2004
    杨慎华,邓春萍,金文明. 轿车连杆精密辊锻一模锻复合锻造工艺. 汽车技术,2003,(8):34~37
    马振海,杨翠苹,胡正寰. 楔横轧轧件端头凹心影响因素的研究. 锻压技术,2002,(1):29~31
    颜世公,李玉京. 冷楔横轧的试验研究. 锻压技术,1997,5:31~34
    权修华,董定福. 冷楔横轧工艺试验与研究. 锻压机械,1996,4:24~26
    张康生,刘晋平,王宝雨. 楔横轧空心件稳定轧制条件分析. 北京科技大学学报,2001,2:155~157
    梁继才,张昕,刘国平. 空心件楔横轧成形过程的应力应变分析. 农业机械学报,2001,1:102~104
    
    J.R.Cho, D.Y.Yang. Three-dimensional finite element simulation of connecting rod forging using a new remeshing scheme. Engineering Computations, 1998, 15(6): 777~803
    徐春国,王景梁. 楔横轧成形直角台阶精确截齐曲线的计算. 塑性工程学报, 1999,2:93~98
    张康生,胡正寰. 楔横轧轧齐基本理论研究. 锻压技术,1996,4:30~34
    谢懿. 楔横轧制截面变化大的台阶轴. 锻压技术,2000,6:32
    李东平,任广升. 轧制非回转体轮廓的楔横轧辊形曲面. 农业机械学报,1996,27(2):154~156
    任广升. 小型拖拉机阶梯轴类锻坯楔横轧成形. 农业机械学报,1993,24(2): 77~80
    王全先. 可移式模具在楔横轧工艺中的应用. 金属成形工艺.2002,12:53~56
    任广升. 楔横轧三维变形光塑性模拟研究. 吉林工业大学学报, 1992, 22(2): 86~91.