钯复合膜制备、表征及其应用于苯一步合成苯酚反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钯复合膜作为一种重要的透氢膜材料,具有优异的透氢性能、良好的化学和热稳定性,已广泛应用到氢气提纯、分离及催化等各种涉氢领域,成为近年来国内外学者们研究的热点。特别是在苯一步羟基化制备苯酚反应中表现出的特殊性能,使得钯膜的研究更具有学术和开发意义。
     本论文以钯-陶瓷复合膜制备为基础,通过沸石生长技术对载体表面进行修饰,制备出性能优越的钯-沸石复合膜,并应用于苯羟基化合成苯酚反应。借助于SEM、XRD、TEM、EDX、XPS、EPMA、FT-IR和高温气体渗透测试等表征手段对钯复合膜的形貌结构及透氢性能进行了研究。本课题的研究结果对于钯复合膜制备工艺的改进与创新及钯膜反应器稳定性的提高具有十分重要的意义。具体体现在如下几方面:
     1.利用化学镀法在管式Al2O3载体表面制备了钯膜。考察了不同温度、时间和载体形貌对钯膜沉积的影响。研究结果表明:温度在303~333 K范围内,钯沉积量随着温度的升高而不断增加;温度过低,化学镀反应较慢;温度过高,化学镀反应过快,导致钯颗粒聚集严重;反应温度为318 K时,钯膜形貌和沉积状况最佳。随着时间的延长,在载体表面钯沉积量增加,反应2 h可获得平整连续的钯膜。载体表面形貌对钯膜影响显著,在孔径为3μm的大孔α-Al2O3管式载体表面很难制备出薄而致密钯膜,必须对大孔载体表面修饰后才能获得较为完整的钯复合膜。
     2.采用silicalite-1 (Sil-1)和钛硅沸石分子筛(TS-1)层对载体表面进行调控修饰后,通过化学镀方法在其表面制备出连续致密的钯-沸石复合膜。研究发现,Sil-1沸石修饰层的形貌对钯膜性能影响显著,沸石层表面过于光滑,会降低钯膜与载体之间结合力,使得钯膜易脱落。在载体表面调节Sil-1沸石层厚度为2μm,获得的Pd-Sil-1复合膜性能最佳,在773K时,Pd-Sil-1复合膜的H2渗透速率和H2/N2理想选择性分别达到1.2×10-6 mol·m-2·s-1·Pa-1和420。同样,利用上述方法制备出完整的Pd-TS-1复合膜,在773K时,其透氢速率和H2/N2理想选择性分别为3.7×10-7 mol·m-2·s-1Pa-1和310。
     3.利用“共晶种”法制备了高性能的钯-沸石复合膜(CS-Pd-Sil-1和CS-Pd-TS-1复合膜),其中,钯/沸石“共晶种”可以同时为沸石层的形成和钯膜的沉积提供成核中心。研究了钯复合膜的形成过程,发现钯沿着沸石晶间孔隙从底部晶种层逐渐生长至沸石层表面,钯膜与沸石修饰层相互穿插,有助于提高钯膜的稳定性。控制沸石修饰层微结构和厚度是关键,通过优化调控Sil-1沸石生长过程,从而改善钯膜与Sil-1沸石层之间的嵌入式结构,当沸石晶粒不完全交织生长并形成厚度为2μm的多孔微结构可以获得致密稳定的CS-Pd-Sil-1复合膜;在773K时,其H2渗透速率和H2/N2理想选择性分别达到1.78×10-6 mol·m-2·s-1·Pa-1和1280;在623K连续操作200小时并且进行18次H2和N2的交替操作,在473K进行10次H2和N2转换测试,在773K、20~100 kPa之间进行15次压力循环以及在673-773K范围内进行了15次温度循环,CS-Pd-Sil-1复合膜的透氢性能保持稳定。利用“共晶种”法制备出致密稳定的CS-Pd-TS-1复合膜,在773K时,H2渗透速率和H2/N2理想选择性分别达到5.3×10-7mol·m-2·s-1·Pa-1和450,在673-773K范围内进行了15次温度循环后,钯膜仍然保持稳定。
     4.利用CS-Pd-Sil-1复合膜反应器进行苯羟基化直接合成苯酚,系统地考察了反应温度和H2/O2进料比对反应性能的影响。研究表明:在423~523 K范围内,随着温度的升高,加氢反应进行的趋势增强,当温度为473K,H2/O2进料比为4.7时,苯的转化率最高为5.1%,苯酚选择性为60.8%。分析了水的生成过程,证明了水主要是由钯膜表面氢和氧之间的反应所产生;研究了CS-Pd-Sil-1复合膜反应器在苯羟基化反应中的稳定性,在473K下,CS-Pd-Sil-1复合膜反应器进行46小时羟基化反应,苯转化率和反应前后钯膜透氢性能保持稳定。
Palladium membranes have drawn increasing attention in recent years due to their good properties, such as good mechanical stability, thermal stability and only permeable to hydrogen. Therefore, as one kind of membrane reactors, Pd membranes have wide applications in hydrogenation, dehydrogenation, H2 separation and purification and some hydrogen related reactions. Especially, the unique property of Pd membrane was illustrated in the direct hydroxylation of benzene to phenol, which made the research of Pd membrane more significant in academic and industry.
     In this paper, based on the preparation of Pd-ceramic composite membrane, thin dense Pd-silicalite-1 and Pd-TS-1 composite membranes were successfully prepared using conventional electroless plating on macroporousα-Al2O3 substrate. Moreover, in order to increase the stability of Pd membrane and simply the preseeding process of Pd on support in the conventional electroless plating, a novel "co-seedng"method was developed to prepare thin dense composite membranes of excellent stability on macroporousα-Al2O3 supports, and applied in direct synthesis of phenol from benzene. The morphology and hydrogen permeability of the modified support and Pd composite membrane were characterized by means of SEM, XRD, TEM, EDX, XPS, EPMA, FT-IR and high temperature permeation tests. The results will bring on important significance at the side of improving preparation method and increasing the stability of Pd membrane reactor.The thesis mainly includes several aspects as follows:
     1. Pd-Al2O3 composite membrane was prepared using electroless plating. Some factors on preparation of Pd membrane such as plating time, temperature and support morphology were studied. It indiated that the deposition amount of Pd increased with increasing temperature during 303-333K. The ideal Pd membrane could be obtained at 318K, higher or lower than that temperature would affect the Pd deposition. The reaction performed slower at lower temperature; the higher temperature accelerated reaction, but the Pd particles would congregate seriously. In addition, the longer time for electroless plating favored the deposition of Pd membrane, the uniform and continous Pd membrane could be obtained by elecroless plated for 2 hours. Moreover, the morphology of support played important role in preparation of Pd membrane, it was difficult obtain dense and thin Pd membrane on macroporous support with pore size of 3μm except for modification of the support.
     2. In order to improve the topology of macroporousα-Al2O3 supports, silicalite-1(Sil-1) and TS-1 zeolite were adopted, then, dense Pd-zeolite composite membranes were deposited using convenitional electroless plating. It indicated that the morphology of zeolite layer plays important role in performance of Pd membranes. The Sil-1 zeolite layer with smoother surface was bad for preparing Pd membrane, which led to decrease the adhesion between Pd layer and modified support. The Sil-1 layer with thickness of 2μm obtained by hydrothermal synthesis favored the preparation of dense Pd membrane. The H2 permeance and H2/N2 ideal selectivity for the Pd-Sil-1 composite membrane at 773 K were 1.2×10-6 mol·m-2·s-1·Pa-1 and 420, respectively. In addition, continous Pd-TS-1 composite membrane was obtained using above method. The H2 permeance and H2/N2 ideal selectivity for Pd-TS-1 composite membrane could be up to 3.7×10-7 mol·m-2·s-1·Pa-1 and 310, respectively.
     3. CS-Pd-silicalite-1(CS-Pd-Sil-1) and CS-Pd-TS-1 composite membranes prepared by "co-seeding" method had good H2 permeability and excellent stability. Herein, the Pd/zeolite"co-seeds" were served as seed roles both for growth of zeolite silicalite-1 layer on the support and for Pd membrane deposition. The deposition process of Pd membrane was studied; it indicated that the Pd growth starts from the zeolite seed layer, filling the inter-zeolite pores before forming a Pd film on the surface of the zeolite layer; the Pd layer anchored in the zeolite layer, which was good for increasing the Pd membrane stability. The micro structure and thickness of zeolite layer were the key roles. Adjusting the growth of Sil-1 zeolite, the ideal CS-Pd-Sil-1 composite membrane could be prepared on the silicalite layer with thickness of 2μm. The H2 permeance and H2/N2 ideal selectivity for the CS-Pd-Sil-1 composite membrane were 1.78 x10-6 mol·m-2·s-1·Pa-1 and 1280 at 773 K, respectively. The CS-Pd-silicalite-1 composite membrane was stable over a period of 200 h under hydrogen permeation and 18 gas-exchanging cycles between H2 and N2 at 623K and over 15 pressure cycles between 100 kPa and 20 kPa at 773K. Moreover,15 temperature cycles between 673K-773K and 10 gas-exchanging cycles between H2 and N2 at 473K didn't impair the hydrogen permeation flux. In the same way, the CS-Pd-TS-1 composite membrane with good stability was prepared. The H2 permeance and H2/N2 ideal selectivity for the CS-Pd-TS-1 composite membrane were 5.3x10-7 mol·m-2·s-1·Pa-1 and 450 at 773 K, respectively. Moreover, the hydrogen permeability was stable after 15 temperature cycles between 673~773 K.
     4. Direct hydroxylation of benzene to phenol was performed in the CS-Pd-silicalite-1 composite membrane reactor at temperature from 423 to 523K. The H2/O2 ratio and reaction temperature were investigated. The degree of hydrogenation of benzene was remarkable at higher temperature or higher H2/O2 ratio, which affected phenol yield. Both H2 conversion and water generation rate increased with decreasing H2/O2 ratio.An appropriate H2/O2 ratio of 4.7 was optimized, in which the benzene conversion was 5.06%, correspondingly the phenol selectivity was 60.81%. Moreover, the formation process of water was analyzed based on the relationship between the water generation rate and H2 conversion, it indicated that the water was formed on the surface of Pd membrane mainly from H2 reacted with O2. In addition, the CS-Pd-Sil-1 membrane kept stable for 46 h operation in the reaction at 473K.
引文
[1]Uhlborn R J R, Burggraaf A J. Gas separation with Inorganic Membranes [M]//Inorganic Membranes:Synthesis Characteristics and Application. New York:Van Nostrand Reinhold Press,1991:155-178.
    [2]Snelling, W.O. Apparatus for separating gases. US Patent 1174631.1916.
    [3]Hunter J B, Hickey G M. Large surface area hydrogen permeation cell. US Patent,2961062. 1960.
    [4]DeRosset A J. Diffusion of hydrogen through palladium membranes[J]. Industrial & Engineering Chemistry,1960,52(6):525-528.
    [5]Darling A S. Thermal and electrolytic palladium alloy diffusion cells:Complementary methods of obtaining ultra-pure hydrogen[J]. Platinum Metals Review,1963,7(4): 126-129.
    [6]Cohn J G E. Hydrogen diffusion process. US Patent,3238700.1966.
    [7]Uemiya S, Kude Y, Sugino K, et al. A palladium/porous-glass composite membrane for hydrogen separation[J]. Chemistry Letters,1988,17(10):1687-1690.
    [8]Bhandari R, Ma Y H. Pd-Ag membrane synthesis:The electroless and electro-plating conditions and their effect on the deposits morphology [J]. Journal of Membrane Science, 2009,334(1-2):50-63.
    [9]Zhao H B, Xiong G X, Baron G V. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering[J]. Catalysis Today,2000,56(1-3):89-96.
    [10]Peters T A, Tucho W M, Ramachandran A, et al. Thin Pd-23%Ag/stainless steel composite membranes:Long-term stability, life-time estimation and post-process characterization [J]. Journal of Membrane Science,2009,326(2):572-581.
    [12]Pan X L, Xiong G X, Sheng S S et al. Thin dense Pd membranes supported on α-Al2O3 hollow fibers[J]. Chemical Communications,2001,24:2536-2537.
    [13]Huang Y, Dittmeyer R. Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion[J]. Journal of Membrane Science,2006,282(1-2):296-310.
    [14]Uemiya S, Matsuda T, Kikuchi E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics[J]. Journal of Membrane Science,1991,56(33):315-325.
    [15]Amandusson H, Ekedahl L G, Dannetun H. Hydrogen permeation through surface modified Pd and PdAg membranes[J]. Journal of Membrane Science,2001,193(1):35-47.
    [16]Jayaraman V, Lin Y S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes[J]. Journal of Membrane Science,1995,104 (3): 251-262.
    [17]Zhang X L, Wang W.P, Liu J et al. Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures[J]. Thin Solid Films,2008,516(8): 1849-1856.
    [18]Ryi S K, Park J S, Kim S H et al. The effect of support resistance on the hydrogen permeation behavior in Pd-Cu-Ni ternary alloy membrane deposited on a porous nickel support [J]. Journal of Membrane Science,2006,280(1-2):883-888.
    [19]Paglieri S N, Way J D. Innovations in palladium membrane research [J]. Separation and Purification Method,2002,31(1):1-169.
    [20]Li A W, Xiong G X, Gu J H, et al. Preparation of Pd/ceramic composite membrane 1. Improvement of conventional preparation technique[J]. Journal of Membrane Science, 1996,110(2):257-260.
    [21]Zhao H B, Li A W, Xiong G X, et al. Preparation of palladium composite membranes by modified electroless plating procedure [J]. Journal of Membrane Science,1998,142(2): 147-157.
    [22]Zhang X L, Xiong G X, Yang W S. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability [J]. Journal of Membrane Science, 2008,314 (1-2):226-237.
    [23]徐恒泳,侯守福,李文钊等.一种复合金属钯膜或合金钯膜及其制备方法:中国,200410021025.6[P],2005.
    [24]Zhang J, Xu H Y, Li W Z. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes[J]. Journal of Membrane Science,2006, 277 (1-2):85-93.
    [25]Wu L Q, Xu N P, Shi J. Preparation of a palladium composite membrane by an improved electroless plating technique[J]. Industrial & Engineering Chemistry Research,2000, 39 (2):342-348.
    [26]Li X, Fan Y Q, Jin W Q, et al. Improved photocatalytic deposition of palladium membranes [J]. Journal of Membrane Science,2006,282(1-2):1-6.
    [27]Li X, Fan Y, Jin W Q, et al. Effect of EDTA on preparation of Pd membranes by photocatalytic deposition[J]. Desalination,2006,192(1-3):117-124.
    [28]Gao H Y, Lin Y S, Yongdan Li, et al. Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel [J]. Journal of Membrane Science,2006,265(1-2):142-152.
    [29]张宝树,侯凯湖.化学镀条件对Pd/α-Al2O3膜微观结构的影响[J].膜科学与技术,2009, 29(1):23-28.
    [30]蒋柏泉,余强.稀土在化学镀制备钯无机复合膜中的应用研究[J].稀土2003,24(1):20-23.
    [31]雷敏志,陈森凤.钯膜与钯膜反应器应用研究进展[J].材料导报,2004,18(5):41-44
    [32]张雪盈,杨长春,郭彩峰.钯复合膜研究进展[J].有色金属,2005,57(2):51-57.
    [33]黄彦,李雪,范益群,徐南平.透氢钯复合膜的原理、制备及表征[J].化学进展,2006,18(2/3):231-238.
    [34]刘伟,张宝泉,刘秀凤.钯复合膜的研究进展[J].化学进展,2006,18(11):1468-1481
    [35]雷强华,罗德礼,熊义富,钱晓静.用于氢相关领域的钯合金膜的研究进展[J].材料导报,2007,21(7):74-78
    [36]Musket R G. Effects of contamination on the interactions of hydrogen gas with palladium: A review[J]. Journal of the Less-Common Metals,1976,45(2):173-183.
    [37]Samartsev A A. Penetration of hydrogen through metal membranes in low-pressure region[J]. Kinetics and Catalysis,1985,26 (4):703-712.
    [38]Kompaniets T N, Kurdyumov A. Surface processes in hydrogen permeation through metal membranes[J]. Progress in Surface Science,1984,17(22):75-151.
    [39]Timothy L W, Tien D. Model of hydrogen permeation behavior in palladium membranes[J]. Journal of Membrane Science,1999,153(2):211-231.
    [40]Andrew P L, Haasz A A. Models for hydrogen permeation in metals [J]. Journal of Applied Physics,1992,72 (7):2749-2757.
    [41]Athayde A L, Baker R W, Nguyen P. Metal composite membranes for hydrogen separation [J]. Journal of Membrane Science,1994,94(1):299-311.
    [42]Collins J P, Way J D. Preparation and characterization of a composite palladium-ceramic membrane[J]. Industrial & Engineering Chemistry Research,1993, 32 (12):3006-3013.
    [43]Ilias S, Su N, Udo-Aka U I, et al. Application of electroless deposited thin-film palladium composite membrane in hydrogen separation[J]. Separation Science and Technology,1997,32 (1-4):487-504.
    [44]Uemiya S, Sato N, Ando H, et al. The water-gas shift reaction assisted by a palladium membrane reactor[J]. Industrial & Engineering Chemistry Research,1991,30(3): 585-589.
    [45]DeRossett A. Processing gases at high pressures, diffusion of hydrogen through palladium membranes[J]. Industrial & Engineering Chemistry Research,1960, 52:525-528.
    [46]Binay S, Atul C S, Narendra B D. Laser synthesis of palladium-alumina composite membranes for production of high purity hydrogen from gasification [J]. Applied Surface Science,2006,253 (3):1247-1254.
    [47]Dittmeyer R, Volker H, Kristian D. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium[J]. Journal of Molecular Catalysis A:Chemical,2001,173(1-2):135-184.
    [48]Chabot J, Lecomte J, Grumet C, et al. Fuel clean-up system:poisoning of palladium-silver membranes by gaseous impurities[J]. Fusion Technology,1988,14: 614-618.
    [49]Holleck G L. Diffusion and solubility of hydrogen in palladium and palladium-silver alloys[J]. The Journal of Physical Chemistry,1970,74(3):503-511.
    [50]Manchester F D, San-Martin A, PitreJM. H-Pd (Hydrogen-Palladium). In Phase Diagrams of Binary Hydrogen Alloys; Manchester, F. D., Ed., ASM International:Materials Park, Ohio, US,2000; 158.
    [51]Nagamoto H, Inoue H. Sorption and desorption of hydrogen on palladium sheet [J]. Nippon Kagaku Kaishi,1977,9:1264-1270.
    [52]Lewis F A. The palladium-hydrogen system:Structures near phase transition and critical points[J]. International Journal of Hydrogen Energy,1995,20 (7):587-592.
    [53]Flanagan T B, Sakamoto Y. Hydrogen in disordered and ordered palladium alloys[J]. Platinum Metals Review,1993,37 (1):26-37.
    [54]Lewis F A. The palladium-hydrogen system[J]. Platinum Metals Review,1982,26 (1): 20-27.
    [55]Lewis F A. The palladium-hydrogen system:Part II of a survey of featuresLJ].Platinum Metals Review,1982,26 (2):70-78.
    [56]Lewis F A. The palladium-hydrogen system:Part III:Alloy systems and hydrogen permeation[J]. Platinum Metals Review,1982,26 (3):121-128.
    [57]Shu J, Grandjean B P A, Neste, et al. Catalytic palladium-based membrane reactor:A review[J]. Canadian Journal of Chemical Engineering,1991,96:1036-1060.
    [58]Konno M, Shindo M, Sugawara S, et al. A composite palladium and porous aluminum oxide membrane for hydrogen gas separation[J]. Journal of Membrane Science,1988,37(2): 193-197.
    [59]Armor J N, Challenges in membrane catalysis[J]. Chemtech,1992,22:557-563.
    [60]Kikuchi E, Uemiya S, Sato N, et al. Membrane reactor using microporous glass-supported thin film of palladium. Part Ⅰ. Application to the water gas shift reaction[J]. Chemistry Letters,1989,18(3):489-492.
    [61]Itoh N, Tomura N, Tsuji T, et al. Deposition of palladium inside straight mesopores of anodic alumina tube and its hydrogen permeability[J]. Microporous and Mesoporous Materials,2000,39(1-2):103-111.
    [62]Nam S E, Lee S H, Lee K H. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition[J]. Journal of Membrane Science,1999,153(2):163-173.
    [63]Ilias S, Govind R. Development of high temperature membranes for membrane reactor: An overview[J]. AIChE Symposium Series,1989,85:18.
    [64]Gryaznov V M, Serebryannikova 0 S, Serov Y M, et al. Preparation and catalysis over palladium composite membranes[J]. Applied Catalysis A:General,1993,96(1):15-23.
    [65]Jayaraman V, Lin Y S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membrane[J]. Journal of Membrane Science,1995,104(3): 251-262.
    [66]Zhao H B, Xiong G X, Baron G V. Preparation and characterization of palladium-based composite membrane by electroless plating and magnetron sputtering[J]. Catalysis Today,2000,56(1-3):89-96.
    [67]Yan S, Meada H, Kusakabe K, et al. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen[J]. Industrial & Engineering Chemistry Research,1994,33(3):616-622.
    [68]Xomeritakis G, Lin Y S. Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition [J]. Journal of Membrane Science,1996, 120(2):261-272.
    [69]徐南平,吴立群.光催化沉积制备担载钯膜的方法.中国专利, ZL99114034.6.
    [70]Wu L, Xu N, Shi J. Novel method for preparing palladium membranes by photocatalytic deposition[J]. AIChE Journal,2000,46(5):1075-1083.
    [71]Govind R, Atnoor D. Development of a composite palladium membrane for selective hydrogen separation at high temperature[J]. Industrial & Engineering Chemistry Research,1991,30(3):591-594.
    [72]Cheng Y S, Yeung K L. Effects of electroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrane Science,2001,182(1-2):195-203.
    [73]Cannon K C, Hacskaylo J J. Evaluation of palladium-impregnation on the performanceof a Vycor glass catalytic membrane reactor [J]. Journal of Membrane Science,1992,65(3): 258-268.
    [74]Li A, Liang W, Hughes R. Fabrication of dense palladium composite membranes for hydrogen separation[J]. Catalysis Today,2000,56(1-3):45-51.
    [75]Tong J H, Suda H, Haraya K, et al. A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter [J]. Journal of Membrane Science, 2005,260(1-2):10-18.
    [76]Mardilovich P P, She Y, Ma Y H, et al. Defect-free palladium membranes on porous stainless-steel support[J]. AIChE Journal,1998,44(2):310-322.
    [77]Tong J, Kashima Y, Shirai R, et al. Thin Defect-Free Pd Membrane Deposited on Asymmetric Porous Stainless Steel Substrate[J]. Industrial & Engineering Chemistry Research, 2005,44(21):8025-8032.
    [78]Shu J, Grandjean B P A, Ghali E, et al. Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating[J]. Journal of Membrane Science.1993,77(2-3): 181-195.
    [79]Nam S E, Lee K H. Preparation and Characterization of Palladium Alloy Composite Membranes with a Diffusion Barrier for Hydrogen Separation[J]. Industrial & Engineering Chemistry Research,2005,44(1):100-105.
    [80]Ma Y H, Mardilovich P P, She Y. Hydrogen gas-extraction module and method of fabrication. US Patent,6152987.2000.
    [81]Yepes D, Cornaglia L M, Irusta S, et al. Different oxides used as diffusion barriers in composite hydrogen permeable membranes[J]. Journal of Membrane Science,2006, 274(1-2):92-101.
    [82]Nam S, Lee K. Hydrogen separation by Pd alloy composite membranes:Introduction of diffusion barrier[J]. Journal of Membrane Science,2001,192(1-2):177-185.
    [83]Su C, Jin T, Kuraoka K, et al. Thin palladium film supported on SiO2-modified porous stainless steel for a high-hydrogen-flux membrane[J]. Industrial & Engineering Chemistry Research,2005,44:3053-3058.
    [84]Edlund D J, McCarthy J. The relationship between intermetallic diffusion and flux decline in composite-metal membranes:implications for achieving long material lifetime[J]. Journal of Membrane Science,1995,107 (1-2):147-153.
    [85]Wang D, Tong J, Xu H, et al. Preparation of palladium membraneover porous stainless steel tube modified with zirconium oxide[J]. Catalysis Today,2004,93-95:689-693.
    [86]Zahedi M, Afra B, Dehghani-Mobarake M, et al. Preparation of a Pd membrane on a W03 modified porous stainless steel for hydrogen separation[J]. Journal of Membrane Science,2009,333(1-2):45-49.
    [87]Huang Y, Dittmeyer R. Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion[J]. Journal of Membrane Science,2006,282(1-2):296-310.
    [88]Huang Y, Dittmeyer R. Preparation of thin palladium membranes on a porous support with rough surface[J]. Journal of Membrane Science,2007,302 (1-2):160-170.
    [89]Tong J, Su C, Kuraoka K, et al. Preparation of thin Pd membrane on CeO2-modified porous metal by a combined method of electroless plating and chemical vapor deposition[J]. Journal of Membrane Science,2006,269 (1-2):101-108.
    [90]俞健,胡小娟,黄彦,多孔不锈钢表面的陶瓷修饰及所负载的透氢钯膜[J].化学进展,2008,20:1208-215.
    [91]Bu X, Feng P, Stucky G D. Large cage zeolite structure with multidimensional 12-ring channels[J]. Science,1997,278 (5348):2080-2085.
    [92]Iglesia scar de la, Mallada R, Menendez M, et al. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid[J]. Chemical Engineering Journal,2007, 131 (1-3):35-39.
    [93]Duval J M, Folkerts B, Mulder M H V. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents[J]. Journal of Membrane Science,1993,80 (1-2):189-198.
    [94]Birgul S, Atalay-Oral T C, Tatter M, et al. Effect of zeolite particle size on the performance of polymer-zeolxite mixed matrix membranes [J]. Journal of Membrane Science,2000,175 (2):285-288.
    [95]Moron F, Pina M P, Urriolabeitia E, et al. Preparation and characterization of Pd-zeolite composite membranes for hydrogen separation[J]. Desalination,2002,147 (1-3):425-431
    [96]Bosko M L, Ojeda F, Lombardo E A, et al. NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes[J]. Journal of Membrane Science,2009,331 (1-2): 57-65.
    [97]刘伟.超临界流体化学沉积法制备金属钯复合膜及其表征[D].天津:天津大学,2008.
    [98]Osaka T, Nagasaka H. An electron diffraction study on mixed PdC12/SnCl2 catalysts for electroless plating[J]. Journal of the Electrochemical Society,1980,127 (11): 2343-2346.
    [99]Shu J, Grandjean B P A, Ghali E, et al. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics [J]. Journal of Membrane Science,1993,77 (2-3): 181-195.
    [100]Paglieri S N, Foo K Y, Way J D. A new preparation technique for Pd/alumina membranes with enhanced high-temperature stability[J]. Industrial & Engineering Chemistry Research,1999,38 (5):1925-1936.
    [101]Cohen R L, West K W. Solution Chemistry and Colloid Formation in the Tin Chloride Sensitizing Process[J]. Journal of the Electrochemical Society,1972,119 (4): 433-438.
    [102]Hou K H, Hughes R. Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation[J]. Journal of Membrane Science,2003,214 (1):43-55.
    [103]Abate S, Genovese C, Perathoner S, et al. Performances and stability of a Pd-based supported thin film membrane prepared by EPD with a novel seeding procedure. Part 1-Behaviour in H2:N2mixtures[J]. Catalysis Today,2009,145:63-71.
    [104]Yeung K L, Sebastian JM, VarmaA. Novel preparation of Pd/Vycor composite membranes [J]. Catalysis Today,1995,25:231-236.
    [105]Souleimanova R S, Mukasyan A S, Varma A. Study of structure formation during electroless plating of thin-composite membranes[J]. Chemical Engineering Science, 1999,54 (12):3369-3377.
    [106]Souleimanova R S, Mukasyan A S, Varma A. Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique [J]. Journal of Membrane Science,2000,166 (2):249-257.
    [107]Souleimanova R S, Mukasyna A S, Varma A. Pd-composite membranes prepared by electroless plating and osmosis:synthesis, characterization and properties[J]. Separation and Purification Technology,2001,25 (1-3):79-86.
    [108]Varma A, Yeung K L, Souleimanova R S, et al. Novel approach for thin dense nanoscale-grained metal films[J]. Industrial & Engineering Chemistry Research,2002,41 (25): 6323-6325.
    [109]Souleimanova R S, Mukasyan A S, Varma A. Pd membranes formed by electroless plating with osmosis:H2 permeation studies[J], AIChE Journal,2002,48(2):262-268.
    [110]Chen H, Chu C, Huang T. Comprehensive Characterization and Permeation Analysis of Thin Pd/AlO3 Composite Membranes Prepared by Suction-Assisted Electroless Deposition [J]. Separation Science and Technology,2004,39:1461-1483.
    [111]Keuler J N, Lorenzen L. Developing a heating procedure to optimize hydrogen permeance through Pd-Ag membranes of thickness less than 2.2μm[J]. Journal of Membrane Science, 2002,195(2):202-213.
    [112]Tong J H, Matsumura Y. Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ multi-dimensional plating mechanism [J]. Chemical Communications, 2004,21:2460-2461.
    [113]Tong J H, Su LL, Haraya K, et al. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process [J]. Chemical Communications,2006,10:1142-1144.
    [114]Nair B K R, Harold M P. Pd encapsulated and nanopore hollow fiber membrane:Synthesis and permeation studies[J]. Journal of Membrane Science,2007,290(1-2):182-195.
    [115]Tanaka D A P, Tanco M A L, Nagase T, et al. Fabrication of hydrogen-permeable composite membranes packed with palladium nanoparticals[J]. Advanced Materials,2006,18(5): 630-632.
    [116]Li A W, Liang W Q, Hughes R, Fabrication of defect-free Pd/α-Al2O3 composite membranes for hydrogen separation[J]. Thin Solid Films,1999,350(2):106-112.
    [117]李安武,熊国兴,R.Hughes.致密钯膜中裂缺的修补[J].中国科学(B辑),1999,29(2):169-173.
    [118]Zeng G F, Goldbach A, Xu H Y. Defect sealing in Pd membranes via point plating[J]. Journal of Membrane Science,2009,328:6-10.
    [119]唐春华,邵炜,徐恒泳.Pd/γ-Al2O3对超薄金属钯复合膜表面缺陷修复的研究[J].天然气化工,2009,34(2):1-6.
    [120]Jayaraman V, Lin Y S, Pakala M, et al. Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition[J]. Journal of Membrane Science,1995,99: 89-100.
    [121]Volpe M, Inguanta R, Piazza S, et al. Optimized bath for electroless deposition of palladium on amorphous alumina membranes[J]. Surface & Coatings Technology,2006, 200:5800-5806.
    [122]Michaels A S. New separation technique for the CPI [J]. Chemical Engnineering Progress, 1968,64:31-42.
    [123]郭杨龙,卢冠忠,陈荣,等.钯复合膜反应器中异丁烷催化脱氢反应研究[J].化工学报,2000,51(4):572-574.
    [124]Guo Y L, Lu G Z, Wang Y S, et al. Preparation and characterization of Pd-Ag/ceramic composite membrane and application to enhancement of catalytic dehydrogenation of isobutene[J]. Separation and Purification Technology,2003,32:271-279.
    [125]She Y, Han J, Ma Y H. Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene[J]. Catalysis Today,2001,67:43-53.
    [126]Hermann C, Quicker P, Dittmeyer R. Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor[J]. Journal of Membrane Science,1997,136(1-2):161-172.
    [127]N. Itoh, A membrane reactor using palladium[J]. AIChE Journal,1987,33 (9):1576-1578.
    [128]Ali J K, Newson E J, Riippin D W T. Exceeding equilibrium conversion with a catalytic membrane reactor for the dehydrogenation of methylcyclohexane[J]. Chemical Engineering Science,1994,49(13):2129-2134.
    [129]SheintuchM, Dessau RM. Observations, modeling and optimization of yield, selectivity and activity during dehydrogenation of isobutene and propane in a Pd membrane reactor[J]. Chemical Engineering Science,1996,51(4):535-547.
    [130]Shirai M, Pu Y, Arai M, et al. Reactivity of permeating hydrogen with thiophene on a palladium membrane[J]. Applied Surface Science,1998,126 (1-2):99-106.
    [131]Arai M, Wada Y, Nishiyama Y. Thiophene hydrodesulfurization by catalytic palladium membrane systems[J]. Sekiyu Gakkaishi,1993,36 (1):44-49.
    [132]Itoh N, Xu W C, Sathe A M, Capability of permeate hydrogen through palladium-based membranes for acetylene hydrogenation[J]. Industrial & Engneering Chemistry Research, 1993,32:2614-2619.
    [133]Orekhova N V, ErmilovaMM, Gryaznov V M. Combination of cyclohexane dehydrogenation and pentadiene-1,3 hydrogenation in granulated and monolithic membrane catalyst systems[J]. Doklady Akademii Nauk SSSR,1991,321 (1):141-145.
    [134]Gryzaonv V M, Ermilova M M, Orekhova N V. Membrane-catalyst systems for selectivity improvement in dehydrogenation and hydrogenation reactions[J]. Catalysis Today,2001, 67(1-3):185-188.
    [135]Itoh N, Govind R. Combined oxidation and dehydrogenation in a palladium membrane reactor[J]. Industrial & Engneering Chemistry Research,1989,28(10):1554-1557.
    [136]Itoh N, Wu T H. An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions. Journal of Membrane Science,1997,124(2): 213-222.
    [137]Itoh N. Simulation of bifunctional palladium membrane reactor [J]. Journal of Chemical Engineering of Japan,1990,23 (1):81-87.
    [138]Moustafa T M, Ashour I, Elnashaie S S. An integrated dehydrogenation hydrogenation membrane reactor for the simultaneous production of styrene and cyclohexane[J]. Studies Surface Science and Catalysis,1999,122:229-236.
    [139]Moustafa T M, Elnashaie S S. Simultaneous production of styrene and cyclohexane in an integrated membrane reactor[J].Journal of Membrane Science,2000,178(1-2): 171-184.
    [140]Lin Y M, Rei M H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer[J]. International Journal of Hydrogen Energy,2000,25(3):211-219.
    [141]Han J, Kin Ⅱ-Su, Choi K S. High purity hydrogen generator for one-site hydrogen production[J]. International Journal of Hydrogen Energy,2002,27(10):1043-1047.
    [142]Gallucci F, Basile A, Tosti S, et al. Methanol steam reforming and ethanol steam reforming in membrane reactors:an experimental study[J]. International of Journal of Hydrogen Energy,2007,32(9):1201-1210.
    [143]Gallucci F, Basile A. Pd-Ag membrane reactor for steam reforming reactions:A comparison between different fuels[J]. International Journal of Hydrogen Energy, 2008,33:1671-1687.
    [144]Sandra S, Hugo S, Sousa J M, et al. Hydrogen production by methanol steam reforming in a membrane reactor:Palladium vs carbon molecular sieve membranes[J]. Journal of Membrane Science,2009,339(1-2):160-170.
    [145]TongJH, Matsumura Y, SudaH, et al. Experimental study of stream reforming of methane in a thin (6μm) Pd-based membrane reactor[J]. Industrial & Engineering Chemistry Research,2005,44(5):1454-1465.
    [146]Matsumura Y, Tong J H. Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production[J]. Topics in Catalysis,2008,51(1-4):123-132.
    [147]Basile A, Criscuoli A, Santella F, et al. Membrane reactor for water gas shift reaction[J]. Gas Separation & Purification,1996,10(4):243-254.
    [148]Bi YD, Xu H Y, Li W Z, et al. Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst [J]. International Journal of Hydrogen Energy,2009,34(7): 2965-2971.
    [149]王卫平,潘秀莲,张小亮,等.钯/陶瓷中空纤维复合膜反应器中的水煤气变换反应[J].催化学报,2005,26:1042-1046.
    [150]Henkel H, Weber W, Manufacture of hydrogen peroxide. US 1108752,1914.
    [151]Choudhary V R, Gaikwad A G, Sansare S D. Nonhazardous Direct Oxidation of Hydrogen to Hydrogen Peroxide Using a Novel Membrane Catalyst[J]. Angewandte Chemie International Edition,2001,40(9):1776-1779.
    [152]Choudary V R, Sansare S D, Gaiwad A G. Hydrophobic composite Pd-membrane catalyst useful for non-hazardous direct oxidation of hydrogen by oxygen to hydrogen peroxide and method of its preparation. US,6448199.2002.
    [153]Abate S, Centi G, Melada S, et al. Preparation, performances and reaction mechanism for the synthesis of H2O2 from H2 and O2 based on palladium membranes[J]. Catalysis Today,2005,104(2-4):323-328.
    [154]Abate S, Centi G, Perathoner S, et al. Enhanced stability of catalytic membranes based oon a porous thin Pd film on a ceramic support by forming a Pd-Ag interlayer[J]. Catalysis Today,2006,118(1-2):189-197.
    [155]Hoelderich W F.'One-pot'reactions:a contribution to environmental protection [J]. Applied Catalysis A:General,2000,194-195:487-496.
    [156]Panov G I, Kharitonov A S, Sobolev V I. Oxidative hydroxylation using dinitrogen monoxide:a possible route for organic synthesis over zeolites[J]. Applied Catalysis A:General,1993,98(1):1-20.
    [157]Panov G I, Uriarteb A K, Rodkinb M A, et al. Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites[J]. Catalysis Today,1998,41(4):365-385.
    [158]Chernyavsky V S, Pirutko L V, Uriarte A K, et al. On the involvement of radical oxygen species O~in catalytic oxidation of benzene to phenol by nitrous oxide[J]. Journal of Catalysis,2007,245(2):466-469.
    [159]季东,任通,张小明,等.FeZSM-5/N2O催化氧化苯制苯酚[J].化学进展,2003,15(1):51-58.
    [160]Balducci L, Bianchi D, Bortolo R, et al. Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide over a modified Titanium Silicalite[J]. Angewandte Chemie International Edition,2003,42(40):4937-4940.
    [161]Tanev P T, Chibwe M, Pinnavala T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature,1994,368(6469):321-323.
    [162]Dimitrova R, Spassova M. Hydroxylation of benzene and phenol in presence of vanadium grafted Beta and ZSM-5 zeolites[J]. Catalysis Communications,2007,8(4):693-696.
    [163]任永利,刘国柱,王莅等.铜磷铝分子筛的合成及其对苯液相氧化制苯酚的催化性能[J].催化学报,2004,25(5):357-362.
    [164]Hamada R, Shibata Y, Nishiyama S, et al. One-step gas-phase catalytic oxidation of benzene to phonol with molecular oxygen over Cu-supported ZSM-5 zeolites [J]. Physical Chemistry Chemical Physics,2003,5(5):956-965.
    [165]Kusakari T, Sasaki T, Iwasawa Y. Selective oxidation of benzene to phenol with molecular oxygen on rhenium/zeolite catalysts[J]. Chemical Communications, 2004(8):992-993.
    [166]Niwa S, Eswaramoorty M, Nair J, et al. A one-step conversion of benzene to phenol with a palladium membrane[J]. Science,2002,295:105-107.
    [167]Itoh N, NiwaS, Mizukami F, et al. Catalytic palladium membrane for reductive oxidation of benzene to phenol[J]. Catalysis Communication,2003,4:243-246.
    [168]Sato K, Niwa S, Hanaoka T, et al. Direct hydroxylation of methyl benzoate to methyl salicylate by using new Pd membrane reactor[J]. Catalysis Letters,2004,96 (1/2): 107-112.
    [169]Orita H, Itoh N. Simulation of phenol formation from benzene with a Pd membrane reactor: ab initio periodic density functional study[J]. Applied Catalysis A-General,2004, 258:17-23.
    [170]Sato K, Hanaoka T, Niwa S, et al. Direct hydroxylation of aromatic compounds by a palladium membrane reactor[J]. Catalysis Today,2005,104:260-266.
    [171]Sato K, Hanaoka T, Hamakawa S, et al. Structural changes of a Pd-based membrane during direct hydroxylation of benzene to phenol[J]. Catalysis Today,2006,118:57-62.
    [172]Vulpescu G D, Ruitenbeek M, Lieshout L L, et al. One-step selective oxidation over a Pd-based catalytic membrane;evaluation of the oxidation of benzene to phenol as a model reaction[J]. Catalysis Communication,2004,5:347-351.
    [178]Lai SM, Ng C P, Martin-Aranda R, et al. Knoevenagel condensation reaction in zeolite membrane microreactor[J]. Microporous Mesoporous Materials,2003,66(2-3):239-252.
    [179]Zhang X F, Lai S M, Martin-Aranda R, et al. An investigation of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst[J]. Applied Catalysis A-General,2004,261(1):109-118.
    [180]Ye S Y, Hamakawa S, Tanaka S, et al. A One-Step Conversion of Benzene to Phenol Using MEMS-Based Pd Membrane Microreactors[J]. Chemical Engineering Journal,2009,155: 829-837.
    [181]Charbonnier M, Romand M, Harry E, et al. Surface plasma functionalization of polycarbonate:Application to electroless nickel and copper plating[J]. Journal of Applied Electrochemistry,2001,31:57-63.
    [182]Charbonnier M, Alami M, Romand M. Plasma treatment process for palladium chemisorption onto polymers before electroless deposition[J]. Journal of the Electrochemical Society,1996,143 (2):472-480.
    [183]Shi Z L, Wu S Q, Szpunar J A, et al. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition[J]. Journal of Membrane Science,2006,280:705-711.
    [184]郭杨龙,卢冠忠,汪仁.改进制备钯/陶瓷复合膜化学镀新工艺[J].华东理工大学学报,1998,24(6):727-730.
    [185]Hollein V, Thornton M, Quicker P, et al. Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors[J]. Catalysis Today,2001,67(1-3):33-42.
    [186]Zhang X F, Liu H 0, Yeung K L. Influence of seed size on the formation and microstructure of zeolite Sil-1 membranes by seeded growth [J]. Materials Chemistry and Physics,2006, 96(1):42-50.
    [187]Wong WC, Au L T Y, Tellez C, et al. Effects of synthesis parameters on the zeolite membrane growth[J]. Journal of Membrane Science,2001,191(1-2):143-163.
    [188]Bottino A, Capannelli G, Comite A, et al. Pd and Pd/Ag composite membranes prepared by the electroless plating technique:preparation, characterization and interpretation of the H2 transport mechanism, Proceedings of the 9th International Conferences on Inorganic Membranes, Lillehammer, Norway,2006[C]:96-99.
    [189]Huang Y, Shu S, Lu Z, et al. Characterization of the adhesion of thin palladium membranes supported on tubular porous ceramics [J]. Thin Solid Films,2007,515(14): 5233-5240.
    [190]Su S C, Carstens J N, Bell A T. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4[J]. Journal of Catalysis,1998,176(1):125-135.
    [191]Lee D W, Lee Y G, Nam S E, et al. Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature [J]. Journal of Membrane Science,2003,220(1-2):137-153.
    [192]李雪.光催化制备超薄钯膜及钯银合金膜的研究[D].南京:南京工业大学,2006.
    [193]武治锋,贺跃辉,江立,等.Pd/多孔TIAI合金基复合透氢膜的制备与性能[J].材料研究学报,2008,22(5):454-460.
    [194]Kapteijn F, Bakker W J W, Graaf J van de, et al. Permeation and separation behaviour of a Sil-1 membrane[J]. Catalysis Today,1995,25(3-4):213-218.
    [195]Mabande G T P, Pradhan G, Schwieger W, et al. A study of Sil-1 and Al-ZSM-5 membrane synthesis on stainless steel supports [J]. Microporous and Mesoporous Materials,2004, 75(3):209-220.
    [196]Ayturk M E, Mardilovich I P, Engwall E E, et al. Synthesis of composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic diffusion barrier[J]. Journal of Membrane Science,2006,285 (1-2):385-394.
    [197]Landon P, Collier P J, Carley A F, D, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts [J]. Physical Chemistry Chemical Physics,2003, 5:1917-1923.
    [198]Shu S L, Huang Y, Hu X J, et al. On the Membrane Reactor Concept for One-Step Hydroxylation of Benzene to Phenol with Oxygen and Hydrogen [J]. Journal of Physical Chemistry C,2009,113:19618-19622.
    [199]Fangrui Qiu, Xiaobin Wang, Xiongfu Zhang, et al. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Joural, 2009,147:316-322.
    [200]XiaobinWang, Xiongfu Zhang, et al. Preparation of titanium Sil-1 catalytic films and application as catalytic membrane reactors. Chemical Engineering Joural,2009, in press.
    [201]Ratnasamy P, Srinivas D, Knozinger H. Active sites ans reactive inermediates in titanium silicate molecular sieves. Advances in catalysis,2004,48:1-169.
    [202]Kitano T, Kuroda Y, Mori M, et al. Gas phase oxidation of benzene to phenol using Pd-Cu composite catalysts. J. Chem. Soc. Perkin Trans.2.1993:981-985.