氧化应激对动物自由基代谢、消化道损伤及抗氧化剂干预作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本试验探讨氧化应激状态下肠道自由基代谢与肠道结构与功能的变化,及其复合抗氧化剂的干预作用,研究复合抗氧化剂、肠道自由基代谢和肠道结构与功能的关系,从而提出了通过营养调控技术修复氧化应激引起的肠道损伤的途径。
     方法:试验一选用36只42日龄的SD大鼠随机分成3组,每组12只。对照组和脂多糖LPS(lipopolysaccharide, LPS)诱导组饲喂基础日粮,修复组在基础日粮中添加复合抗氧化剂(每kg复合抗氧化剂含有200 mg VC、100 mg VE、450 mg茶多酚和5g微生物抗氧化剂),诱导组和修复组在试验的第5、9、13和17天腹腔注射0.8 mg LPS/kg体重,对照组注射等量生理盐水;第22天时,每组选取6只大鼠,进行D-木糖灌胃试验,测定肠道吸收功能。试验期间观察各个组大鼠的生长情况;试验结束后,并计算大鼠脏器指数,测定大鼠血清中丙二醛(Malondialdehyde, MDA)、肝脏组织中超氧化物歧化酶(Superoxide dismutase SOD)、谷胱甘肽过氧化物酶(Glutathione peroxidase, GSH-Px)活力、肠脂肪酶、麦芽糖酶和肠道绒毛高度与宽度。
     试验二选择12窝14日龄哺乳仔猪,随机分为三组,即为对照组、断奶组和修复组,每组4窝。对照组和断奶组饲喂基础饲料,修复组在基础饲粮中添加复合抗氧化剂。断奶组和修复组仔猪在21日龄统一断奶,试验期22天。试验期间记录仔猪的生长及采食量,计算日增重和料重比;在仔猪21日龄、28日龄、35日龄,每窝取三只仔猪前腔静脉采血,用于分析血清中MDA、SOD、一氧化氮(NO)和GSH-Px含量;在24日龄,对每窝选取一只仔猪进行D-木糖灌胃试验,测定肠道吸收功能;在试验结束后测定肝脏中过氧化氢酶(CAT)、MDA、SOD、NO和GSH-Px含量、肠道消化酶活性,及绒毛结构。
     结果:试验一:与对照组相比,诱导组大鼠日增重降低,血清MDA含量有所增加、肝SOD和GSH-Px活力显著下降(P<0.05);肝脏脏器系数下降11.13%(P<0.05);肠道D-木糖含量下降72.72%(P<0.05);肠脂肪酶和麦芽糖酶活力分别下降66.00%和65.74%(P<0.05)。与诱导组相比,修复组MDA含量下降49.31%(P<0.05),SOD和GSH-Px活性分别上升40.96%和35.04%(P<0.05),肝脏脏器系数升高(P<0.05),D-木糖含量、麦芽糖酶活性和绒毛高度显著升高(P<0.05),隐窝深度显著降低(P<0.05)。
     试验二: 28日龄和第35日龄断奶仔猪体重较对照组降低18.45%和28.39%(P<0.05);以电化学法测得断奶组仔猪血清中NO的浓度分别提高199.42%和34.00%(P<0.05);O_2浓度下降和6.32%和11.81%。;28日龄断奶仔猪SOD活性降低47.81%,NO活性显著上升(P<0.05),MDA含量提高34.74%(P>0.05);断奶组仔猪肠道D-木糖含量,肠蔗糖酶、麦芽糖酶、淀粉酶、脂肪酶、肠胰胰蛋白酶均显著降低(P<0.05);回肠pH值升高7.11%(P<0.05);二胺氧化酶(DAO)活性断奶组和修复组仔猪分别显著下降32.31%和30.00%(P<0.05);断奶仔猪的十二指肠、空肠和回肠的隐窝深度显著下降。与断奶组相比,21日龄、35日龄修复组仔猪血清NO浓度分别显著下降30.86%和22.81%(电化学法),修复组仔猪血清中O_2浓度均上升7.76%(P<0.05);修复组仔猪SOD活性显著提高61.48%(P<0.05)和6.15%,28日龄、35日龄修复组NO活性,MDA含量分别显著降低50.07%,52.46%, 33.45%(P<0.05)和38.15%;修复组仔猪麦芽糖酶活力、肠胰蛋白酶活性、胰胰蛋白酶活性分别显著提30.54%,70.11%和100.35%(P<0.05),回肠pH值显著降低5.36%(P<0.05)。各组仔猪肠道绒毛长度、肠道胰蛋白酶活性与自由基H2O_2检测量(μM)、NO检测量(nM)之间均存在着负相关关系(P<0.05),其相关系数和回归关系显著(P<0.05)。
     结论:氧化应激会导致动物体内产生大量自由基,使其抗氧化能力下降,对肠道结构和功能造成损伤。在氧化应激过程中,自由基H2O_2、NO和肠道绒毛与肠胰蛋白酶的活性是肠道损伤与修复的主要生物标志物。使用复合抗氧化剂能够显著提高仔猪抵抗氧化应激的能力,减轻肠道损伤,是有效的干预断奶应激的方法。
Objective:In this experiment we studied the changes between free radicals metaboli and the morphological structure, physiological function of intestinal tract under oxidative stress and discussed the effects of composite antioxidant. To investigate the relationship among free radicals metaboli, composite antioxidant and intestinal tract, we also studied the effects of composite antioxidants on reparation.
     Methods: Experiment 1: 36 healthy SD rats as 42 days of age were randomly divided into three groups with twelve rats in each group. The control group and induction group was fed basal diet and the repair group was fed with composite antioxidant including vitamin C, vitamin E, tea polyphenols and microbial antioxidants. The feeding trial lasted for 22 days. On the 5th、9th、13th、17th day, rats in induction and repair group received an injection of 0.8 mg LPS/kg while rats in control group received of same amount of saline. On the 22nd day of experiment, 6 rats in each group were randomly selected, received D-xylose supplementation. The content of serum MDA, activities of liver SOD, GSH-Px, lipase, maltase and the length, width of intestinal villi were determined.
     Experiment 2: 12 litters of 14-day-old piglets were randomly divided into three groups with 4 litters each. The control group and weaning group were fed basal diet and the repair group was fed composite antioxidant including vitamin C, vitamin E, tea polyphenols, Alpha Lipoic Acid and microbial antioxidants. The feeding trial lasted for 22 days, the induction and repair group were weaned on 21-day-old. On the 21, 28, 35- day-old, the piglets were took blood and on the 24-day-old, 1 piglets in each group were randomly selected, received D-xylose supplementation. The content of serum/liver MDA, NO, activities of serum/liver SOD, GSH-Px, CAT, digestive enzymes and the structure of intestinal villi were determined.
     Results: Experiment 1: The ADG of rats in induction group was lower (P<0.05) than that in control group and the concentration of MDA was higher (P<0.05) and the activity of GSH-Px was lower (P<0.05). The liver coefficient, D-(+)-Xylose concentration in rats’serum, the activities of lipase and maltase in induction were 11.13%, 72.72%, 66% and 65.74% lower (P<0.05) respectively than that in control group. The villus height was lower (P<0.05) and the crypt depth was deeper (P<0.05) than that in control group. While the concentration of MDA was 49.31% lower, the activities of SOD and GSH-Px were 40.96% and 35.04% higher than that in induction group; the liver coefficient, D-(+)-Xylose concentration in rats’serum, the activity of maltase and the villus height were higher; the crypt depth were shallower than that in induction group.
     Experiment 2: Compared with the control group, 28, 35-day-old piglets in weaning group noticeable decrease the weight by 18.45% and 28.39%, the concentration of O_2 by 6.32% and 11.81%, the activities of serum SOD by 47.81%(P<0.05). And also the activities of trypsase, lipase, amylase, maltase, invertase and DAO were lower (P<0.05). Weaning group piglets on 21, 35-day-old increased the concentration of NO by 199.42% and 34.00%, the contents of serum MDA on 35-day-old by 78.14%, the pH value of ileum by7.11 and the content of serum NO was also higher (P<0.05). Compared with the weaning group, the repair group remarkable decreased the concentration of NO by 30.86% and 22.81%, the contents of NO on 28, 35-day-old by 50.07% and 52.46%, MDA by 33.45% (P<0.05) and 38.15%, the pH value of ileum by 5.36%. The repair group piglets dramaticly increased the concentration of O_2 on 28, 35-day-old by 7.76%, the activity of SOD by 61.48% and 6.15%, and the activities of maltase, trysase in intestine and pancreas were 30.54%, 70.11% and 100.35% higher (P<0.05). The related coefficient and linear regression among the concentration of H2O_2, NO, the length of intestine villus and the activities of trypsinase were notable (P<0.05).
     Conclusion: The oxidative stress induced by LPS or weaning can cause animal to produce a large number of free radicals, the ability of antioxidation was decreased and had damage to the structure and function of intestinal tract. The key points of oxidative stress and repairation in animal body were H2O_2, NO, intestine villus and trypsinase. Adding composite antioxidants to the stress and weaning piglets can significantly increase the ability of antioxidantion, reduces peroxidation and also have an effect on intestine reparation, enhancing the function of digestion. Adding composite antioxidants has a good effect on oxidative stress.
引文
[1]付翔,陈薇,段小群等.雪灵芝提取物清除羟自由基和抑制脂质过氧化作用[J].中国中医药信息杂志,2010,17(7): 35-36
    [2]徐坤,任红蕾.不同种类蜂蜜的抗氧化研究[J],食品工业,2008,5: 54-56
    [3]孙存普,张建中,段绍瑾主编.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999年4月.(第1版): 6-15
    [4] BENZ C , YAU C. Ageing , oxidative stress and cancer : paradigms in parallax[J ] . Nat Rev Cancer, 2008 ,8 (11) : 875-879
    [5] Gomberg M. An instance of trivalent carbon: triphenylmenthyl[J]. J Am Chem Soc, 1900, 22(11):751-771
    [6] Lewis GN. Valence and the Structure of Atoms and Molecules[D]. New York: Chemical Catalogue Company, Inc., 1923
    [7] Kharasch MS, Engelmann H. As a summarized article: In Vistas in Free Radical Chemistry[J]. J Org Chem, 1937(2): 288
    [8]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社, 2002, 7: 2-3
    [9] Harman D. Aging: a theory based on free radical and radiation chemistry[J]. Journal of Gerontology, 1956, 11(3): 298-300
    [10] McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase[J]. J Biolchem, 1968, 243: 5753-5759
    [11] Pryor WA.Fed Proc., 1973, 32: 1862-1868
    [12]孙普存,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社. 1999: 15-17
    [13] Loven DH, Schedl H, Wilson H et al. Effects of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozo-tocin-induced diabetes[J]. Diabetes, 1986, 35: 503-507
    [14] Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rats: Effects of insulin treatment[J]. Diabetes, 1987, 36: 1014-1018
    [15] Karpen CW, Pritchard KA, Arnold JH, et al.Restoration of the prostacyclin/thromboxane A 2 balance in the diabetic rat: influence of vitamin E[J].Diabetes, 1982, 31:947-951
    [16]韩立强.肌肽清除自由基及抗氧化性研究[D].郑州:河南农业大学.2004
    [17]顾有方,陈会良,刘德义等.自由基的生理和病理作用[J].动物医学进展,2005,26(1): 94-97
    [18] Janssen YMW, Borm PJA, Van Houten B, et al. Cell and tissue responses to oxidantive damage[J]. Lab Invest, 1993: 69-261
    [19] Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation[J]. Free radical Biol Med, 1995, 18(4): 775-794
    [20] Wolin MS and Mohazzab-H KM. Mediation of signal transduction by oxidants[A]. In: Oxidative Stress and the Molecular Biology of Antioxidant Defenses[C]. Cold Spring Harbor Laboratory Press, 1997: 21-48
    [21] McCord JM. Free radicals and myocardial ischemia: Overview and outlook[J]. Free Radic Biol Med, 1988,4: 9-14
    [22]梁明振,黄忠勇,谢梅冬等,日粮中添加硫辛酸对热应激条件下母兔的影响[J],畜牧与饲料,2010(4): 16-18
    [23]韩磊,马爱国,张燕.维生素A干预对大鼠抗氧化能力及细胞膜流动性影响的研究[J].卫生研究.2004,33(4):450-452
    [24]谢岩黎,周惠明.维生素A抗氧化作用研究进展[J].粮食与油脂,2006,(3):46-48
    [25] Vineet Kumar, Anita Rani, Amit Kumar Dixit, et al. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical- scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour [J]. Food Research International, 2010, 43(1): 323-328
    [26] A. Bendich, L.J. Machlin, O. Scandurra, et al. The antioxidant role of vitamin C[J]. Free Radical Biology & Medicine, 1986, 2(2): 419-444
    [27] L. Jackson Roberts II, John A. Oates, MacRae F. Linton, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans[J]. Free Radical Biology & Medicine, 2007, 43(10): 1388-1393
    [28] Laura Zambonin, Cecilia Prata, Luciana Cabrini, et al.Effect of radical stress and ageing on the occurrence of trans fatty acids in rats fed a trans-free diet[J]. Free Radical Biology & Medicine, 2008, 44(4): 594-601
    [29] Regina Brigelius-Flohé. Vitamin E: The shrew waiting to be tamed[J]. Free Radical Biology & Medicine, 2009, 46(5): 543-554
    [30] Yan Xu, Jun-jian Zhang, Li Xiong, et al. Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress[J]. The Journal of Nutritional Biochemistry, 2010, 21(8): 741-748
    [31] Christian H. Coyle, Brian J. Philips, Shelby N. Morrisroe, et al. Antioxidant effects of green tea and its polyphenols on bladder cells[J]. Life Science, 2008, 83(1): 12-18
    [32] Joyce Ferreira Severino, Bernard A. Goodman, Christopher W.M. Kay, et al. Free radicals generated during oxidation of green tea polyphenols: Electron paramagnetic resonance spectroscopy combined with density functional theory calculations[J]. Free Radical Biology & Medicine, 2009, 46(8): 1076-1088
    [33] Noriko Bando, Hiroki Hayashi, Saori Wakamatsu, et al. Participation of singlet oxygen in ultraviolet-a-induced lipid peroxidation in mouse skin and its inhibition by dietaryβ-carotene: an ex vivo study[J]. Free Radical Biology & Medicine, 2004, 37(11): 1854-1863
    [34] Donghong Liu, John Shi, Alejandra Colina Ibarra, et al. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and b-carotene mixtures on the DPPH free radical[J]. LWT-Food Science and Technology, 2008, 41(7): 1344-1349
    [35] Yvonne G.J. van Helden, Jaap Keijer, Ad M. Knaapen, et al.β-Carotene metabolites enhance inflammation-induced oxidative DNA damage in lung epithelial cells[J]. Free Radical Biology & Medicine, 2009, 46(2): 299-304
    [36]黄业伟,邵宛芳,冷丽影等.普洱茶生茶抗疲劳作用研究[J].西南农业学报,2010,23(3): 801-804
    [37]林智,吕海鹏,崔文锐等.普洱茶的抗氧化酚类化学成分的研究[J].茶叶科学,2006,26(2): 112-116
    [38]冯志华,孙启玲,米坤等.微生物发酵炮制对红花抗氧化活性的影响[J].中草药, 2004, 35(6): 630-633
    [39]吴丽萍,郑辉,血喜文.广昌白莲微生物发酵产物多肽的抗氧化活性研究[J].食品研究, 2008, 29(9): 365-369
    [40] Claire Dufour, Michèle Loonis. Flavonoids and their oxidation products protect efficiently albumin-bound linoleic acid in a model of plasma oxidation[J]. Biochimica et Biophysica Acta, 2007, 1770(6): 958-965
    [41] Walter P. Suza, Carlos A. Avila, Kelly Carruthers, et al. Exploring the impact of wounding and jasmonates on ascorbate metabolism[J]. Plant Physiology and Biochemistry, 2010, 48(5): 337-350
    [42]黄涛,王晓红,朱健飞.酚类饲料抗氧化剂及其构效关系研究[J].中国牧业通讯, 2006, 6: 74-76
    [43]龚灵芝.基于自由基的动物繁殖机能的损伤与修复机理及调控技术研究[D].上海:上海交通大学, 2007
    [44]韩雪.复合抗氧化剂对动物氧化应激与自由基代谢的影响[D].上海:上海交通大学, 2010
    [45]海春旭.新的抗氧化研究理论简介[M].第九次全国生物物理大会学术会议论文摘要集, 2002: 101
    [46]海春旭,王文亮.中药提取物在肝微粒体和相关自由基模型中反应性的筛选[J].癌变·畸变·突变,2004,16(5):286-289
    [47]张晓兰,张志钢,海春旭等.网络抗氧化剂对大鼠非酒精性脂肪肝炎模型疗效的动态观察[J].现代生物医学进展,2008,8(2):213-218
    [48] Lester Packer, Carol Colman. The Antioxidant Miracle[M]. Wiley & Sons Inc. 1999.
    [49] Paul Davis, David Heber, Lester Packer. Oxidation and Antioxidation in Cancer[M]. California: University of Southern California, 2006
    [50] Allison M. Andrews, Dov Jaron, Donald G. Buerk, et al. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro[J]. Nitric Oxide, 2010, 23(4): 335-342
    [51]钱孝琳,宋伟民,曹强.超细碳黑对肺泡Ⅱ型上皮细胞的氧化损伤作用[J].毒理学杂志, 2008, 22 (1) : 14-16
    [52]杨威,邓玉林. HPLC-ECD检测羟自由基方法的研究[J].分析试验室,2007,26(9): 120-122
    [53] Selye H. History of the stress concept[S]. Hand book of stress, theoretical and clinical aspects. New York: Free Press, 1993: 7-20
    [54] Harman D. Aging: a theory based on free radical and radiationchemistry[J]. J Gerontol, 1956, 11: 298-300
    [55] Sohal RS, Allen RG. Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis[J]. Exp Gerontol, 1990, 25: 499-522
    [56] GUTTERIDGEJ M.Lipid peroxidation and antioxi—dants as biomarkers of tissue damage[J]. Clin Chem, 1995, 4I(12 Pt 2): 1819-1828
    [57] SCHALLREUTER K U, GIBBONS N C, ZOTH—NER C, et a1. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin:more evidence for oxidative stress in vitiligo[J]. Biochem Biophys Res Commun, 2007, 360(1): 70—75
    [58]吴永魁,胡仲明.动物应激医学及应激的分子调控机制[J].中国兽医学报, 2005, 25(5): 557-560
    [59]李红梅,王一阳,王华东等.小檗碱和育亨宾对LPS诱导的小鼠肠道损伤和肠上皮细胞增殖抑制的影响[J].中国病理生理杂志, 2010, 26(5): 941-946
    [60]王恬.仔猪断奶应激与营养调控措施的应用[J].畜牧与兽医, 2009, 41(5): 1-4
    [61]孙凤莉.断奶应激对仔猪的影响及调控措施[J].中国饲料,2003,(14):28-32
    [62]王老七.聂芙蓉.断奶应激对仔猪免疫功能的影响[J].安徽农业科学,2007, 35(9):2622-2626
    [63] Secchi A, Ortandefl J M, Schmidt W, et al. Effect of endotoxemia on hepatic portal and sinusoidal blood flow in rats[J]. J Stag Res, 2000, 89(1): 26-30
    [64] Boros M, Takaichi S, Hatmaka K, et al. Ischem.ic time—dependent microvascular changes and reperfnsion iajury in the rat 8maH intestine[J]. J Surg Res, 1995, 59(2): 311-320
    [65] Pedersen B K, Hoffman-Goetz L. Exercise and the immune sys—tern :regulation, integration, and adaptation[J]. Physiol Rev, 2000, 80: 1055-1081
    [66] Howell L B. Cardiovascular aspects of human thermoregulation[J]. Cire Res, 1983, 52: 367-379
    [67] Mitsuoka H, Schmid-Schonbein G W. Mechanisms for blockade of in viva activator production in the ischemic intestine and multi-organ failure[J]. Shock, 2000, 14(5): 522-527
    [68]安丽,张志瑜,张莹,等.VE和氟化物对小鼠睾丸脂质过氧化的联合作用[J].中国公共卫生,2006,20(6):724-725
    [69]孙超,王丽.铅与维生素C对小鼠肝脏脂质过氧化的作用[J].中国农学通报, 2007, 23(8): 13-16
    [70]王艳萍,祁克宗,涂健,等.内毒素对仔鸡血浆SOD活性及MDA水平的影响[J].动物医学进展, 2006, 27(5): 63-65
    [71] Jennifer C, Christy L B, Jade M, et al. Src kinase participates in LPS-induced activation of NADPH oxidase [J]. Molecular Immunology, 2010, 47: 756-762
    [72]徐德冰,钱桂生.抗内毒素治疗的基础和临床研究进展[J].国外医学-呼吸系统分册, 2003, 23 (6) : 292-295
    [73]张英谦,刘建华,胡皓夫.大黄对内毒素血症小鼠一氧化氮和丙二醛的影响[J].中国中西医结合急救杂志, 2004, 11(2): 123- 125
    [74]孙婷婷.微生物源性抗氧化剂对动物繁殖性能和自由基代谢的影响[D].硕士学位论文.上海:上海交通大学,2007:21-25
    [75]吴强,彭西,李英伦,等.高能低蛋白饲料对肝组织抗氧化功能的研究[J].黑龙江畜牧兽医,2008(2),:58-60
    [76] Esterbauer H J, Gebicki H P. The Role of Lipid Peroxidation and Antioxidants on Oxidative Modification of LDL[J]. Free Radical Biol. Med., 1992, 13: 341-390
    [77] Miral D. Introduction to serial reviews on oxidative DNA damage and repair [J]. FreeRadical Biology & Medicine, 2002, 32 (8): 677
    [78] Amit R R, Laran T J, Amornrat N, et al. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection [J]. Free Radical Biology & Medicine, 2009, 46: 154-162
    [79] Mates J M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology [J]. Toxicology, 2000, 153(13): 83-104
    [80]王猛,侯永清,丁斌鹰,等.精胺对断奶仔猪小肠组织形态的影响[J].动物营养学报, 2007, 19(4): 366-371
    [81]刘坚,侯永清,丁斌鹰,等.α-酮戊二酸对脂多糖应激仔猪肠粘膜能量代谢的影响[J].动物营养学报,2009, 21(6): 892-896
    [82]沈峰,王恬.胰岛素对子宫内生长迟缓新生仔猪小肠生长发育的影响[J].肠外与肠内营养, 2005, 12(1): 5-8
    [83] Miller B G, James P S, Snith M W, et al. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients [J]. Agriculture Science, 1986, 107: 579-589
    [84]东方,何普明,林智.普洱茶的抗氧化活性研究进展[J].食品科学, 2007, (5): 363-365
    [85] Mates J M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology [J]. Toxicology, 2000, 153(13):83-104
    [86]武江利,王安,张养东.维生素E对育成金定鸭生长和免疫及抗氧化指标的影响[J].动物营养学报,2008,20(6): 686-691
    [87]黄晶晶,刘玉兰,朱惠玲等. L一精氨酸对脂多糖刺激的断奶仔猪肠道损伤的缓解作用[J].畜牧兽医学报, 2007, 38(12): 1323-1328
    [88] Etleva Veizaj-Delia, Thanas Piu, Pashk Lekaj, et al. Using combined probiotic to improve growth performance of weaned piglets on extensive farm conditions[J]. Livestock Science, 2010, 134(1-3): 249-251
    [89] Tina M. Widowski, Stephanie Torrey, Clover J. Bench, et al. Development of ingestive behaviour and the relationship to belly nosing in early-weaned piglets[J]. Applied Animal Behaviour Science, 2008, 110(1-2): 109-127
    [90] Klassing K C.Etlmmunologically mediated growth depression in chicks influence of feed intake,corticosterone and interleukin[J].Nutr, 1987, 117:1629-1637
    [91] Klasing KC,Barnes D M.Decreased amino acid requirements of growing chicks due to immunologic stressE[J]. Nutr, 1998, 118: 158-1164
    [92] Hoang Huong Giang, Tran Quoc Viet, Brian Ogle, et al. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplementedwith potentially probiotic complexes of lactic acid bacteria[J]. Livestock Science, 2010, 129(1-3): 95-103
    [93] Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of the small intestine in the weaned pig: a review[J]. Livest Prod Sci, 1997, 51(3): 215-236
    [94] Kusterer K, Pihan G, and Szabo S. Role of lipid peroxidation in gastric mucosal lesions induced by HCL, NaOH, or ischemia[J]. Am J Physiol, 1987, 252: G811-G816
    [95] Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia[J]. Gastroenterology,1981, 81(1): 22-29
    [96]何小佳,陈亮,李莹等.高锌日粮长期暴露对断奶仔猪生长性能和血清生化指标的影响[J].中国畜牧兽医, 2008, 35(9): 17-20
    [97]王纯刚,张克英,丁雪梅.丁酸钠对轮状病毒攻毒和未攻毒断奶仔猪生长性能和肠道发育的影响[J].动物营养学报, 2009, 21(5): 711-718
    [98] Burns C P. Extracelluar Na+ and inititation of DNA synthesis: role of intracellular pH and K+[J]. Cell Biol, 1984, 98: 1082-1089
    [99] Canh T T, Stutton A L. Dietary carbohydrate alter the fecal composition and pH and the ammonia emission from slurry of growing pigs[J]. J Anim Sci, 1998, 76: 1887-1895
    [100] Corring P T. The adaption of digestive enzymes to the diet: its physiological significance[J]. Reproduction Nutrition Development, 1980, 20(4B): 1212-1235
    [101] Inbrr Johan. Enzymes in combination. Feed International, 1989, 10: 16-27
    [102] Jensen M S, Jense S K, Jakogsen K. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas[J]. Journal of Animal Science, 1997, 75: 437-445
    [103] Lindemann M D, Cornelius S G, Kandelgy S M E, et al. Effect of age, weaning and diet on digestive enzyme levels in the piglet[J]. Journal of Animal Science, 1986, 62: 1298-1307
    [104] Nabuurs M J A. Microbiological, structural and functional changes of the small intestine of pigs at weaning. Pig news and information, 1995, 16(3): 93N-7N
    [105]龚灵芝,陈小连,徐建雄.微生物源性抗氧化剂对高不饱和脂肪酸饲料导致大鼠自由基损伤模型的影响[J].饲料工业, 2008, 29(30): 30-34
    [106]汤春芳,刘云国,徐卫华等.硫辛酸研究概况[J].中国生化药物杂志, 2005, 26(1): 53-54
    [107]马爱国,刘四朝.不同剂量的维生素C对DNA氧化损伤的影响研究[J].营养学报, 2001, 23(1): 12-14
    [108]汪余勤,吴建新,瞿春莹等.维生素E联合硒防治肝纤维化及抗氧化作用实验研究[J].实用医学杂志, 2007,23(19): 2985-2987
    [109]朱保忠,李琳.α-亚麻酸与抗氧化剂联用对果蝇寿命和小鼠抗氧化能力的影响[J].中国组织工程研究与临床康复, 2008, 12(7): 1264-1267
    [110]朱长林,张文彬,孙鹏等.维生素C与维生素E的联合免疫调节及抗氧化作用[J].中国临床康复, 2006, 10(36): 120-123
    [111] Xiaoping Liu, Qingtao Yan, Kim L, et al. Estimation of Nitric Oxide Concentration in Blood for Different Rates of Generation[J]. The Journal of Biological Chemistry, 2007, 282(12): 8831-8836
    [112] Yoshiichiro Kitamura, Hiroto Ogawa, Kotaro Oka. Real-time measurement of nitric oxide using a bio-imaging and an electrochemical technigue[J]. Talanta, 2003, 61: 717-724
    [113] Fang Wang, Xiaocui Deng, Wei Wang, et al. Nitric oxide measurement in biological and pharmaceutical samples by an electrochemical sensor[J]. J Solid State Electrochem, 2010, 10: 134-144
    [114] Pluske J R, Thompson M J, Atwood C S, et al. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’whole milk after weaning[J]. British Journal of Nutrition, 1996, 76: 409-422
    [115]邬善敏,林杰,邹力等.肠缺血一再灌注对肠黏膜屏障损害的超微结构研究[J].中华医学杂志, 1998, 22(3): 101-102
    [116] Swank GM.Dtitch EA.Role of the gut in multiple organ failure:bactera1 translocation and permeabi1ity changes[J]. Wor1d Surge, l996, 20: l1—417
    [117]隰建成,马远征,黎君友.创伤性脓毒症过程中小肠组织二胺氧化酶活性的变化[J].中华急诊医学杂志, 2005, 14( 5): 421—422