川芎嗪对HL-60细胞株及其SCID小鼠模型的治疗机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     检测TMP和联合As_2O_3后对HL-60细胞增殖、分化的影响,并探讨其分子机制。建立SCID小鼠-人AML模型,体内验证TMP减毒增效功能,并探讨其机制。
     方法
     1.TMP抑制HL-60细胞增殖和诱导分化的作用。MTT法检测TMP对HL-60细胞增殖影响;NBT还原能力实验检测TMP作用下HL-60细胞向粒系分化时功能成熟程度,并筛选出TMP最佳诱导分化浓度;瑞氏染色观察细胞形态学变化;流式细胞仪检测细胞表面分化抗原CD11b、CD14表达率;流式细胞仪检测HL-60细胞周期分布;RT-PCR、Western blot检测细胞周期相关mRNA和蛋白:c-myc、p27、CDK2和cyclinE1表达。
     2. TMP联合As_2O_3对HL-60细胞增殖的影响。采用HL-60和ECV-304两种细胞株,分为空白对照组、TMP组、As_2O_3组、TMP联合As_2O_3组。MTT法检测HL-60细胞增殖变化;RT-PCR测定HL-60细胞VEGF mRNA表达;ELISA检测HL-60细胞分泌VEGF蛋白的差异。台盼蓝染色计数绘制ECV-304细胞生长曲线;流式细胞仪检测ECV-304细胞早期凋亡率;倒置显微镜观察ECV-304细胞贴壁情况。
     3.TMP联合As_2O_3对HL-60细胞诱导分化的作用。分组同前。MTT实验检测HL-60细胞增殖变化;瑞氏染色观察细胞形态学变化;NBT还原能力实验检测HL-60细胞向粒系分化时功能成熟程度;流式细胞仪检测HL-60细胞表面分化抗原CD11b、CD14表达率;流式细胞仪检测细胞周期分布;用RT-PCR、Western blot检测c-myc、p27、CDK2和cyclinE1mRNA和蛋白表达。
     4.建立SCID小鼠-人AML模型,对TMP减毒增敏功能进行体内实验验证。建模:在给予SCID小鼠300cGy (~(60)Co source)放射24h内,尾静脉注射HL-60细胞(1×10~6个)建立模型。免疫组织化学检测小鼠骨髓单个核细胞CD33蛋白表达阳性率和HE染色观察白血病细胞侵润组织情况共同来鉴定建模是否成功。分组:建模后的小鼠随机分为4组:患病组(不予药物治疗)、单用TMP组(200mg/kg TMP腹腔注射,Qd×21天)、单用As_2O_3组(3mg/kg As_2O_3腹腔注射,Qd×21天)、TMP联合As_2O_3组(200mg/kg TMP腹腔注射+3mg/kg As_2O_3腹腔注射,Qd×21天)。各组小鼠濒死前麻醉后处死。取小鼠血清,检测肝肾功能;ELISA检测血清中VEGF蛋白分泌量;免疫荧光检测小鼠骨髓微小血管密度;免疫组织化学检测小鼠骨髓单个核细胞CD33、HIF-1α蛋白表达。
     结果
     1.随着药物浓度的增加,TMP对HL-60细胞的生长的抑制作用逐渐增强;在低浓度(200-300μg/ml) TMP作用下NBT阳性细胞率明显升高。300μg/ml TMP处理HL-60细胞不同时间后,CD11b阳性表达率升高呈时间依赖性(p<0.01),CD14阳性表达率无统计学差异;细胞被阻滞于G0/G1期;c-myc mRNA和蛋白表达水平明显下调(p<0.01),p27mRNA和蛋白表达水平显著上升(p<0.01),cyclinE1和CDK2mRAN水平变化无统计学意义,但其蛋白表达水平则显著下降(p<0.01),呈时间依赖性。
     2.在TMP+As_2O_3组HL-60细胞生长抑制率与空白对照组或单用As_2O_3组相比显著升高(p<0.05),HL-60细胞VEGF mRNA和蛋白表达在联合处理后明显减少。在TMP+As_2O_3组ECV-304细胞早期凋亡率与空白对照组或单用As_2O_3组相比显著升高(p<0.01);经TMP和As_2O_3单独处理后均可抑制ECV-304细胞对培养瓶壁的粘附能力,联合作用后效果明显增强。
     3.在TMP联合As_2O_3组HL-60细胞NBT还原率和粒系分化抗原CD11b表达率显著增高(p<0.01);油镜下观察到细胞在形态学上亦趋于成熟;p27mRNA和蛋白表达水平都较对照组显著上升(p<0.05),c-myc mRNA和蛋白表达水平均明显下调(p<0.01),cyclinE1mRNA表达水平下降(p<0.05),其蛋白表达水平下降更明显(p<0.01),CDK2mRAN表达变化轻微,但其蛋白表达水平显著下调(p<0.01)。
     4.预处理后SCID小鼠注射HL-60细胞后其骨髓单个核细胞CD33呈强阳性表达,肝、脾、肾、骨髓及转移瘤组织病理切片显示有大量AML白血病细胞浸润,证实SCID小鼠-人AML模型建立成功。
     各组白血病SCID小鼠生存时间存在显著差异,各治疗组小鼠生命延长率分别是:单用TMP组29.63%,单用As_2O_3组50%,TMP联合As_2O_3组74.07%。AST在患病组显著少于As_2O_3组(p<0.05),AST、CREA在联合用药组显著少于As_2O_3组(p<0.05)。CD33蛋白在患病组骨髓单个核细胞中表达呈强阳性,在单用As_2O_3组、单用TMP组呈中度表达,在联合用药组呈低表达。HIF–la蛋白在患病组呈强阳性表达,在单用As_2O_3组呈中度表达,在单用TMP组呈低表达,联合用药组表达阴性。
     在联合用药组VEGF蛋白分泌量也较单用药物组和患病组显著降低。患病组白血病SCID小鼠骨髓微血管的血管形态幼稚,血管腔狭小,血管管壁结构紊乱;治疗组白血病SCID小鼠骨髓微血管管腔较对照增大,血管结构较完整。各治疗组小鼠骨髓MVD显著地低于患病组(p<0.05),联合用药组明显低于其余各组(p<0.05),单药治疗组之间骨髓MVD计数无差异。
     结论
     1.小剂量TMP能诱导HL-60细胞分化,使细胞周期阻滞于G0/G1期,其机制可能是c-myc表达的下调,p27表达的增加,在蛋白水平抑制与cyclin E-CDK2复合物的结合,使细胞周期停滞于G0/G1期。
     2.TMP联合As_2O_3后抑制HL-60细胞增殖作用增强。其机制可能是一方面HL-60细胞VEGF mRNA合成和蛋白分泌减少,通过VEGF自分泌途径促进白血病细胞凋亡,通过VEGF旁分泌途径中抑制血管内皮细胞ECV-304的增殖;另一方面抑制内皮细胞ECV-304的增殖与转移,阻断血管新生的重要环节。
     3.小剂量TMP能增强小剂量As_2O_3诱导分化的作用,以粒系分化为主。其机制可能是TMP通过上调p27mRNA和蛋白表达,下调c-mycmRNA和蛋白表达,抑制cyclin E-CDK2复合物蛋白激酶活性,阻滞细胞由G1期向S期过渡,促使HL-60细胞分化成熟。
     4. TMP能增强As_2O_3对SCID小鼠-人AML模型的治疗作用,明显改善小鼠的肝肾功能。其增效的机制可能是TMP下调白血病模型小鼠体内HIF-1a和VEGF的表达,小鼠骨髓MVD减少,微小血管结构趋向正常化,使AML细胞凋亡率升高。该实验填补了TMP在抗血管生成作用动物模型的空白。
Objectives
     Human acute promyelocytic leukemia HL-60cells and umbilical veinendothelial ECV-304cells were selected in the study. On the basis of thefunction of resisting anoxia and antiangiogenesis in TMP, we detected theeffect of the tetramethylpyrazin(eTMP)alone or in combination of arsenictrioxide(As_2O_3) on proliferation and differentiation in human acutepromyelocytic leukemia HL-60cells, and investigated the possiblemechanism based on the molecular of VEGF and H1F-1a. As well toinvestigate TMP could potentiate As_2O_3activity against leukemia further invivo, we establish the SCID mice model suffering from human AML.
     Methods
     1. Effects of TMP on proliferation and differentiation in HL-60cells.The alteration in the cell proliferation of TMP(concentration of100、200、300、400、600、800、1000μg/ml)was detected by MTT experiment; Thefunctional maturity of differentiation in HL-60cells was determined by NBTtest, and filter the suitable concentration in the following experiments; Cell morphology was observed by Wright’s staining; Flow cytometry was used todetect the expression of CD11b/CD14and the cell cycle distribution inHL-60cells. The cell cycle related mRNA and protein such as c-myc、p27、CDK2and cyclinE1were detected by RT-PCR and Western blot.
     2. Effects of TMP alone or in combination of As_2O_3on proliferation inHL-60cells. HL-60cells and ECV-304cells were used in this partialexperiment. There were four groups: control group, TMP treated group,As_2O_3treated group and TMP+As_2O_3treated group. The alteration in theproliferation was detected by MTT; RT-PCR and ELISA were assayed toexamine the expression of VEGF mRNA and protein; Trypan blue stainingwas down to draw the growth curves of ECV-304cells; Flow cytometry wasused to determine the early apoptosis of ECV-304cells; the adhesion degreeof ECV-304cell was observed by inverted microscopy.
     3. Effects of TMP alone or in combination of As_2O_3on proliferation inHL-60cells. There were four groups: control group, TMP treated group,As_2O_3treated group and TMP+As_2O_3treated group. The alteration in thecell proliferation was detected by MTT experiment; The functional maturityof differentiation in HL-60cells was determined by NBT test, and filters thesuitable concentration in the following experiments; Cell morphology wasobserved by Wright’s staining; Flow cytometry was used to detect theexpression of CD11b/CD14and the cell cycle distribution in HL-60cells.The cell cycle related mRNA and protein such as c-m yc、 p27、CDK2and cyclinE1were detected by RT-PCR and Western blot assay.
     4.As well to investigate TMP could potentiate As_2O_3activity againstleukemia further in vivo, we establish the SCID mice model suffering fromhuman AML. HL-60cells (1×10~6) were injected into SCID mice via a tailvein following irradiated at300cGy (~(60)Co source)24h earlier. Theexpression of CD33in bone marrow mononuclear cells detected byimmunohistochemistry and the infiltrated organization observed by HEstaining were used to identify whether the model is successfully established.The SCID mice models were randomly divided into four groups: controlgroup, TMP treated group (200mg/kg, i.p., Qd×21d), As_2O_3treated group(3mg/kg, i.p., Qd×21d), TMP+As_2O_3treated group (200mg/kgTMP+3mg/kg As_2O_3, i.p., Qd×21d). The mice were put to death afteranesthesia at the death hour. The liver and kidney function was detected aftergotten their serum; the expression of the secreted VEGF protein wasexamined by ELISA; Bone Marrow Microvessel density (BMMVD) wasscored using immunofluorescence; the expression of CD33and HIF-1αprotein in bone marrow mononuclear cells detected byimmunohistochemistry.
     Results
     1. TMP inhibited the proliferation of HL-60cells in a dose andtime-dependent manner. TMP induced the differentiation of HL-60cells inthe relatively low concentration (200-300μg/ml). After exposed to TMP in the300μg/ml concentration, the cells were blocked in the G0/G1cell cycleprogression. The mRNA and protein expression of c-myc were graduallydecreased, while remarkably up-regulated in the expression of p27. Therewere no obviously changes in the mRAN expression of CDK2and cyclinE1;however the protein expressions of them were extantly declined in atime-dependent manner.
     2. TMP can obviously potentiate As_2O_3ability of inhibitingproliferation in HL-60and ECV-304cells. The mRNA expression andsecretory protein of VEGF remarkably declined after exposure to thecombination treatment. Both of TMP and As_2O_3can induce the earlyapoptosis and adhesion ability of ECV-304cells, and these effects wereenhanced when treated combined.
     3. Combination treatments had synergistic effects on the proliferativeinhibition rates. The rates were increased gradually after the combinationtreatment, much higher than those treated by corresponding As_2O_3alone.The cells exhibited characteristics of mature granulocytes and a higherNBT-reducing ability, being a2.6-fold increase in the rate of NBT-positiveratio of HL-60cells within the As_2O_3treatment versus almost a13-foldincrease in the TMP+As_2O_3group. Cells treated with both TMP and As_2O_3expressed far more CD11b antigens, almost2-fold compared with controlgroup. The mRNA and protein expression of c-myc and cyclinE1weregradually decreased, while remarkably up-regulated in the expression of p27. There were no obviously changes in the mRAN expression of CDK2;however the protein expressions of them were extantly declined.
     4. The high expression of CD33protein in mice bone marrowmononuclear cells and an abundant of leukemic cells appeared in micetissues of liver, kidney, spleen, bone marrow and transplanted tumordemonstrated that SCID mice model suffering from human AML hadalready established. The survival time in each experimental group hadsignificant difference. The prolonged rates of survival time were29.63%inTMP group,50%in As_2O_3group and74.07%in combined treated grouprespectively. The liver and kidney function dramatically got better incombined treated group compared with As_2O_3group. CD33protein inBMMC were strongtly positive expressed in control group, moderatelyexpressed in TMP or As_2O_3group, and low expressed in combined group.HIF-la protein were strongtly positive expressed in control group,moderately expressed in As_2O_3group, low expressed in TMP group, andnegative expressed in combined group. VEGF protein in serum incombined group was dramatically decreased. In control group the lumen inmice bone marrow microvascular got much smaller and the microvascularhad many small branches. The bone MVD in each mice treated group wasdramatically decreased than that in control group, and that of which incombined group was decreased than that in other group. The bone MVD ineach treated alone group had no significant difference.
     Conclusions
     1. Small doses of TMP can induce differentiations of HL-60cells, andblock the cells in G0/G1cell cycle progression. The mechanism waspossibly by down-regulating the c-myc mRNA and protein expression,up-regulating the p27mRNA and protein expression and inhibiting thecombination of the protein cyclin E and CDK2.
     2. TMP potentiates As_2O_3inhibiting proliferation ability in HL-60cellsvia the pathways of VEGF autocrine and paracrine. The study preliminarilydemonstrated that antiangiogenesis is the mechanism of TMP alone or incombination of As_2O_3treated AML.
     3. Small doses of TMP potentiate As_2O_3-induced differentiation ofHL-60cells, possibly by regulating the expression and activity of G0/G1phase-arresting molecules. Up-regulating the expression of p27caninhibiting the combination of the protein cyclin E and CDK2, conductive tothe DNA synthesis and the down-regulation of relative genes such as c-mycneeded in the transition of the G1→S cell cycle progression. Thecoordination and interaction of the upward and downward genes induceddifferentiation of HL-60cells.
     4. Injecting HL-60cells into pretreated SCID mice via a tail vein cansuccessfully establish SCID mice-human AML model. TMP can potentiateAs_2O_3anticancer ability in SCID mice suffering from AML, reduce the toxicside effect of As_2O_3in liver and kidney function, possibly by down-regulating the expression of HIF-1a and VEGF, inhibiting the growthof the bone marrow microvacular and increasing the apoptosis rate of HL-60cells.
引文
[1]田锦林.三氧化二砷治疗复发性急性早幼粒细胞白血病临床观察[J].医学信息,2011,24(4):2165-2166
    [2] Camacho LH,Soignet SL,Chanel S,et a1. Leukocytosis and the retinoic acidsyndrome in patients with acute promyelocytic leukemia treated with arsenictrioxide. J Clin Oncol.2000,18(13):2620-2625
    [3]赵永辰,陈信义.川芎嗪临床应用研究[J].中国医药学报,2002,17(1):53-56
    [4]张伟,戴碧涛,汪明宇,等.川芎嗪对白血病细胞Jurkat粘附、运动和侵袭的影响[J].重庆医科大学学报.2008,33(4):403-406
    [5]杨岚,等.川芎嗪联合环孢素A逆转白血病多药耐药的研究[J].癌症.2000,19(4):304-306
    [6] Eun-Woo Lee,Min-Sik Lee,Suzanne Camus,et al. Differential regulation of p53andp21by MKRN1E3ligase controls cell cycle arrest and apoptosis [J]. The EMBOJournal.2009,28(14):2100–2113
    [7] Marcos Malumbres, Mariano Barbacid. Cell cycle, CDKs and cancer: a changingparadigm [J]. Nature Reviews Cancer.2009,9:153-166
    [8] WC Burhans, NH Heintz. The cell cycle is a redox cycle: Linking phase-specifictargets to cell fate [J]. Free Radical Biology and Medicine.2009,47(9):1282-1293
    [9] HT Liu,YG Du,JL He, et al. Tetramethylpyrazine inhibits production of nitric oxideand inducible nitric oxide synthase in lipopolysaccharide-induced N9microglialcells through blockade of MAPK and PI3K/Akt signaling pathways, andsuppression of intracellular reactive oxygen species [J]. Journal ofEthnopharmacolog.2010,129(3):335-343
    [10]CHANG Yi, HSIAO George, et al. Tetramethylpyrazine suppresses HIF-1α, TNF-α,and activated caspase-3expression in middle cerebral artery occlusion-inducedbrain ischemia in rats [J]. Acta Pharmacologica Sinica2007,28(3):327-333(7).
    [11]CHANG Yi, HSIAO George1, et al. Tetramethylpyrazine suppresses HIF-1α,TNF-α, and activated caspase-3expression in middle cerebral arteryocclusion-induced brain ischemia in rats [J]. Acta Pharmacologica Sinica2007,28(3):327-333(7)
    [12]Peter Vaupel, Arnulf Mayer. Hypoxia in cancer: significance and impact on clinicaloutcome [J]. Cancer and Metastasis Reviews.2007,26(2):225-239
    [13]Bradly G, Marianne Koritzinsky. Hypoxia signaling through mTOR and theunfolded protein response in cancer [J]. Nature Reviews Cancer.2008(8):851-864
    [14]窦慧丽,刘宝山.中医药干预白血病围化疗期临床研究概述[J].中医杂志.2011,52(9):797-799
    [15]刘锦蓉,等.川芎嗪抗肿瘤转移作用及其机理[J].中国药理学及毒理学杂志.1993,7(2):149
    [16]谢佐福,沈世仁.川芎嗪和羟基脲对阿霉素K562细胞株DNA合成的影响[J].中华医学杂志.1997,73(9):559
    [17]胡家才,李清泉,等.川芎嗪对肺癌A549细胞增殖与凋亡的影响及其机制[J].武汉大学学报:医学版.2010,(1):19-21
    [18]胡艳妮,徐酉华.靶向抑制GSK-3β介导的Wnt与NF-κB信号通路在急性淋巴细胞白血病细胞凋亡中的机制研究[D].重庆:重庆医科大学,2011:30-50
    [19]索涛莉,徐酉华.靶向Hsp90βsiRNA对Jurkat细胞生长抑制及化疗敏感性影响的研究[D].重庆:重庆医科大学,2009:35-45
    [20]Estey E, Dohner H. Acute myeloid leukaemia [J]. Lancet.2006,368(9550):1894-907.
    [21]Drayson MT,Michell RH,Durham J,Brown G. Cell proliferation and CD11bexpression are controlled independently during HL60cell differentiation initiatedby1,25alpha-dihydroxyvitamin D(3)or aU-trans-retinoic acid [J]. Exp Cell Res.2001,266(1):126-34.
    [22]Svenja Dubben, Andrea H nscheid, Katja Winkler, et al. Cellular zinc homeostasisis a regulator in monocyte differentiation of HL-60cells by1α,25-dihydroxyvitamin D3[J]. The Journal of Leukocyte Biology.2010,87(5):833-844
    [23]王振义,陈竺.肿瘤的诱导分化和凋亡疗法[M].上海:上海科学技术出版社,1998,37-9
    [24]Guosheng Jiang,Marie Henriksson. Role of Myc in differentiation and apoptosis inHL60cells after exposure to arsenic trioxide or all-trans retinoic acid [J]. LeukemiaResearch.2008,32:297–307
    [25]Eun-Woo Lee,Min-Sik Lee,Suzanne Camus,et al. Differential regulation of p53andp21by MKRN1E3ligase controls cell cycle arrest and apoptosis [J]. The EMBOJournal.2009,28(14):2100–2113
    [26]Belletti B,Nicoloso NS,Schiappacassi M,et a1. p27(kip1) functional regulation inhuman cancer: a potential target for therapeutic designs. Cur Med Chem.2005(l2):l589-l605
    [27]吴丽明,王少元.细胞周期素依赖性激酶与肿瘤[J].医学综述.2008,14(5):666-668
    [28]Knoepfler PS,Zhang XY,Cheng PF,et a1. Myc influences global chromatinstructure [J]. EMBO J.2006,25:2723-2734
    [29]林茂芳,钱习军.乌苯美司下调c-myc表达与其增强全反式维甲酸诱导NB4细胞分化作用关系的实验研究[J].中国病理生理杂志.2007,23(8):1527-1530
    [30]Jeong Hun Kim,Jin Hyoung Kim,Young Suk Yu,et a1. Antitumor Activity ofArsenic Trioxide on Retinoblastoma: Cell Differentiation and Apoptosis Dependingon Arsenic Trioxide Concentration [J]. ophthalmology&visual science.2008,50(4):1819-1823
    [31]Fumihiko Hayakawa, Martin L,et a1. Privalsky Phosphorylation of PML bymitogen-activated protein kinases plays a key role in arsenictrioxide-mediatedapoptosis [J]. Cancer cell.2004,5(4):389-401
    [32]YONG HWAN HAN, HWA JIN MOON, BO RA YOU,et a1. The Effect of MAPKInhibitors on Arsenic Trioxide-treated Calu-6Lung Cells in Relation to Cell Death,ROS and GSH Levels [J]. Anticancer research.2009,29(10):3837-3844
    [33]Binet,Francois,Antoine,et a1. Interaction Between Arsenic Trioxide and HumanPrimary Cells: Emphasis on Human Cells of Myeloid Origin [J]. Inflamm AllergyDrug Targets,2009,8(1):21-7
    [34]Lunghi P,Tabilio A,Lo-Coco F,et a1. Arsenic trioxide(ATO) and MEKl inhibitionsynergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia [J].2005,19(2):234-44
    [35]Lunghi P,Costanzo A,Levrero M,et a1. Treatment with arsenic trioxide(ATO) andMEKI inhibitor activates the p73-p53AIP1apoptotic pathway in leukemia cells [J].Blood.2004,104(2):519-25
    [36]Peter Vaupel,Arnulf Mayer. Hypoxia in cancer: significance and impact on clinicaloutcome [J]. Cancer and Metastasis Reviews.2007,26(2):225-239
    [37]Dias S,Hattori k,Heissig B,Zhu Z,Wu Y,Witte L,et a1. Inhibition of both paraerineand autocrine VEGF/VEGFR-2signaling pathways is essential to induce long-termremission of xenotransplanted human leukemias [J]. Proc Natl Acad.2001,98(19):10857-62
    [38]De Bont ES,Rosati S,Jacobs S,Kamps WA,Vellenga E. Increased bone marrowvascularization in patients with acute myeloid leukemia: a possible role for vascularendothelial growth factor[J]. Br J Haematol.2001,113(2):296-304
    [39]Fang R,Han ZC. Angiogenesis in hematologic malignancies and its clinicalimplications [J]. Int J Hematol.2002,75(3):246-56
    [40]Peroz-AtaydeAR, SallanSE, TedrowU, et a1. Spectrum of tumor angiogenesis inthe bone marrow of children with acute lymphoblastic leukemia [J]. Am J Pathol.1997,150:815
    [41]Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis inpatients with acute myeloid leukemia [J]. Blood.2000,95:309-14
    [42]Padro T,Ruiz S,Bieker R,et a1. Increased angiogenesis In the bone marrow ofpatients with acute Jeukemia [J]. Blood.2000,95:2637
    [43]Vacca A,RibaHi D,Presta M,et a1. Bone marrow neovascularization, plasma celIangiogenic potential, and matrix metalloproteinase-2secretion parallel progressionof human multiple myeloma [J]. Blood.1999,93:3064-73
    [44]Fan Ke,Li Zhong-ming. Effect of Tetramethylpyrazine on proliferation of HL-60leukemia cells induced by vascular endothelial growth factor [J]. Journal of ClinicalRehabilitative tissue Engineering Research.2008,12(16):3163-3166
    [45]丰俊东,徐晓玉.川芎嗪中药血清对人肝癌细胞Hep G2增殖的抑制作用[J].中草药.2005,36(4):551-553
    [46]Bradly G,Marianne Koritzinsky. Hypoxia signaling through mTOR and theunfolded protein response in cancer [J]. Nature Reviews Cancer.2008,(8):851-864
    [47]Roboz GJ, Dias S, Lam J, et al. Arsenic trioxide induced dos and time-dependentapoptosis of endothelium and may exert an antileukemic effect via inhibition ofangiogenesis[J]. Blood.2000,96,1525-1530
    [48]Wang SS,Zheng ZG,Weng YQ,et al. Angiogenesis and anti-angiogenesis activityof Chinese medicinal herbal extracts [J]. Life Sci.2004,74:2467-2478
    [49]王茵萍,邹移海,潘华峰,等.活血化瘀防治胃癌的效应与抗新生血管生成的关系[J].中国中西医结合消化杂志,2005,13(3):187
    [50]Zhengkai Shao, Jingwen Li, Zhenhuan Zhao,et al. Effects of tetramethylpyrazine onnitric oxide/cGMP signaling after cerebral vasospasm in rabbits [J]. Brain Reseach.2010,1361(18):67-75
    [51]李杰,梁小玲.川芎嗪对新生血管生成的影响及其机制研究[D].广州:中山大学.2009
    [52]Clement G,Yedjou,Pau,IB Tchounwou. Modulation of p53, c-fos, RARE, cyclin A,and cyclin D1expression in human leukemia (HL-60) cells exposed to arsenictrioxide [J]. Molecular and cellular biochemistry.2009,331(1-2):207-214
    [53]Seo BR,Lee KW,Ha J,Park HJ. Saucernetin-7isolated from Saururus chinensisinhibits proliferation of human promyelocytic HL-60leukemia cells via G0/G1phase arrest and induction of differentiation [J]. Carcinogenesis.2004,25:1387-1394.
    [54]Arnaud Besson,Steven F. Dowdy,James M. Roberts. CDK Inhibitors: Cell CycleRegulators and Beyond [J]. Developmental cell.2008,14(2):159-169
    [55]Decker T,Hipp S,Ringshausen I,et a1. Rapamycin-induced G1arrest in cyclingB-CLL cells is associated with reduced expression cyclin D3,cyclin E,cyclin Aand surviving [J]. Blood.2003,101:278-285
    [56]Dimberg A,Bahram F,Karlberg I,et a1. Retinoic acid-induced cell cycle arrest ofhuman myeloid cell lines is associated with sequential down-regulation of c-mycand cyclin E and posttranscriptional up-regulation of p27(kipl)[J]. Blood.2000,99:2199-2006
    [57]Jan J Molenaar,Jan Koster,Marli E Ebus. Copy number defects of G1-Cell cyclegenes in neuroblastoma are frequent and correlate with high expressionof E2F target genes and a poor prognosis [J]. Genes, Chromosomes and Cancer.2012,51(1):10-19
    [58]Ang Sun,Luigi Bagella,Steven Tutton. From G0to S phase: A view of the rolesplayed by the retinoblastoma (Rb) family members in the Rb-E2F pathway [J].Journal of Cellular Biochemistry.2007,102(6):1400–1404
    [59]Murray AW,MarksD. Can sequencing shed light on cell cycling?[J]. Nature.2000,409(6822):844-846
    [60]施均,邵宗鸿,刘鸿.骨髓增生异常综合征细胞周期调控基因表达谱的研究[J].中华血液学杂志.2005,26(1):10-14
    [61]Barbara Hoffman,Arshad Amanullah,Marianna Shafarenko,et al. Theproto-oncogene c-myc in hematopoietic development and leukemogenesis [J].Oncogene.2002,21:3414-3421
    [62]Lfischer B. Function and regulation of the transcription factors of theMyc/Max/Mad network [J]. Gene.2001,277(1-2):1-14
    [63]陈学良,乔颖,孟月生,等.癌基因c-myc在白血病中表达水平及临床研究[J].中华内科杂志.1994,33(5):301
    [64]Zajac,Kaye M. Myc oncogene: a key component in cell cycle regulation and itsimplication for lung cancer [J]. Lung-Cancer.2001,(34)2:43-46
    [65]Fieber W,Schneider ML,Matt T,et al. Structure, function and dynamics of thedimerization and DNA-binding domain of oncogenic transcription factor v-Myc [J].J Mol Biol.2001,307(13):1395-410
    [66]Ponzielli R,Katz S,Barsyte-Lovejoy D,Penn LZ. Cancer therapeutics: targeting thedark side of Myc [J].Eur J Cancer.2005,41:2485–501
    [67]Dimberg A,Bahram F,Karlberg I,Larsson LG,Nilsson K,Oberg F. Retinoicacid-induced cell cycle arrest of human myeloid cell lines is associated withsequential down-regulation of c-Myc and cyclin E and posttranscriptionalup-regulation of p27(Kip1)[J]. Blood.2002,99:2199-2206
    [68]Huanga MJ,Chengb YC,Liuc CR,Linb SF,Liu HE. A small-molecule c-Mycinhibitor,10058-F4, induces cell-cycle arrest, apoptosis, and myeloiddifferentiation of human acute myeloid leukemia [J]. Exp Hematol.2006,34:1480–1489
    [69]Cai X,YuY,HuangY,Zhang L,Jia PM,Zhao Q. Arsenic trioxide induced mitoticarrest and apoptosis in acute promyelocytic leukemia cells [J]. Leukemia.2003,17:1333–1337
    [70]Attar EC,De Angelo DJ,Sirulnik A,el a1. Addition of bortezomib (Velcade) toAML induction chemotherapy is well tolerated and results in a higIl completeremission rate[J]. Blood.2005,106(11):780a
    [71]Leckie BJ. Targeting the rennin-angiotemin system what’s new [J]. Curr Med ChenCardiovasc Hematol Agents.2005,3(1):23-32
    [72]Lapidot T,Sirard C,Vormoor J,et a1. A cell initiating human acute myeloidleukemia after transplantation into SCID mice [J]. Nature.1994,369(5):645-648
    [73]Sawyers CL,Gishizhy ML,Quan S,et a1. Propagation of human blastic myeloidleukemia in the SCID mouse [J]. Blood.1992,78(10):2089-2093
    [74]Lallemand-Breitenbach V,Guillemin MC,Janin A,et a1. Retinoic acid and arsenicsynergize toeradicate leukemic cells in a mouse model of acute promyelocyticleukemia [J]. Exp Med.1999,189:1043-1052
    [75]高岩,蔡清清,李苏,等.不同给药方式下三氧化二砷对T细胞淋巴瘤EL4细胞体内及体外抑制作用[J].癌症.2009,28(2):155-160
    [76]Julia I,Bardos,Margaret Ashcroft. Hypoxia-inducible factor-1and oncogenicsignaling [J]. BioEssays.2004,26(3):262-269
    [77]Kizaka-Kondoh S,Tanaka S,Harada H,et a1. The HIF-la active microenvironment:an environmental target for cancer therapy [J]. Adv Drug Deliv Rev.2009,6l(7):623-632
    [78]Lorenz Poellinger,Randall SJ. HIF-1a and hypoxic response: the plot thickens [J].Genetics and Development.2004,14(1):81-85
    [79]Peroz-AtaydeAR,SallanSE,TedrowU,et a1. Spectrum of tumor angiogenesis in thebone marrow of children with acute lymphoblastic leukemia [J]. Am J Pathol.1997,150:815
    [80]Hussong JW,Rodgers GM,Shami PJ. Evidence of increased angiogenesis in patientswith acute myeloid leukemia [J]. Blood.2000,95:309-14
    [81]Padro T,Ruiz S,Bieker R,et a1. Increased angiogenesis In the bone marrow ofpatients with acute leukemia [J]. Blood.2000,95:2637
    [82]Vacca A,RibaHi D,Presta M,et a1. Bone marrow neovascularization,plasma celIangiogenic potential,and matrix metalloproteinase-2secretion parallel progressionof human multiple myeloma [J]. Blood.1999,93:3064-73
    [1]赵永辰,陈信义.川芎嗪临床应用研究[J].中国医药学报.2002,17(1):53-56
    [2] M.J. Liang, L.C. He, G.D. Yang, Screening, analysis and in vitro vasodilatation ofeffective components from Ligusticum Chuanxiong, Life Sci.2005,78:128-133
    [3] B.H ALI, K. ANNAMALAI, et al. Amelioration of Cisplatin-InducedNephrotoxicity in Rats by Tetramethylpyrazine, a Major Constituent of theChinese Herb Ligusticum wallichi[J]. The Society for Experimental Biology andMedicine.2008,233:891-89
    [4] Tetramethylpyrazine inhibits production of nitric oxide and inducible nitricoxide synthase in lipopolysaccharide-induced N9microglial cells through blockadeof MAPK and PI3K/Akt signaling pathways, and suppression of intracellularreactive oxygen species [J]. Journal of Ethnopharmacolog.2010,129(3):335-343
    [5] CHANG Yi, HSIAO George, et al. Tetramethylpyrazine suppresses HIF-1α,TNF-α, and activated caspase-3expression in middle cerebral arteryocclusion-induced brain ischemia in rats [J]. Acta Pharmacologica Sinica2007,28(3):327-333(7)
    [6] Min Li, Chi Zhao, Ricky N.S. Wong. Inhibition of shear-induced plateletaggregation in rat by tetramethylpyrazine and salvianolic acid B [J]. ClinicalHemorheology and Microcirculation.2004,31:97-103
    [7]刘巨源,陈永凤.川芎嗪对鼠肺纤维化组织钙含量及钙调素活性的影响[J].中国临床药理学与治疗学.2002,7(2):l38-140
    [8]楼雅卿,张宏,曹霞.磷酸川芎嗪在犬和大鼠的药代动力学和体内命运[J].药学学报.1986,21(7):481-487
    [9]黄志力,伍必英.盐酸川芎嗪在大鼠体内的分布[J].中国药理学通.I994,10(4):297
    [10]王利胜,郭琦,韩坚.川芎嗪在小鼠血、脑和肝中的药动学研究[J].中草药.2009,(6):935-938
    [11] Tung-Hu Tsai, Chien-Cheng Liang. Pharmacokinetics of tetramethylpyrazine in ratblood and brain using microdialysis [J]. International Journal of Pharmaceutics.2001,216:61–66
    [12]刘晓勤,楼雅卿,陈清棠.正常人及缺血性脑血管病人的盐酸川芎嗪临床药代动力学研究[J].中国临床药理学杂志.1991,7(1):32-36
    [13]张伟,戴碧涛,汪明宇等.川芎嗪对白血病细胞Jurkat粘附、运动和侵袭的影响[J].重庆医科大学学报.2008,33(4):403-406
    [14]刘锦蓉,等.川芎嗪抗肿瘤转移作用及其机理[J].中国药理学及毒理学杂志.1993,7(2):149
    [15]谢佐福,沈世仁.川芎嗪和羟基脲对阿霉素K562细胞株DNA合成的影响[J].中华医学杂志.1997,73(9):559
    [16]胡家才,李清泉,等.川芎嗪对肺癌A549细胞增殖与凋亡的影响及其机制[J].武汉大学学报:医学版.2010,(1):19-21
    [17] Fang R,Han ZC.Angiogenesis in hematologic malignancies and its clinicalimplications[J].Int J Hematol.2002,75(3):246-56.
    [18] Cemiglia GJ,Pore N,TSai JH,et a1. Epidermal growth factor receptor inhibitionmodulates the microenvironment by vascular normalization to improvechemotherapy and radiotherapy efficacy [J]. Plos One.2009,4(8):6539-50
    [19] De Bont ES,Rosati S,Jacobs S,et al. Increased bone marrow vascularization inpatients with acute myeloid leukaemia: a possible role for vascular endothelialgrowth factor [J]. Br J Haematol.2001,13(2):296-304
    [20]丰俊东,徐晓玉.川芎嗪中药血清对人肝癌细胞Hep G2增殖的抑制作用[J].中草药.2005,36(4):551-553
    [21] Fan Ke, Li Zhong-ming. Effect of Tetramethylpyrazine on proliferation of H L-60leukemic cells induced by vascular endothelial growth factor [J]. Journal ofClinical Rehabilitative tissue Engineering Research.2008,12(16):3163-3166.
    [22] Xu X Y,Yah PK,Chen G,et al.Inhibition of Tetramethylpyrazine on Lewis lungcarcinomas, microvessel growth and VEGF expression in mice [J]. ZhongguoYaolixue Tongbao.2004,20(2):151-154
    [23]张薇,王茵萍,邹移海,等.川芎嗪对胃癌前病变大鼠新生血管生成相关因素的影响[J].长春中医学院学报.2005,21(5):24-26
    [24]黄正华,邹移海.川芎嗪对胃癌细胞及血管内皮细胞增殖的影响[J].长春中医药大学学报.2009,25(1):21-22
    [25] Arnaud Besson,Steven F. Dowdy,James M. Roberts. CDK Inhibitors: Cell CycleRegulators and Beyond [J]. Developmental cell.2008,14(2):159-169
    [26]杨叶,侯培珍,张娟.川芎嗪联合氟尿嘧啶对胃癌细胞SGC-7901/ADR的杀伤作用[J].肿瘤防治研究.2008,35(9):624-626
    [27] ZHANG Hui-jun,YAN Yun-Li,et al. Apoptosis of human small cell lung can cerH446cells induced by tetramethylpyrazine [J]. Cancer Research.2003,30(6):452-4
    [28] Huang M,Sharma S,Mao JT. Non-small cell lung cancer-derived soluble mediatorsand prostaglandin E2enhance peripheral blood lymphocyte IL-10transcription andprotein production [J]. The Journal of Immunology.1996,157(12):5512-20
    [29]张春玲,肖伟.川芎嗪对肺癌患者外周血单个核细胞分泌IL-4、IL-6的影响[]].山东医药.2000,40(18):35
    [30]肖伟,郑春燕,孙继平,张春玲.肺癌患者Thl/Th2状态及川芎嗪的调节作用[J].上海免疫学杂志.2001,12:4
    [31]刘锦荣,张文安,叶橙拍,等.川芎嗪对小鼠脾淋巴细胞增殖反应的影响[J].华西医科大学学报. l995,26:177
    [32]崔微,王润田,张宇辉,等.川芎嗪下调Colon26肿瘤细胞免疫抑制的体外研究[J].中国免疫学杂志.2009,(5):413-416
    [33]马海英,赵瑾瑶,金伟,等.川芎嗪对转基因多药耐药细胞K562/MDR耐药性的逆转作用[J].吉林大学学报:医学版.2009,(4):599-603
    [34]王婷,双跃荣,庄小捷,等.川芎嗪联合三氧化二砷逆转K562/ADM细胞多药耐药的实验研究[J].实用癌症杂志.2009,(2):121-124
    [35]杨岚,等.川芎嗪联合环孢素A逆转白血病多药耐药的研究[J].癌症.2000,19(4):304-306
    [36]徐建业,周琦,汤伟.汉防己甲素、罗通定及川芎嗪对肿瘤细胞株KBV200多药耐药性逆转作用的研究[J].重庆医学.2005,34(9):1383-84
    [37]梁蓉,杨平地,陈协群.川芎嗪和(或)环孢素A对HL-60/HT细胞耐药的逆转[J].中华内科杂志.1999,38(4):260
    [38]梁蓉,杨平地,陈协群.川芎嗪和异搏定联合逆转HL-60/HT细胞的多药耐药[J].第四军医大学学报.1998,19(4):385
    [39]梁蓉,杨平地,陈协群.川芎嗪对白血病HL-60/VCR细胞多药耐药的逆转及其机制研究[J].中华血液学杂志.1999,20(6):323
    [40] Kai Kessenbrock,Vicki Plaks,Zena Werb,et al. Matrix Metalloproteinases:Regulators of the Tumor Microenvironment [J]. Cell.2010,141(1):52-67
    [41] Dimitra Bourboulia, William G Stetler-Stevenson. Matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negativeregulators in tumor cell adhesion [J]. Siminars in cancer biology.2010,20(3):161-168
    [42] Chris D Madsen, Erik Sahai,et al. Cancer Dissemination-Lessons from Leukocytes[J]. Developmental cell.2010,19(1):13-26
    [43] Satya Khuon, Luke Liang, Robert W Dettman,et al. Myosin light chain kinasemediates transcellular intravasation of breast cancer cells through the underlyingendothelial cells: a three-dimensional FRET study [J]. Journal of cell science.2010,123(3):431-440
    [44] Rajeev K, Shrimali, Zhiya Yu, et al. Antiangiogenic Agents Can IncreaseLymphocyte Infiltration into Tumor and Enhance the Effectiveness of AdoptiveImmunotherapy of Cancer [J]. Cancer cell.2010,60:6171
    [45]殷娟,于超,杨竹,等.川芎嗪抑制IL-8诱导人卵巢癌SKOV3细胞的迁移作用[J].重庆医科大学学报.2011,(4):401-404
    [46]张培彤,裴迎霞,等.活血药对人肺癌细胞粘附和侵袭的影响[J].中国中西医结合杂志.1999,(2):103-105
    [47]李媛,丁兰. P-选择素与肿瘤转移[J].西北师范大学学报.2008,44(3):78-81
    [48]付慧群,唐雪元,潘宇亮.川芎嗪和顺铂联用对小鼠Lewis肺癌生长和转移的抑制作用[J].中国新药杂志.1999,8(6):46-49
    [49] O Meltem Akay, Zeki Ustuner,Zerrin Canturk,et al. Laboratory investigation ofhypercoagulability in cancer patients using rotation thrombelastography [J].Medical oncology.2009,26(3):358-364
    [50] Na Zhang, WJ Zhang, HQ Cai,et al. Platelet adhesion and fusion to endothelialcell facilitate the metastasis of tumor cell in hypoxia-reoxygenation condition [J].CLINICAL AND EXPERIMENTAL METASTASIS.2011,28(1):1-12
    [51] Anna Falanga, Tiziano Barbui, Frederick R Rickles. Hypercoagulability and tissuefactor gene upregulation in hematologic malignancies [J]. Semin Thromb Hemost.2008,34(2):204-210
    [52] Anna Falanga, Marina Panova-Noeva, Laura Russo. Procoagulant mechanismsin tumour cells [J]. Best Practice&Reseach clinical haematology.2009,22(1):49-60
    [53]丁鸿燕,陈少贤,等.川芎嗪对肺癌患者血小板功能及凝血状态影响[J].实用医学杂志.1997,13(12):777-778
    [54]刘锦荣,叶松柏.川芎抗肿瘤转移作用及其机理[J].中国药理学及毒理学杂志.1993,7(2):149-152
    [55]陈少贤,王良兴,邢玲玲,等.川芎嗪对晚期肺癌患者血小板功能的影响[J].中国中西医结合杂志.1997,17(9):531
    [56]王金良,孔佩艳,徐葳.人参皂甙Rg3抑制急性白血病骨髓基质细胞HIF-1α及VEGF的表达及其机制探讨[J].第三军医大学学报.2010,32(7):621-624
    [57]邓翠娥.川芎嗪的药理作用和临床应用[J].时珍国医国药.2001,7:12
    [58]崔丽娟,张会军.川芎嗪对依托泊苷诱导小细胞肺癌细胞凋亡增敏作用的评判[J].数理医药学杂志.2006,19(5):462-464
    [59]卞志远,琚勤昌,李金枝.川芎嗪注射液对食管癌化疗增效作用的临床研究[J].河南职工医学院学报.2002,14(4):311
    [60]解庆东.川芎嗪在消化系统疾病中的应用[J].时珍国医国药.2002,13(8):485
    [61]张振玉,王祟文,祝金泉,等.川芎嗪及联用化疗药物对胃癌细胞杀伤作用的研究[J].中国现代医学杂志.1999,9(1):68
    [62] Wang SS,Zheng ZG,Weng YQ,et al. Angiogenesis and anti-angiogenesis activityof Chinese medicinal herbal extracts [J]. Life Sci.2004,74:2467-2478
    [63]王茵萍,邹移海,潘华峰,等.活血化瘀防治胃癌的效应与抗新生血管生成的关系[J].中国中西医结合消化杂志.2005,13(3):187
    [64] Zhengkai Shao, Jingwen Li, Zhenhuan Zhao,et al. Effects of tetramethylpyrazineon nitric oxide/cGMP signaling after cerebral vasospasm in rabbits [J]. BrainReseach.2010,1361(18):67-75
    [65]李杰,梁小玲.川芎嗪对新生血管生成的影响及其机制研究[D].广州:中山大学.2009
    [66] Peter Vaupel,Arnulf Mayer. Hypoxia in cancer: significance and impact on clinicaloutcome [J]. Cancer and Metastasis Reviews.2007,26(2):225-239