转移杀伤细胞抑制性受体Ly49A的淋巴细胞对异基因骨髓移植后移植物抗宿主病的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移植物抗宿主病(Graft Versus Host Disease,GVHD)是移植物中
    的免疫活性细胞识别宿主抗原并对宿主产生的病理损伤状态。去除T
    细胞和应用免疫抑制剂等方法虽然可以明显降低GVHD发生率,但是
    移植失败率、白血病复发率和感染率均显著增加,未能从根本上解决
    这一问题。近年来杀伤细胞抑制性受体(Kill cell Inhibitory Receptor,
    KIR)的发现为负性调节NK、T细胞功能提供了良好的途径,也为防
    治GVHD提供了新的思路。人与鼠的KIR广泛表达在NK细胞和部分
    T细胞上,KIR与相应的MHCⅠ类分子结合后传导抑制性信号抑制
    NK、T细胞的杀伤功能和炎性细胞因子的分泌,从而保护靶细胞免受
    损伤。本研究试图将能识别受者MHCⅠ类分子的KIR基因转染供者
    淋巴细胞并进行移植建立一种既降低急性GVHD又保留移植物抗白
    血病(Graft Versus Leukemia GVL)效应的骨髓移植模式,并从杀伤
    细胞抑制性受体(KIR)/MHCⅠ识别角度探讨其分子机制,为GVHD
    的研究提供理论和实验依据。
     本研究采用如下方法:(1)将Prof.Raulet赠送的Ly49A cDNA
    测序,测序正确后构建逆转录病毒表达载体pLXSN-Ly49A,双酶切鉴
    定正反相。(2)表达载体经PA317细胞包装后转染C57BL/6小鼠的
    淋巴细胞;流式细胞仪检测Ly49A受体在转染后淋巴细胞上的表达
    率。MTT法检测转染后淋巴细胞对BALB/c小鼠正常成纤维细胞
    (H-2~d)和4T_1乳腺癌细胞(H-2~d)的杀伤活性。(3)将H-2~d遗传
    背景的EL9611红白血病细胞静脉接种给CB_6F_1~(H-2d/b)小鼠,建立
    
    
     F;H‘川‘’红白血病模型,为观察半相合异基因骨髓移植后 GVL效应提
     供动物模型。K)以C57BL历汁比 V\鼠为供者,以接种EL96ll红白
     血病细胞的BALB儿卜2‘小鼠为受者,预处理条件为全身照射(TBI,
     6七。照射9刀Gy人进行脾淋巴细胞混合骨髓细胞移植,建立完全不
     相合异基因急性GVHD模型;以亲代C57BL沁卜儿4、鼠为供者,以接
     种 EL96ll红白血病细胞的 BALB/CXC57BL/6,FIH”Zd/b(CB6F;)/J’
     鼠为受者,预处理条件为全身照射(TBI,加C。照射10.SGy人 进行
     脾淋巴细胞混合骨髓细胞移植,建立半相合异基因急性GVHD模型
     并在这两个模型基础上考察 Ly49A基因转染的淋巴细胞对 GVHD和
     GVL的作用。
     本研究结果显示:门)P*f R川u1Ct赠送的 Ly49A CDNA测序结果
     与其报道的序列完全一致。()Q扔A基因转染的C57BU6小鼠淋巴
     细胞24 小时后受体表达率为O6.67t0.35)%,空载体转染组
     *.73L0.85)%,未转染对照组*石0L0.27)%。Ly49A基因转染的
     C57BL/6 ’J\鼠淋巴细胞对BALB/C ’J\鼠正常成纤维细胞的杀伤活性降
     低了(ZI—25)%,对4TI乳腺癌细胞的杀伤活性无明显改变(P>0刀5)。
     门)CB6FI卜川‘红白血病模型已传10代,静脉接种EL9611细胞数
     103个/只即可发病。发病时白血病细胞主要浸润肝、脾和骨髓。小鼠
     接种10‘J08个/只EL9611细胞时,生存时间与接种细胞数成线性负相
     关。此白血病模型对环磷酚胺、阿糖胞昔等化疗药物敏感。(4)在完
     全不相合异基因骨髓移植(C57BL历卜儿一BLAB儿卜川)中,未进行移
     植的单纯照射组生存期为(6.50L2.41)天;环磷酚胺治疗组生存期为
     (20.90f2.88)天;淋巴细胞混合骨髓细胞移植组生存期为
     (17.10L4石5)天;空载体转染的淋巴细胞混合骨髓细胞移植组生存
     期为门7.40L5.32)天;Ly49A转染的淋巴细胞混合骨髓细胞移植组
     生存期为(35.20L12.52)天,较上述各组生存期明显延长o二0刀00)。
     (5)在半刁合异基因移植中(C57BL/6b’bb一CB6FIH”Zd/b),未进年移
     植的单纯照射组生存期为 门石0*3.36)天;环磷酚胺治疗组生存期为
     一5 一
    
    (ZI了0L2.87)天;淋巴细胞混合骨髓细胞移植组生存期为(29.4f6.43)
    天;空载体转染的淋巴细胞混合骨髓细胞移植组生存期为(29.IL7.39)
    天;Ly49A 转染的淋巴细胞混合骨髓细胞移植组生存期为
    K5.00f12.38)天,较上述各组生存期明显延长0功.00o人
     从上述结果可得出如下结论:门)Ly49A基因转染可抑制淋巴细
    胞对BALB/C ’J’鼠正常成纤维细胞的杀伤活性,而对肿瘤细胞的杀伤活
    性无明显影响。门)本研究建立的 C57BL伍H“Zb—CB6FI队扣“的急性
    GVHD模型和可移植性CB6FIH”2“‘红白血病模型,是探讨半相合骨髓
    移植GVHD和GVL作用的较理想模型。()Ly49A基因转染的淋巴
    细胞在半相合及完全异基因骨髓移植模型上均具有一定程度的降低
    GVHD并且保留GVL的作用。u)杀伤细
Graft versus host disease (GVHD) is caused by immunocompetent cells
     in the allograft, which recognize the hoat's antigens and do harm to the
     host?tissues. Deletion of the T cells in the allograft and the use of
     immunosuppressive agents will certainly reduce the morbidity of GVHD,
     but at the same time, will also contribute to the relapse of leukemia, the
     failure of transplantation and the infections. No way has been found yet to
     resolve the problem totally. In recent years the discovery of killer cell
     inhibitory receptors (KIR) has shed light on the negative regulation of the
     functions of NK and T cells and also the resolution of GVHD. KIRs
     express on all NK cells and a portion of T cells. When binding with
     corresponding MHC I molecules, negative signal is transducted and the
     cytotoxity of NK and I cells are abrogated. In this research we planed to
     transfect the Ly49AcDNA into the donor's lymphocytes and transplant
     them with bone marrow cells in order to find a new way for reducing
     GVHD but retaining GVL effect after allogeneic bone marrow
     transplantation. The possibility of the detachment of GVHD and GVL
     from the aspect of molecular mechanism of the interaction between
     KIRIMHC I was also discussed.
    
     The following methods were adopted in this research: (1) Ly49AcDNA
     presented by Prof. Raulet was sequenced. The results were compared with
     the reports in GenBank. After the confirmation of the correction of the
    
     ??
    
    
    
    
    
    
    
    
    
     sequence, the expression vector pLXSN-Ly49A was constructed. (2) After
     being packaged by PA3 17 cells, spleen lymphocytes of C57BL/6 mice
     were transfected. Flowcytometer was used to detect the expression rate of
     Ly49A receptor; MTT method was applied to assay the killing effects of
     those lymphocytes cells on fibroblast cells and 4T1 cells of BALB/c
     origin. (3) The erythroleukemia cells EL9611 H-2d were injected into
     CB6F1H2d/b mice to establish the FlH2dIb erythroleukemia model,
     providing the test animal model for detecting GVL effect after
     halploidentical allogeneic bone marrow transplantation. (4) In the case of
     the murine model of fully mismatched allogeneic acute GVHD: the donor
     was C57BL/6H2b, the recipient was BALB/cH2d. After the irradiation
     (TBI, 60Co 9.OGy) the recipient accepted the transplantation of mixed
     spleen cells and bone marrow cells to establish the GVHD model. (5) In
     the case of the murine model of haploidentical allogeneic acute GVHD:
    
     the donor was C57BL/6H2b. The recipient was BALB/c×C57BL/6 FlH2d/b
     (CB6F1). After the irradiation (TBI, 60Co 1O.5Gy) the recipient accepted
     the transplantation of mixed spleen cells and bone marrow cells to
     establish the GVHD model. On the basis of these models, the effects of
     Ly49A transfected spleen cells on GVHD and GVL post fully mismatched
     allogeneic or haploidentical allogeneic bone marrow transplantation were
     detected.
    
     Results were shown as the followings: (1) The Ly49AcDNA presented
     by Prof. Raulet was the same as that reported in GenBank. (2) The
     expression rate of Ly49A receptor was (46.67±0.35)% for lymphocytes
     transfected with pLXSN-Ly49A; (18.73±O.85)% for lymphocytes
     transfected with pLXSN and (19.60±0.27)% for untransfected control.
     The killing effects of Ly49A transfected lymphocytes on 4T1 tumor cells
     remained almost the same as that of the untransfected control (P>0.05),
    
    
     ?8 ?
    
    
    
    
     but the kil
引文
1Blazar BR, Murphy WJ. New strategies for preventing graft-versus-host disease. Curr Opin Immunol, 1999,11:509-515
    2Krenger W, Ferrara JLM. Graft-versus-host disease and the Th1/Th2 paradigm. Immunol Res, 1996, 15: 50-73
    3Iqbal N, Salzman D, Lazenby AJ, et al. Diagnosis of gastrointestinal graft-versus-host disease. The American Journal of Gastrenterology, 2000, 95(11) : 3034-3038
    4Kligebiel T, Schlegel PG. GVHD: overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplantation, 1998, 21(suppl2) : s45-s49
    5Marmont AM, Horowitz MM, Gale RP, T-cell depletion of HLA-identical transplants in leukemia. Blood, 1991,78(8) : 2120-2130
    6Storb R, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med, 1986, 314(12) : 729-735
    7Champlin RE, Passweg JR, Zhang MJ, et al. T-cell depletion of bone marrowtransplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood, 2000, 95(12) : 3996-4003
    8Makrigiannis AP, Anderson SK. Ly49 gene expression in different inbred mouse strains. Immunol Res, 2000, 21(1) : 39-47
    9Makrigiannis AP, Pau AT, Saleh A, et al. Class I MHC-binding characteristics of the 129/j ly49 repertoire. J Immunol, 2001, 166(8) :
    
    5034-43
    10Ryan JC, Seaman WE. Divergent functions of lectin-like receptors on NK cells. Immunol Rev, 1997, 155: 79-89
    11Takei F, Brennan J, Mager DL. The Ly49 family: genes, proteins and recognition of class I MHC. Immunol Rev, 1997,155: 67-77
    12 韩子英,马宝骊,杀伤细胞抑制性受体研究进展,国外医学免疫分 册,2000, 23(3) : 146-148
    13Botet ML, Villar JP, Carretero M, et al. Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunol Rev, 1997, 155: 165-174
    14Reyburn H, Mandelboim O, Gomez MV, et al. Human NK cells: their ligands, receptors and functions. Immunol Rev, 1997, 155: 119-125
    15Long EO, Burshtyn DN, Clark WP, et al. Killer cell inhibitory receptors: diversity, specificity and funtion. Immunol Rev, 1997, 155: 135-144
    16Berg KL, Carlberg K, Rohrschneider LR, et al. The major SHP-1-binding, tyrosine-phosphorylated protein in macrophages is a member of the KIR/LIR family and on SHP-1 substrate. Oncogene, 1998, 17(19) : 2535-2541
    17Colonna M. Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory receptors. Immunol Rev, 1997, 155: 127-133
    18Albi N, Ruggeri L, Aversa F, et al. Natural killer (NK)-cell function and antileukemic activity of a large population of CD3+/CD8+ T cells expressing NK receptors for major histocompatibility complex class I after "three-loci" HLA-incompatible bone marrow transplantation. Blood, 1996, 87(9) : 3993-4000
    19Moretta A, Biassoni R, Bottino C, et al. Major histocompatibility
    
    complex class I-specific rteceptors on human natural killer and T lymphocytes. Immunol Rev, 1997, 155: 105-117
    20Held W, Cado D, Raulet DH. Transgenic expression of the Ly49 natural killer cell receptor confers class I major histocompatibility complex-specific inhibition and prevents bone marrow allograft rejection. J Exp Med, 1996, 184: 2037-2041
    21Chan PY, Takei F. Molecular cloning and characterization of a novel murine cell surface antigen, YE1/48. J Immunol, 1989, 142(5) : 1727-1736
    22Smith HRC, Kalhofer FM, Yokoyama WM. Ly49 multigene family expressed by IL-2-activated NK cells. J Immunol, 1994, 153: 1068-1079
    23Hoglund P, Sundback J, Olsson-Albeim MY, et al. Host MHC class I gene control of NK-cell specificity in the mouse. Immunol Rev, 1997, 155: 11-28
    24Held W, Roland J, Raulet DH. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature, 1995, 376: 355-358
    25Brennan BJ, Mager D, Jefferies W, et al. Expression of different members of the Ly49 gene family defines distinct natural killer cell subsets and cell adhesion properties. J Exp Med, 1994, 180: 2287-2295.
    26Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989. 401-403
    27Hanke T, Raulet DH. Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptor. J Immunol, 2001, 166: 3002-3007.
    
    分册,2000,23(2) :70-73
    29Valiante NM, Lienert K, Shilling HG, et al. Killer cell receptors: keeping pace with MHC class I evolution. Immunol Rev, 1997, 155: 155-164
    30 李玉华,郭坤元,杀伤细胞抑制性受体的研究进展,国外医学病理 生理与临床分册,1998,18(4) :289-291
    31Vales-Gomez M, Reyburn H, Strominger J, et al. Molecular analyses of the interactions between human NK receptors and their HLA ligands. Hum Immunol, 2000, 61: 28-38.
    32Cho HI, Park CG, Kim J. Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 1999, 368(2) : 221-31
    33Burshtyn DN, Shin J, Stebbins C, et al. Adhesion to target cells is disrupted by the killer cell inhibitory receptor. Curr Biol, 2000, 10(13) : 777-80
    34Nakajima H, Yamada N, Takiguchi M. Fas-independent apoptosis of T cells via killer cell inhibitory receptors. Int Immunol, 1998, 10(1) : 85-90
    35Chen CC, Hurez V, Brockenbrough JS. Paternal monoallelic expression of the paired immunoglobulin-like receptors PIR-A and PIR-B. Proc Natl Acad Sci USA, 1999, 96(12) : 6868-72
    36Adachi T, Wakabayashi C, Nakayama T, et al. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol, 2000, 164(3) : 1223-1229
    37Pazmany L, Mandelboim O, Vales-Gomez M, et al. Human leucocyte antigen-G and its recognition by natural killer cells. J Reprod Immunol, 1999,43(2) : 127-37
    38Ruggeri L, Capanni M, Casucci M. Role of natural killer cell
    
    alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood, 1999, 94(1): 333-9
    39 Tanaka J, Tutumi Y, Mori A, et al. Sequential analysis of HLA-C-specific killer cell inhibitory receptor (CD158b) expressing peripheral blood mononuclear cells during chronic graft-versus-host disease. Bone Marrow Transplant, 2000, 26(3): 287-90
    40 Coles MC, Mchahon CW, Takizawa H, et al. Memory CD8 T lymphocytes express inhibitory MHC-specific Ly49 receptor. Eur J Immunol, 2000, 30:236-244
    41 Gunzburg WH, Salmons B. Development of retroviral vectors as safe, targeted gene delivery systems. J Mol Med, 1996, 74(4): 171-82
    42 Uckert W, Walther W. Retrovirus-mediated gene transfer in cancer therapy. Pharmacol Ther, 1994, 63(3): 323-47
    43 舒红兵,章静波.包装细胞系及其在基因治疗研究中的用.国外医学分子生物学分册,1990,12(1):15-18
    44 Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A, 1992,89(1):33-7Fassati A, Dunckley MG, Dickson G. Retroviral vectors. Mol Cell Biol Hum Dis Ser, 1995, 5:1-19
    45 Feigner PL, Gadek TR, Holm M, et al. Lipofectin: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Nat1 Acad Sci USA, 1987, 84:7413-7417.
    46 李玉华,郭坤元,陈慧等.Ly49A基因转染的淋巴细胞对H-2~d小鼠正常和肿瘤细胞杀伤活性的实验研究.中华血液学杂志,2001,22(5):235-237
    47 Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther, 1998, 80(1): 35-47
    
    
    48 叶昕,吴旻.逆转录病毒载体及其应用.国外医学分子生物学分册,1990,12(1):19-23
    49 Klimatcheva E, Rosenblatt JD, Planelles V. Lentiviral vectors and gene therapy. Front Biosci, 1999, 4:481-96
    50 Cornetta K, Morgan RA, Anderson WF, et al. Safety issues related to retroviral-mediated gene transfer in humans. Human Gene Ther, 1991,2(1):5-14
    51 Schwarz EM. The adeno-associated virus vector for orthopaedic gene therapy. Clin Orthop, 2000, 379 (Suppl): s31-9.
    52 Chen L, Perlick H, Morgan RA. Comparision of retroviral and adeno-associated viral vectors designated to express human clotting factor. Hum Gene Ther, 1997, 8(2): 125-135
    53 丁顺利,褚建新,赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性.中华血液学杂志,1998,19(12):638-41
    54 Joshi S, Vaidya S, Nerurkar V, et al. Gamma radiation induced leukemia in ICRC strain of mice: a murine model closely simulating human disease for experimental chemotherapy. Indian J Cancer, 1997, 34(2):59-67
    55 Morecki S, Pugatsch T, Levi S, et al. Tumor-cell vaccination induces tumor dormancy in a murine model of B-cell leukemia/lymphoma (BCL1). Int J Cancer, 1996, 65(2). 204-8
    56 吴细丕,钱林法.实验动物与肿瘤研究.第一版.北京:中国医药科技出版社,2000.185-193
    57 Marcelletti J, Furmanski P. A murine model system for the study of the human leukemia-associated inhibitory activity. Blood, 1980, 56(1): 134-7
    58 Slavin S, Weiss L, Morecki S, et al. Ultrastructural, cell membrane, and cytogenetic characteristics of B-cell leukemia, a murine model of
    
    chronic lymphocytic leukemia. Cancer Res, 1981, 41(10) : 4162-6.
    59Daley GQ, Van Etten RA, Baltimore D. Blast crisis in a murinemodel of chronic myelogenous leukemia. Proc Natl Acad Sci U S A, 1991, 88(24) : 11335-8
    60Phillips KE, Herring B, Wilson LA, et al. IL-2Ralpha-Directed monoclonal antibodies provide effective therapy in a murine model of adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction. Cancer Res, 2000, 60(24) : 6977-84
    61Hosier GA, Bash R, Scheuermann RH. Kinetics of early therapeutic response as measured by quantitative PCR predicts survival in a murine xenograft model of human T cell acute lymphoblastic leukemia. Leukemia, 2000, 14(7) :1215-24
    62Smith C, Muench MO, Knizewski M, et al. Development of a lacZ marked WEHI-3B D+ murine leukemic cell line as an in-vivo model of acute non-lymphocytic leukemia. Leukemia, 1993, 7(2) : 310-7
    63Krenger W,-Hill GR, Ferrara JLM. Cytokine casscades in acute graft-versus-host disease. Transplantation, 1997, 64(4) : 553-558
    64Hill GR, Crawford JM, Cooke KR, et al. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood, 1997, 90(8) : 3204-13
    65Blazar BR, Korngold R, Vallera DA. Recent advances in graft-versus-host disease prevention. Immunol Rev, 1997, 157: 79-109
    66 居小萍,王健民,移植物抗白血病作用,中华血液学杂志,1999,20(8) : 443-445
    67De La Selle V, Riche N, Dorothe G, et al. CD8+ cytotoxic T cell repertoire implicated in grafts-versus-leukemia effect in a murine bone marrow transplantation model. Bone Marrow Transplant, 1999, 23(9) : 951-8
    
    
    68 Murphy Wj, Longo DL. The potential role of NK cells in the separartion of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol Rev, 1997, 157:167-176
    69 段连宁,郭坤元,王学文.GVHD 与 GVL 效应的分子机制.国外医学输血及血液学分册,1998,21(6):429-431
    70 Daniel HF, Kazuhiro K, Rhett S, et al: Donor CD_4 Enriched Cells of Th2 Cytokine Phenotype Regulate Graft-Versus-Host Disease Without Impairing Allogeneic Engraftment in Sublethally Irradiated Mice. Blood, 1994, 84(10): 3540-35496.
    71 Ferrara JLM, Deeg HJ. Graft-versus-host disease. The New Engl J Med, 1991, 324(10): 667-673
    72 Lazarus HM, Vogelsang GB, Rowe JM. Prevention and treatment of acute graft-versus-host disease: the old and the new, A report from the eastern cooperative oncology group. Bone Marrow Transplant, 1997, 19:577-600
    73 孙恺,张茂宏,田志刚等.供鼠的活化自然杀伤细胞对小鼠异基因骨髓移植的影响.中华血液学杂志,1999,20(9):477-479
    74 孙恺,田志刚,张茂宏.自然杀伤细胞的造血调控效应.外医学输血及血液学分册,1997,20(6):365-367
    75 郭宝强,田志刚.NK 细胞亚群及其对造血的调节效应.国外医学肿瘤血分册,1997,24(3):139-140
    76 Lamparelli T, van Lint MT, Gualandi F, et al. Alternative donor transplants for patients with advanced hematologic malignancies, conditioned with thiotepa, cyclophosphamide and antithymocyte globulin. Bone Marrow Transplant, 2000, 26(12): 1305-11
    77 Beatty PG, Boucher KM, Mori M, et al. Probability of finding HLA-mismatched related or unrelated marrow or cord blood donors.
    
    Hum Immunol, 2000, 61(8) : 834-40
    78Petersdorf EW, Mickelson EM, Anasetti C, et al. Effect of HLA mismatches on the outcome of hematopoietic transplants. Curr Opin Immunol, 1999,11:521-526
    79Beatty PG. Marrow transplantation using volunteer unrelated donors in a comparison of mismatched family donor transplants: a Seattle perspective. Bone Marrow Transplant, 1994, 14 (Suppl 4) : S39-41
    80Chiang KY, Van Rhee F, Godder K. Allogeneic bone marrow transplantation from partially mismatched related donors as therapy for primary induction failure acute myeloid leukemia. Bone Marrow Transplant, 2001, 27(5) : 507-10
    81Godder KT, Hazlett LJ, Abhyankar SH, et al. Partially mismatched related-donor bone marrow transplantation for pediatric patients with acute leukemia: younger donors and absence of peripheral blasts improve outcome. J Clin Oncol, 2000, 18(9) : 1856-66.
    82Kawano Y, Takaue Y, Watanabe A, et al. Partially mismatched pediatric transplants with allogeneic CD34(+) blood cells from a related donor. Blood, 1998, 92(9) : 3123-30.
    83Godder K, Pati A, Abhyankar S, et al. Partially mismatched related donor transplants as salvage therapy for patients with refractory leukemia who relapse post-BMT. Bone Marrow Transplant, 1996,17(1) : 49-53
    84Tsukada N, Kobata T, Aizawa Y, et al. Graft-versus-leukemia effect and graft-versus-host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone marrow transplantation. Blood, 1999, 93(8) :2738-47
    85Uharek L, Glass B, Gaska T, et al. Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model.
    
    Bone Marrow Transplant, 1993, 12 (Suppl 3): S57-60
    86 段连宁,郭坤元,刘明等.Th2 细胞移植减低异基因骨髓移植后移植物抗宿主病的实验研究.中华血液学杂志,2000,21(8):428-429。
    87 Held W, Raulet DH. Ly49A transgenic mice provide evidence for a major histocompatibility complex-dependent education process in natural killer cell development. J Exp Med, 1997, 185(12): 2079-2088
    88 Sinclair NR. Why so many coinhibitory receptors. Scand J Immunol,1999, 50:10-13