携带药物(Aspirin)的小口径高分子复合人造血管材料的物理性能及其生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分丝素蛋白改性聚氨酯复合材料的血液相容性研究
     目的:研究不同SF配比的改性PU材料人造血管的血液相容性。
     方法:将PU与SF按照不同配比混合制成SF-PU复合薄膜,与橡胶膜、e-PTFE膜相比较,通过溶血试验、全血凝固时间、体外凝血时间、复钙时间等,探讨不同含量SF对改性PU材料血液相容性的影响,以及SF-PU复合薄膜与橡胶膜、e-PTFE膜材料在血液相容性方面的差异。
     结果:橡胶膜血液相容性差,e-PTFE和PU血液相容性较好。
     结论:通过控制SF的含量能进一步提高PU材料的抗凝血性能。
     第二部分携带阿司匹林的丝素蛋白改性聚氨酯复合材料的物理性能研究
     目的:研究添加阿司匹林后SF-PU(5∶5)复合材料的主要物理性能。
     方法:用湿法成膜工艺制备含0%,5%,10%3种不同含量阿司匹林的SF-PU共混膜,对所制备的膜进行膜的形貌电镜观察、力学拉伸测试、红外光谱测试。
     结果:湿法成膜工艺制得的膜外观、光滑度、拉伸应力、初始模量优良,断裂伸长和亲水性较好。红外测试发现并无新官能团产生,除断裂伸长随阿司匹林含量递增而逐渐减少外,其初始模量,断裂功和断裂强力呈先减少后增加的“U”形变化。
     结论:阿司匹林含量控制在5%时,可与SF-PU(5∶5)材料混合制成具有优良力学性能的生物膜。
     第三部分携带阿司匹林的丝素蛋白改性聚氨酯复合材料的组织相容性研究
     目的:研究添加阿司匹林的SF-PU(5∶5)复合材料的组织相容性。
     方法:将0%、5%、10%的阿司匹林共混入PU与SF按照5∶5的配比制成的SF-PU(5∶5)复合薄膜。通过大鼠急性毒性实验、肌肉植入局部反应实验、组织切片美兰染色、白细胞及血小板计数以及透射电镜观察,探讨不同含量阿司匹林对SF-PU(5∶5)材料组织相容性的影响。
     结果:SF-PU(5∶5)混合膜比传统的e-PTFE膜组织相容性好,内附阿司匹林可改善混合膜的抗炎效果,显著增加抗血小板聚集效果,携带5%的阿司匹林的材料组织相容性明显提高,然携带10%的阿司匹林可造成一定的副作用。
     结论:阿司匹林的含量控制在5%时,可与SF-PU(5∶5)材料混合制成组织相容性比传统的e-PTFE更好的生物膜。
Part one:Blood Compatibility of Polyurethane Modified by Silk Fibroin
     Objective:To study the blood compatibility of PU modified by SF with different ratio.
     Methods:Blend films of SF powder and medical polyurethane(PU) were produced with different ratio.The influence on blood compatibility of PU modified by different ratio of SF was investigated by using hemolysis test,clotting time(CT),recalcification time (RT),PT,APTT.The blood compatibility of the blend films was compared with that of e-PTFE and rubber membrane.
     Results:The blood compatibility of rubber membrane was the worst,and that of e-PTFE and PU was better.Rational ratio of SF could further improve the anticoagulate potential of PU.
     Conclusion:At the optimal ratio of SF,the SF-PU mixture has the best blood compatibility.
     Part two:The Physical Properties of Polyurethane Modified by Silk Fibroin Carrying Aspirin
     Objective:To investigate the major physical properties of PU modified with 50%SF after addition of aspirin.
     Methods:The wet method was used to prepare 3 different SF-PU(5:5) films carrying aspirin with doses of 0%,5%,10%respectively,and the SF-PU films carrying aspirin were investigated by using SEM,stretching test and IR spectrum.
     Results:The films prepared by wet method achieved better appearance,smoothness, stretching stress and initial modulus.Infrared test did not detect any new functional group. In terms of mechanical properties,except for the extension at break which was decreased with the increase of aspirin dose,the curve of the initial modulus,the breaking work and the breaking strength showed a "U" shape--decreases at first and increases afterwards.
     Conclusion:5%dose of aspirin can be mixed with SF-PU(5:5) films to prepare the biomaterial with better mechanical properties.
     Part three:The Tissue Compatibility of Polyurethane Modified by Silk Fibroin Carrying Aspirin
     Objective:To investigate the tissue compatibility of PU modified by 50%SF after addition of aspirin.
     Methods:SF and PU were mixed with a ratio of 5 to 5 to prepare SF-PU(5:5) blend films and subsequently aspirin with doses of 0%,5%and 10%was added respectively.By using rat acute toxicity test,test of local reaction in muscle,tissue section staining, WBC and PLT count,and the TEM,the influence of different doses of aspirin on the tissue compatibility of SF-PU(5:5) was studied.
     Results:The blend film of SF-PU(5:5) had the better tissue compatibility than traditional e-PTFE.The effects of antiinflammation and antiplatelet aggregation of SF-PU (5:5) were improved after addition of different doses of aspirin,especially with the dose of 5%.But 10%aspirin exerted some side-effect.
     Conclusion:5%dose of aspirin can be mixed with SF-PU(5:5) films to prepare the biomaterial with better tissue compatibility than the traditional e-PTFE.
引文
[1]田鹏,陈剑秋.小口径人工血管材料的研究进展[J].透析与人工器官,2004,15(3):32-38.
    [2]Losi P,Lombardi S,Briganti E,Soldani G.Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts[J].Biomaterials,2004,25(18):4447-4455.
    [3]李宗涛,陈国生,张宇.血管工程学与血管顺应性的研究进展.中国心血管病研究杂志,2004,2(12):985-986.
    [4]罗新锦,吴清玉.小口径人工血管的研究进展[J].中国胸心外科临床杂志,2001,8(3):193-196.
    [5]陈福真,冯友贤,杨珏.丝涤交织人造血管的研究[J].中华实验外科杂志,1999,1:30-31.
    [6]冯友贤,李建明,郑佳瑾.真丝人造血管的临床应用[J].上海第一医学院学报,1981,8:98-101.
    [7]潘治,饶天健.国产膨体聚四氟乙烯血管的实验研究[J].中华外科杂志,1983,21(3):146-148.
    [8]Hamaguchi M,Okuda Y,Yamanouch S,Kumada T.Short-term thrombogenicity and patency of expanded polytetrafluoroethylene(E-PTFE) vascular grafts with varying wall structure[J].Jpn J Artif Organs,1994,23:832-837.
    [9]Sapsford RN,Oakley GD,Talbot S.Early and late patency of expanded polytetrafluoroethylene vascular grafts in aorta-coronary bypass[J].J Thorac Cardiovasc Surg,1981,81(6):860-864.
    [10]曹海建,钱坤.人造血管的现状及其研究进展[J].四川纺织科技,2004,2:31-33.
    [11]赵书尧,李毓陵,陈旭炜.人造血管用织物的研制及其渗透性能的研究[J].产业用纺织品,2002,12:20-22.
    [12]唐朝君,王贵学,危当恒,邓小燕.小口径人工血管研究的进展[J].中国医疗 器械杂志,2005,29(6):439-442.
    [13]潘仕荣,陶军,郑欢玲,易武.小径微孔聚氨酯人工血管的顺应性[J].生物医学工程学杂志,2006,23(3):517-520.
    [14]孟舒献,温晓娜,冯亚青,顾汉卿。肝素化聚氨酯表面修饰材料的研究[J].生物医学工程学杂志,2004,21(4):579-601.
    [15]Kazuko H,Iwao Y,Noboru Y.Biocompatible blood vessels coated with acrylamide [P].JP 60242857,1985-12-02.
    [16]Roman JS,Bujian J,Bellon JM,Gallardo A,Escudero MC,Jorge E,de Haro J,Alvarez L,Castillo-Olivares JL.Experimental study of the antithrombogentic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues[J].J Biomed Mater Res,1996,32(1):19-27.
    [17]Yoneyama T,Ishihara K,Nakabayashi N,Ito M,Mishima Y.Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly (etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend[J].J Biomed Mater Res,1998,43(1):15-20.
    [18]李洁华,谢兴益,何成生,樊翠蓉,钟银屏.医用聚氨酯生物相容性研究新进展[J].生物医学工程学杂志,2002,19(2):315-319.
    [19]冯桂龙,王松,朱鹤孙.丝素改性胶原膜的低温等离子体改性及体外抗凝血性研究[J]。高技术通讯,2005,15(6):58-62.
    [20]郭欣君,任志亮.阿司匹林抵抗的研究进展[J].内蒙古医学杂志,2007,39(7):829-831.
    [21]冯婉玉,徐冬辉.阿司匹林的临床应用进展[J].辽宁医学杂志,2007,21(6):345-352.
    [1]Ishihara K,Tanaka S,Furukawa N,Kurita K,Nakabayashi N.Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups.I.Molecular design of polymeric additives and their functions[J].J Biomed Mater Res,1996,32(3):391-399.
    [2]Bélanger MC,Marois Y,Roy R,Mehri Y,Wagner E,Zhang Z,King MW,Yang M,Hahn C,Guidoin R.Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart:blood compatibility and biocompatibility studies[J].Artifical Organs,2000,24(11):879-888.
    [3]Losi P,Lombardi S,Briganti E,Soldani G.Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts[J].Biomaterials,2004,25(18):4447-4455.
    [4]Nan H,Ping Y,.Xuan C,Yongxang L,Xiaolan Z,Guangjun C,Zihong Z,Feng Z,Yuanru C,Xianghuai L,Tingfei X.Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition[J].Biomaterials,1998,19(7-9):771-776.
    [5]郝和平,奚廷斐,卜长生.医疗器械监督管理和评价[M].北京:中国医药科学技术出版社,2000:221-227.
    [6]GB/T 16886.4医疗器械生物学评价第4部分:与血液相互作用试验选择.(GB/T 16886.4-2003,ISO 10993-4:2000,IDT).北京:中国标准出版社,2003.
    [7]顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993,163-169.
    [8]周索琼,李国明.聚氨酯/硫酸酯化壳聚糖复合膜的制备及其血液相容性的研究[J].化工时刊,2007,21(5):257-260.
    [9]黄嘉,乐以伦,郑昌琼.血浆蛋白质在生物材料表面吸附时的Vroman效应[J].生物医学工程学杂志,1999,3(16):113-118.
    [10]赵宇亮,柴之芳.纳米生物效应研究进展[J].中国科学院院刊,2005,3:24-29.
    [11]许海燕,陆颂芳,王春仁,彭屹,孔桦,杨子彬.聚醚型聚氨酯材料表面纤 维蛋白原的吸附性研究[J].中国生物医学工程学报,1998,4:39-44..
    [12]侯长军,张文彬,霍丹群,陈柄灿,任艳容,郑书家.肝素化结合方式及本体材料的研究进展.化工进展,2003,22(7):703-708.
    [1]傅皓,李赛,李洁华,谢兴益,钟银屏.生物降解型聚氨酯在医学中的应用[J].生物医学工程学杂志,2003,20(2):348-351.
    [2]王秀萍.仪器分析技术[M].北京:化学工业出版社,2003:151-152.
    [3]于伟东.纺织材料学[M].北京:中国纺织出版社,2006,5(54):99-100.
    [4]刘密新,罗国安,张新荣,童爱军.仪器分析[M].清华大学出版社,2001,5.
    [5]石家庄神威药业股份有限公司.阿司匹林肠溶片说明书[J].2007,5.
    [6]Ray AR,Bhowmick A.Synthesis and characterization of aliphatic polyurethane fiber:A potential suture material[J].Journal of Biomedical Materials Research,1991,25(10):1249-1257.
    [7]高以恒,叶凌碧.膜分离技术基础[M].北京:中国科学出版社,1989:106-109.
    [8]Bellairs,G L,Nowak C E,Paeakh M.Waterproof breathable microporous membrane with cellular foam adhesive(P),USP 4863788,1989-09-05.
    [9]张丹霞,陈翠仙,李继定,赵之平.聚丙烯腈超滤膜的等离子体接枝改性(I)膜材料的表面结构与性能[J].膜科学与技术,2002,22(4):65-70.
    [10]王庐岩,钱英,刘淑秀,叶晓.聚偏氟乙烯分离膜改性研究进展[J].膜科学与技术,2002,22(5):52-57.
    [11]Kesting RE.Synthetic Polymeric Membranes:A structure perspective[M],(2nd Ed),Wiley,NewYork,1985.
    [12]Kesting RE.Concerning the microstructure of dry RO membranes[J].J Appl Polym Sci,17(1973):1771.
    [13]Kesting RE,Barsh MK,Vincent A.Semipermeable membranes of cellulose acetate for desalination in the process of reverse osmosis.I.Lyotropic swelling of secondary cellulose acetate[J].J Appl Polym Sci,1965,9:663-668.
    [14]Wang XL,Jian H,Chen XZ,Yu XH.Graft polymerization of N-isopropylacrylamide into a microporous polyethylene membrane by the plasma method:technique and morphology[J].Desalination,2002,146:337-343.
    [1]Ishihara K,Tanaka S,Furukawa N,Kurita K,Nakabayashi N.Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups.I.Molecular design of polymeric additives and their functions[J].J Biomed Mater Res,1996,32(3):391-399.
    [2]Bélanger MC,Marois Y,Roy R,Mehd Y,Wagner E,Zhang Z,King MW,Yang M,Hahn C,Guidoin R.Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart:blood compatibility and biocompatibility studies[J].Artifical Organs,2000,24(11):879-888.
    [3]美国材料试验协会(ASlM)编著.医用装置标准[M].成都:成都科技大学出版社.1990:325-330.
    [4]靳军.阿司匹林肠溶片致白细胞减少1例[J].新医学,2006,37(12):802.
    [5]刘海燕,杨桂萍.小剂量阿司匹林肠溶片致全血细胞减少[J].药物不良反应杂志,2006,03:196-209.
    [6]Sanchez M,Deffienux A,Bordenave L,Baquey C,Fontanille M.Synthesis of hemocompatible materials Part Ⅰ:Surface modification of polyurethanes based on poly(chloroalkylvinylether)s by RGD fragments.Clinical Materials,1994,15:253.
    [7]Anderheiden D,Klee D,Hocker H,Heller B,Kirkpatrick CJ,Mittermayer C.Surface modification of a biocompatible polymer based on polyurethane for artificial blood vessels[J].J Mater Sci Mater Med,1992,3(1):1-4.
    [8]Goodman SL,Sims PA,Albrecht RM.Three-dimentional extracellular matrix tetured biomaterials[J].Biomaterials,1996,17(21):2087.
    [1]田鹏,陈剑秋.小口径人工血管材料的研究进展[J].透析与人工器官,2004,15(3):32-38.
    [2]Losi P,Lombardi S,Briganti E,Soldani G.Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts[J].Biomaterials,2004,25(18):4447-4455.
    [3]李宗涛,陈国生,张宇.血管工程学与血管顺应性的研究进展.中国心血管病研究杂志,2004,2(12):985-986.
    [4]罗新锦,吴清玉.小口径人工血管的研究进展[J].中国胸心外科临床杂志,2001,8(3):193-196.
    [5]陈福真,冯友贤,杨珏.丝涤交织人造血管的研究[J].中华实验外科杂志,1999,1:30-31.
    [6]冯友贤,李建明,郑佳瑾.真丝人造血管的临床应用[J].上海第一医学院学报,1981,8:98-101.
    [7]潘治,饶天健.国产膨体聚四氟乙烯血管的实验研究[J].中华外科杂志,1983,21(3):146-148.
    [8]Hamaguchi M,Okuda Y,Yamanouch S,Kumada T.Short.-term thrombogenicity and patency of expanded polytetrafluoroethylene(E-PTFE) vascular grafts with varying wall structure[J].Jpn J Artif Organs,1994,23:832-837.
    [9]Sapsford RN,Oakley GD,Talbot S.Early and late patency of expanded polytetrafluoroethylene vascular grafts in aorta-coronary bypass[J].J Thorac Cardiovasc Surg,1981,81(6):860-864.
    [10]曹海建,钱坤.人造血管的现状及其研究进展[J].四川纺织科技,2004,2:31-33.
    [11]赵书尧,李毓陵,陈旭炜.人造血管用织物的研制及其渗透性能的研究[J].产业用纺织品,2002,12:20-22.
    [12]唐朝君,王贵学,危当恒,邓小燕.小口径人工血管研究的进展[J].中国医疗器械杂志,2005,29(6):439—442.
    [13]潘仕荣,陶军,郑欢玲,易武.小径微孔聚氨酯人工血管的顺应性[J].生物医学工程学杂志,2006,23(3):517-520.
    [14]王继亮,王国斌.人工血管基因修饰的研究进展[J].国外医学生物医学工程分册,2001,24(4).158-162.
    [15]Langer R,Vacanti JP.Tissue engineering[J].Science,1993,260:920-926.
    [16]Niklason LE.Techview:medical technology.Replacement arteries made to order.Science,1999,286:1493-1494.
    [17]Kim BS,Baez CE,Atala A.Biomaterials for tissue engineering.World J Urol,2000,18(1):2-9.
    [18]许益民,张文清,漆松涛.小口径人造血管的研究[J].国外医学.脑血管疾病分册,2005,13(8):609-611.
    [19]Bacourt F.Prospective.randomized study of carbon-impregnated polytetrafluoroethylene grafts for below-knee popliteal and distal bypass:results at 2years.The Association Universitaire de Recherche en Chirurgie[J].Ann Vase Surg,1997,11(6):569-603.
    [20]唐朝君,王贵学,危当恒,邓小燕.小口径人工血管研究的进展[J].中国医疗器械杂志,2005,29(6):439-442.
    [1]王作栻.解剖学与组织胚胎学[M].全国中等卫生学校教材,1998:185-187.
    [2]Lyman DJ,Fazzio FJ,Voorhees H,Robinson G,Albo D Jr.Compliance as a factor affecting the patency of a copolyurethane vascular graft[J].J Biomed Mater Res,1978,12:337-345.
    [3]Dol K,Matsuda T.Significance of porosity and compliance of microporous,polyurethane-based microarterial vessel on neoarterial wall regeneration[J].J Biomed Mater Res,1996,37(4):573-584.
    [4]Hamaguchi M,Okuda Y,Yamanouch S,Kumada T.Short-term thrombogenicity and patency of expanded polytetrafluoroethylene(E-PTFE) vascular grafts with varying wall structure[J].Jpn J Artif Organs,1994,23:832-837.
    [5]Roman JS,Bujian J,Bellon JM,Gallardo A,Escudero MC,Jorge E,de Haro J,Alvarez L,Castillo-Olivares JL.Experimental study of the antithrombogentic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues[J].J Biomed Mater Res,1996,32(1):19-27.
    [6]冯友贤,李建明,郑佳瑾,等.真丝人造血管的临床应用[J].上海第一医学院学报,1981,8:98-101.
    [7]罗新锦,吴清玉.小口径人工血管的研究进展[J].中国胸心外科临床杂志,2001,8(3):193-196.
    [8]Yoneyama T,Ishihara K,Nakabayashi N,Ito M,Mishima Y.Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly (etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend[J].J Biomed Mater Res,1998,43(1):15-20.
    [9]赵书尧,李毓陵,陈旭炜.人造血管用织物的研制及其渗透性能的研究[J].产业用纺织品,2002,12:20-22.
    [10]Eberhart A,Zhang Z,Guidion R,Laroche G,Guay L,De La Faye D,Batt M,King MW.A new generation of polyurethane vascular prostheses:rara avis or ignis fatuus?[J].J Biomed Mater Res,1999,48(4):546-558.
    [11]Sapsford RN,Oaldey GD,Talbot S.Early and late patency of expanded polytetrafluoroethylene vascular grafts in aorta-coronary bypass[J].J Thorac Cardiovasc Surg,1981,81(6):860-864.
    [12]Litwak P,Ward RS,Robinson A J,Yilgor I,Spatz A.Development of a Small Diameter,Complliant,Vascular Prosthesis[J].Tissue Engineering,1988,25-30.
    [13]Wesolowski SA,Fries CC,Karlson KE,De Bakey M,Sawyer PN.Porosity:primary determinant of ultimate fate of synthetic vascular grafts[J].Surgery,1961,50:91-96.
    [14]贾立霞,王璐,凌凯.人造血管的发展历程和方向[J].上海纺织科技,2003,6(3):52-53.
    [15]How TV,Guidoin R,Young SK.Engineering design of vascular prosthesis[J].Proc Instn Mech Engra,1992,206(6):61 -69.
    [16]陈福真,冯友贤,杨珏,等.丝涤交织人造血管的研究[J].中华实验外科杂志,1999,1:30-31.
    [17]潘治,饶天健.国产膨体聚四氟乙烯血管的实验研究[J].中华外科杂志,1983,21(3):146-148.
    [18]张云,张柏根.腹主动脉瘤腔内治疗的发展和现状[J].中国实用外科杂志,2002,22(3):131-134.
    [19]Gupta BS,Kasyanov VA.Biomechanics of human common carotid artery and design.of novel hybrid textile compliant vascular graft[J].J Biomed Mater Res,1997,34(3):341-349.
    [20]Jeschke MG,Hermanutz V,Wolf SE,Koveker GB.Polyurethane vascular prostheses decrease neointimal formation compared with expanded polyterafluoroethylene[J].J Vasc Surg,1999,29(1),168-176.