基于人工震源的长偏移距地震信号检测和探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波是照亮地球内部的一盏明灯,迄今为止,关于地球内部的结构、组成、过程和状态等知识几乎全部都来自地震波。地震学发展到现在,人们在利用天然地震研究全球尺度的结构(如地球的分层结构,板块俯冲等)上取得了巨大的成功。但是天然地震空间分布有限、发震时间无法预知且天然地震目前定位精度不高,这些因素大大限制了利用天然地震进行区域(几十到数百公里)尺度介质的精细结构及其变化的研究。人工震源主动探测由于震源位置已知、激发容易控制、观测系统分布完整合理、可以进行密集观测等优点,而成为研究区域结构的主要手段。但人工震源激发能量相对于天然地震太小,射线覆盖范围有限,深度探测能力较低。同时社会的发展也进一步限制大当量破坏性爆破的使用,因此寻找一种绿色环保的有效震源并发展相应的数据处理方法,成为用地震波探测地球深部亟待解决的关键问题。本文主要研究了人工震源的特性,并且根据震源特性在激发和数据处理方面探讨了提高地震信号检测和探测能力的方法。
     首先,为研究水库大容量气枪震源应用于长炮检距深穿透的深地壳结构探测的可行性与有效性,在野外试验的基础上,本文研究了大容量气枪的震源特性、激发子波的特征和规律及其探测效果。结果显示气枪震源具有如下优点:(1)高效震源:6000 in~3的气枪源在水库激发所释放能量仅相当于1.6kgTNT炸药释放的能量,利用短周期流动地震仪可以在近185km处获得气枪激发的清晰信号;(2)低频震源:富含10Hz以下低频能量,优势频率范围为4-6Hz;(3)高度可重复震源:激发波形互相关系数大于0.94的占99.7%;(4)绿色环保震源:气枪震源对试验现场及环境没有产生破坏及噪声污染。
     气枪震源可以用于区域精细结构的探测以及动态变化的监测。我们分析了气枪激发信号在长185km测线上的记录,拾取包含的丰富震相信息(如Pg,Pn,PmP等),并在此基础上反演了该地区的P波速度模型,模型结果显示该地区存在明显的低速层,这与在该地区进行的其他地球物理探测结果一致。鉴于气枪震源的高度可重复性,我们将重复地震方法应用到人工震源探测中,提出主动构建精确的人工重复地震,有效减小源位置的不确定性,提高重复地震方法的可靠性与可行性,为进一步利用人工重复地震进行地下物质状态动态监测与大尺度地震探测奠定了基础。
     其次,为了探索在地震信号激发和处理中借鉴并利用雷达探测中编码原理的可行性,我们提出编码地震探测技术,通过理论分析和数值模拟对该方法提高人工震源地震探测能力的有效性进行了研究,并在此基础上进行了小尺度的野外试验。编码地震探测技术可简要描述为,利用人工震源向地下发送具有独特特征的编码脉冲序列作为一次等效激发,利用准确记录的编码震源源函数与远台地震记录之间的互相关进行“解码”分析获取地下信息。试验数据的处理结果表明该方法能够大幅度提高地震探测能力,利用小能量震源获得远距离、高分辨率的探测效果,是一种具有重要发展前景的人工探测技术。此外,为了尽可能地保持编码地震探测技术中的记录信号与源信号之间的相关性,引入偏振滤波器。我们通过三分量合成地震记录和野外探测实验的实际三分量记录进行验证,该滤波器不但具有很好的去噪功能,而且具有很好的零相位特征。
     传统人工地震探测受到探测深度、分辨率和环保要求等限制,探索利用小能量震源进行深部地震探测具有重要意义。本文的研究为新型人工震源理论和方法的发展提供了新的尝试和基础。
Seismic waves give us the light to illuminate the Earth's interior. So far, almost all the information about Earth's interior such as its structure, composition and status has been gained by seismic wave. With the development of Seismology, people have achieved great success in studying the Earth's interior in global scale by earthquake, such as Earth's layered structure and plate subduction. However, the limited spatial distribution and the unpredictable occurrence of earthquakes, as well as the errors in the location of their epicenters, all these unfavorable factors heavily restrict the application of earthquakes in understanding the subsurface structure and its temporal variation in regional scale. In contrast with earthquake, seismic exploration with active sources has gradually become the dominant means in studying such regional scale structure for its well-known source location and well-controlled excitation thus the possibility of reasonably distributed observation systems. However, the energy released by active sources is relatively weak compared with that from earthquakes, thus reaches shallower in depth and smaller in lateral distance while propagating in the earth. In order to improve the capability of exploration with active sources, one way people used to take is to use large volume dynamite, the usage of which is restricted more and more or even forbidden for the requirement of environmental protection nowadays. It is therefore urgent to find an alternative and effective way as well as related data process methods. This thesis mainly focuses on the characteristics of active sources, and probes into the methods in improving the capability of seismic signal detection and exploration in both the excitation of seismic source and the process of seismic data.
     Firstly, in order to study the feasibility and effectiveness of deep crustal structure exploration by reservoir based air gun source, we analyzed the characteristics of air gun excited in reservoir through field experiment. The results showed that the air gun source has advantages as follows: (1) High Efficiency. The energy released by air gun array of 6000 cubic inches in reservoir is equal to that generated by 1.6Kg dynamite, but the signal could be detected clearly even with offset bigger than 185Km. (2) Low dominant frequency. It is full of low frequency energy, and its dominant frequency is around 4 - 6Hz; (3) High repeatability. Seismic waves (99.7%) from air gun have big cross-correlation coefficients (> 0.94) with each other; (4) Green source. It has no damage to the reservoir dam and aquatic lives.
     Air gun source could be used for exploring the regional fine structure and monitoring the temporal variation. We analyzed the air gun signals in the 185Km-long seismic line. And the records showed that the air gun signal is full of seismic phase information (Pg, Pn, PmP, etc). Based on these phases, we developed the P-wave velocity model for this area and find an obvious low-velocity layer, which is coherent to what people obtained from other geophysical methods in this area. With consideration of air gun source's high repeatability, we proposed an idea to construct active and accurate doublet by combination of doublet method and active sources. This method could effectively minimize the uncertainty of the source locations, thus enhance the feasibility and reliability of the doublet method. It laid the foundation for continuous monitoring on the status of the underground substances through repeated source.
     Secondly, in order to explore the feasibility and potential of applying Code Principles to seismic signal excitation, which can be learned from radar detection, we developed Time Coded Impulsive Seismic Technique (TCIST). We studied the efficiency of this method through theoretical analysis, numerical simulation and field experiment. The principle of this method could be loosely described as follows, instead of using a high impact this method applies a series of moderate energy according to a time coding theme, and obtains the subterranean information by the correlation between the accurately recorded source function and long offset seismic record. Field experiment showed that this method could greatly improve seismic detection by moderate-energy source. In addition, we applied polarization filter to improve SNR of seismic record to contribute to its correlation coefficients with source function in TCIST. We tested the filter with three-component synthetic seismic data and actual record from field experiment. It is not only good for denoising, but also has good zero phase characteristics.
     Traditional seismic exploration with active sources is restricted by source energy, resolution, environmental requirement and etc., thereby it is of great significance to develop methods to conduct seismic exploration in large scale with small energy source. This thesis provides a new attempt and research for the development of the theories and methods with active source.
引文
白超英,秦保燕.深部剪切形变对浅源地震的控制—立交模式有限元的模拟计算.西北地震学报,12(1):1-11,1990.
    彼得.鲍曼.新地震观测实践手册.北京:地震出版社,2006.
    蔡明军,山秀明,徐彦等.从误差观点综述分析地震定位方法.地震研究,27(4):314-317,2004.
    陈浩林,宁书年,熊尽良.气枪阵列子波数值模拟.石油地球物理勘探,38(4):363-370,2003.
    陈棋福,李丽,李纲等.列车振动的地震记录信号特征.地震学报,26(6):651-659,2004.
    陈颙,李娟.2001年地球物理学的一些进展.地球物理学进展,18(1):1-4,2003.
    陈颙,朱日祥.设立“地下明灯研究计划”的建议.地球科学进展,20(5):485-489,2005.
    陈颙,周华伟,葛洪魁.华北地震台阵探测计划.大地测量与地球动力学,25(4):1-5,2006.
    陈颙,张尉,陈汉林,齐诚,陈棋福.地震雷达.地球物理学进展,21(1):1-5,2006.
    陈颙,张先康,丘学林等.陆地人工激发地震波的一种新方法.科学通报,52(1):1-5,2007.
    陈颙,王宝善,葛洪魁等.建立地震发射台的建议.地球科学进展,22(5):441-446,2007.
    陈遵德,段天友,朱广生.Svd滤波方法的改进及应用.石油地球物理勘探,29(6):783-792,1994.
    方盛名,张先康,刘保金等.探测大城市活断层的地球物理方法.地震地质,24(4):606-613,2002.
    傅承义,陈运泰,祁贵仲.地球物理学基础.北京:科学出版社,1985.
    葛洪魁,林建民,王宝善,宋丽莉,罗桂纯,陈颙.编码震源提高地震探测能力的野外实验研究.地球物理学报,49(3):864-870,2006.
    郭建.一种新型地震专用炸药震源.勘探地球物理进展,27(6):451-454,2004.
    郝春月,郑重,周公威.兰州台阵勘址测点相关值曲线的计算分析与初选台阵评估.地震学报,25(6):608-614,2003.
    胡天跃,张广娟,赵伟等.多分量地震波波场分解研究.地球物理学报,47(3):504-508,2004.
    霍志坚,傅旦丹.地震记录信噪比的定量计算.江汉石油学院学报,12(3):15-21,1990.
    嘉世旭,刘昌铨.华北地区人工地震测深震相与地壳结构研究.地震地质,17(2):97-105,1995.
    嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究.地球物理学报,48(3):611-620,2005.
    蒋长胜,吴忠良.由“重复地震”给出的中国地震台网的定位精度估计.中国地震,21(2):147-154,2005.
    李成香,强建科,王建军.地质雷达在公路裂缝检测中的应用.工程地球物理学报,1(3):282-286,2004.
    李丽,彭文涛,李纲等.可作为新震源的列车振动及实验研究.地球物理学报,47(4):118-122,2004.
    李庆忠.走向精确勘探的道路.北京:石油出版社,1993.
    李庆忠.地球物理勘探技术:寻找石油的眼睛.中国科技画报,5:62-64,2001.
    林建民,王宝善,葛洪魁,陈棋福,陈颙.重复地震及其在人工探测中的潜在应用.中国地震,22(1):1-9,2006.
    林建民,王宝善,葛洪魁,唐杰,张先康,陈颙.大容量气枪震源特征及深部介质中传播的震相分析.地球物理学报,51(1):206-212,2008.
    林君.电磁驱动可控震源地震勘探原理与应用.北京:科学出版社,2004.
    刘建华,刘福田,胥颐.三分量地震资料的偏振分析.地球物理学进展,21(1):6-10,2006.
    陆文凯,牟永光.一种改进的svd滤波器.石油地球物理勘探,31(5):736-741,1996.
    罗桂纯,王宝善,葛洪魁等.气枪震源在地球深部结构探测中的应用研究进展.地球物理学进展,21(2):400-407,2006.
    罗桂纯.利用相关检测法进行地震波速及其变化的精确测量/硕士学位论文/.北京:中国地震局地震预测研究所,2006.
    罗桂纯,葛洪魁,王宝善等.气枪震源激发模式及应用.中国地震,23(3):225-232,2007.
    美国”地球透镜计划”项目组.美国”地球透镜计划”.国际地震动态,3:22-41,2004.
    潘纪顺,刘保金,朱金芳等.城市活断层高分辨率地震勘探震源对比试验研究.地震地质,24(4):533-541,2002.
    齐诚,陈棋福,陈颙.利用背景噪声进行地震成像的新方法.地球物理学进展,3:771-777,2007.
    丘学林,赵明辉,叶春明等.南海东北部海陆联测与海底地震仪探测.大地构造与成矿学, 11:295-300,2003.
    丘学林,陈颙,朱日样等.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析.科学通报,52(4):463-469,2007.
    施浒立.美国gps的发展之路.科学时报,2004年9月30日.
    王海燕,高锐,卢占武等.地球深部探测的先锋-深地震反射方法的发展与应用.勘探地球物理进展,29(1):7-19,2006.
    王云峰.高分辨率空气枪阵列及子波研究.中国海上油气(地质),10(6):395-401,1996.
    王振东.浅层地震勘探应用技术.北京:地质出版社,1988.
    吴爱弟,牟永光.地震信号的小波包分解压噪方法.石油地球物理勘探,33(4):558-562,1998.
    吴建平.城市地震活断层探测的地球物理方法.国际地震动态,8:2-15,2001.
    徐锦玺,邱燕,何京国,宁鹏鹏,党俊芳,朱伟强.滩浅海地震勘探采集技术应用.地球物理学进展,20(1):66-70,2005.
    徐文辉,王大为,黄鸿斌等.实时在线式gps授时系统原理与设计.哈尔滨工业大学学报,30(5):30-33,1998.
    杨忠民,黄大云.小波变换在提高资料的信噪比和分辨率中的应用.石油地球物理勘探,29(5):623-629,1994.
    於国平,姜海等.Vsp气枪震源的研制与应用.物探装备,12(1):18-20,27,2002.
    张山.f-x域内提高地震资料的信噪比.石油地球物理勘探,27(5):648-654,1992.
    张松涛.GPS的接收原理与定位技术.武器装备自动化,23(1):9,2004.
    张先康,李松林,王夫运等.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异-深地震测深的结果.地震地质,25(1):52-60,2003.
    张中杰,白志明,王椿镛等.三江地区地壳结构及动力学意义:云南遮放-宾川地震反射/折射剖面的启示.中国科学,35(4):314-319,2005.
    赵明辉,丘学林,夏戡原等.南海东北部海陆联测地震数据处理及初步结果.热带海洋学报,23(1):58-63,2004.
    赵根模,王大宏,任峰等.声波方法在城市活断层探查与评价中的应用-人工地震、雷达和声波方法的比较与组合.中国地震,19(3):217-224,2003.
    郑秀芬,张春贺,孙振凯.美国”地球透镜计划”.国际地震动态,3:22-41.2004.
    中国地震学会普及工作委员会.院士专家谈地震.北京:地震出版社,2000.
    周宝华,刘威北.气枪震源的发展与使用分析(上).物探装备,8(1):1-6,1998a.
    周宝华,刘威北.气枪震源的发展与使用分析(下).物探装备,8(2):1-5,9,1998b.
    周群彪,苟大举,刘健波等.Gps精密授时系统的研制.四川大学学报(自然科学版),36(4):686-691,1999.
    左公宁.陆地电火花震源的特性及其应.勘察科学技术,1:55-60,2003.
    Adams R.D.Source characteristics of some deep new zealand earthquakes.New Zealand Journal of Geology and Geophysics,6(2):209-220,1963.
    Aki K.Charaterization of barriers on an earthquake fault.J.Geophy.Res.,84:6140-6148,1979.
    Aki K.Asperities,barriers,characteristic earthquake,and strong motion prediction.J.Geophy.Res.,89(B7):5867-5872,1984.
    Alekseev A.S.,Chichinin I.S.,and Korneev V.A.Powerful low-frequency vibrators for active seismology.Bull.Seism.Soc.Am.,95:1-17,2005.
    Anderson D.L.and Dziewonski A.M.Seismic tomography.Scientific American,251:60-68,1984.
    Avedik F.,Renard V.,Allenou J.P.,and Morvan B."single bubble" air-gun array for deep exploration.Geophysics,58(3):366-382,1993.
    Baeten G.and Ziolkowski A.The Vibroseis Source.Oxford:Elsevier,1990.
    Barbier M.G.Pulse Coding in Seismology.Boston:International Human Resources Development Corpration,1982.
    Bataille K.and Chiu J.M.Polarization analysis of high-frequency,three-component seismic data.Bull.Seism.Soc.Am.,81:622-642,1991.
    Benhama A.,Cliet C.,and Dubesset M.Study and application of spatial directional filtering in three component recordings.Geophysical Prospecting,36:591-613,1988.
    Bondar I.,Myers S.C.,Engdahl E.R.,and et al.Epicentre accuracy based on seismic network criteria.Geophys.J.Int.,156(3):483-496,2004.
    Bormann P.IASPEI new Manual of Seismological Observatory Practice.Potsdam:Geo-ForschungsZentrum Potsdam,2002.
    Brocher T.M.,Clayton R.W.,Klitgord K.D.,Bohannon R.G.,Sliter R.,McRaney J.K.,Gardner J.V.,and Keene J.B.Multichannel seismic-reflection profiling on the r/v maurice ewing during the los angeles region seismic experiment(larse),california.U.S.Geololical Survey Open-File Report,95-228:70p,1995.
    Caldwell J.Does air-gun noise harm marine mammals? The Leading Edge,21(1):75-78,2002.
    Caldwell J.and Dragoset W.A brief overview of seismic air-gun arryas.The Leading Edge,19(8):898-902,2000.
    Chapman W.L.and Brown D.W.G.L.amd Fair.The vibroseis system:A high-frequency tool.Geophysics,46(12):1657-1666,1981.
    Chen Y.,Liu L.,Ge H.,Liu B.,and Qiu x.Using an airgun array in a land reservoir as the seismic source for seismotectonic studies in northern china:experiments and preliminary results.Geophysical Prospecting,56:601-612,2008.
    Davis P.M.,Jackson D.,and Kagan Y.The longer it has been since the earthquake,the longer the expected time till the next? Bull.Seism.Soc.Am.,79(5):1439-1456,1989.
    Diallo M.S.,Kulesh M.,Holschneider M.,and Scherbaum F.Instantaneous polarization attributes in the time-frequency domain and wavefield separation.Geophysical Prospecting,53:723-731,2005.
    Cho W.H.and Spencer T.W.Estimation of polarization and slowness in mixed wavefields.Geophysics,57:805-814,1992.
    Dekorp Research Group.Wide-angle vibroseis data from the western rhenish massif.Tectonophysics,173):83-93,1990.
    Diallo M.S.,Kulesh M.,Holschneider M.,Kurennaya K.,and Scherbaum F.Instantaneous polarization attributes based on an adaptive approximate covariance method.Geophysics,71:99-104,2006.
    Dragoset B.Introduction to air guns and air-gun arrays.The Leading Edge,19(8):892-897,2000.
    Dragoset B.and Gabitzsch J.Introduction to this special section:Low-frequency seismic.The Leading Edge,26(1):34-35,2007.
    Ellsworth W.L.Bear valley,california,earthquake fault sequence of february-march 1972.Bull.Seism.Soc.Am.,65:483-506,1975.
    Esmersoy C.Polarization analysis,rotation and velocity estimation in three-component vsp,in,vertical seismic profiling:Advanced concepts,m.n.toksoz,and r.r.stewart(eds.).Geophysical Press,pages 236-255,1984.
    Fisher M.A.,Normark W.R.,Bohannon R.G.,Sliter R.W.,and Calvert A.J.Geology of the continental margin beneath santa monica bay,southern california,from seismic-reflection data.Bull.Seism.Soc.Am.,93(5):1955-1983,2003.
    Flinn E.A.Signal analysis using rectilinearity and direction of particle motion.Proceedings of the IEEE,53:1874-1876,1965.
    Fuis G.S.,Clayton R.W.,Davis P.M.,and et al.Fault systems of the 1971 san fernando and 1994northridge earthquakes,southern california:Relocated aftershocks and seismic images from larse ii.Geology,31:171-174,2003.
    Furumoto M.,Ichimori Y.,Hayashi N.,and et al.Seismic wave velocity changes and stress build-up in the crust of the kanto-tokai region.Geophys.Res.Lett.,28:3737-3740,2001.
    Geller R.J.and Mueller C.S.Four similar earthquakes in central california.Geophys.Res.Lett.,7:821-824,1980.
    Giese P.,Prodehl C.,and Stein A.欧洲中部爆破地震研究,国家地震局地球物理勘探大队译.北京:地震出版社,1983.
    Gitterman Y.,Ben-Avraham Z.,and Ginzburg A.Spectral analysis of underwater explosions in the dead sea.Geophys.J.Int.,134(2):460-472,1998.
    Gitterman Y.and Hofstetter A.Dynamic features and identification of regional seismic signals from dead sea calibration shots.Israel Geol.Soc.Annual Meeting,Maalot,2000.
    Godfrey N.J.,Fuis G.S.,Langenheim V.,Okaya D.A.,and Brocher T.M.Lower crustal deformation beneath the central transverse ranges,sorthern california:Results from the los angeles region seismic experiment.J.Geophy.Res.,107(B7):2144,doi:10.1029/2001JB000354,2002.
    Gibbons S.J.and Ringdal F.The detection of low magnitude seismic events using array-based waveform correlation.Geophys.J.Int.,165(1):149-166,2006.
    Gutenberg B.and Richter C.F.Seismicity of the earth and associated phenomena.Princeton N.J.:Princeton University Press,1954.
    Harlar W.S.Signalnoise separation and velocity estimation.Geophysics,49(11):1846-1880,1984.
    Hobbs R.W.and Snyder D.Marine seismic sources for deep seismic reflection profiling.First Break,10:417-426,1992.
    Igarashi T.,Matsuzawa T.,and Hasegawa A.Repeating earthquakes and interpolate aseismic slip in the northeastern japan subduction zone.J.Geophy.Res.,108(B5):2249,doi:10.1029/2002JB001920,2003.
    Isacks B.L.,Sykes L.R.,and Oliver J.Spatial and temporal clustering of deep and shallow earthquakes in the fiji-tonga-kermadec region.Bull.Seism.Soc.Am.,57:935-958,1967.
    Israel M.and Nur A.M.A complete solution of a one dimensional propagation fault with nonuni- form stress and strength.J.Geophy.Res.,84:2223-2234,1979.
    Jepsen D.C.and Kennett B.L.N.Three-component analysis of regional seismograms.Bull.Seism.Soc.Am.,80(6):2032-2052,1990.
    Johnson D.T.Understanding air-gun bubble behavior.Geophysics,59(11):1729-1734,1994.
    Jones I.F.and Levy S.Signal-to-noise ratio enhancement in multichannelseismic data via the karhunen-loeve transform.Geophysical Prospecting,35:12-32,1987.
    Jurkevics A.Polarization analysis of three-component array data.Bull.Seism.Soc.Am.,78:1725-1743,1988.
    Kanasewich E.R.Seismic Noise Attenuation,Handbook of Geophysical Exploration.Oxford:Pergamon Press,1990.
    Kanasewich E.R.Time Sequence Analysis in Geophysics.the University of Alberta Press,1981.
    Lucas E.Polarization analysis of seismic data,M.Sc.Thesis.Flinders University of South Australia,1989.
    Lamb H.The early stages of submarine explosion.Phil Mag.,45:257-265,1923.
    Lau K.W.H.,White R.S.,and Christie P.A.F.Low-frequency source for long-offset,sub-basalt and deep crustal penetration.The Leading Edge,26(1):36-39,2007.
    Li L.,Chen Q.,Cheng X.,and Niu F.Spatial clustering and repeating of seismic events observed along the 1976 tangshan faul4 north china.Geophys.Res.Lett.,34):L23309,doi:10.1029/2007GL031594,2007.
    Lin C.H.Repeated foreshock sequences in the thrust faulting environment of eastern taiwan.Geophys.Res.Lett.,31:L13601,doi:10.1029/2004GL019833.,2004.
    Lindseth R.O.Synthetic sonic logs-a process for stratigraphic interpretation.Geophysics,44:3-26,1979.
    Lutter W.J.,Fuis G.S.,Thurber C.H.,and Murphy J.Tomographic images of the upper crust from the los angeles basin to the mojave desert,california:Result from the los angeles region seismic experiment.J.Geophy.Res.,104(B11):25,543-25,565,1999.
    Martin N.and Stewart R.R.The effect of low frequencies on seismic analysis.CREWE SResearch Report,1994.
    Mayne W.H.and Quay R.G.Seismic signatures of large air guns.Geophysics,36(6):1162-1173,1971.
    Meyer J.H.First comparative results of integral and instantaneous polarization attributes for mul- ticomponent seismic data. Institut Francais Du Petrole, France, 1988.
    Miller R.D., Pullan S.E., Waldner J.S., and et al. Field comparison of shallow seismic sources. Geophysics, 51:2067, 1986.
    Montalbetti J.F. and Kanasewich E.R. Enhancement of teleseismic body phases with a polarization filter. Geophys. J. R. astr. Soc, 21:119-129, 1970.
    Morgan W.J. Plate motions and deep mantle convection. Geol. Society of America Memoir, 132:7-22, 1972.
    Morozov I.B. and Smithson S.B. Instantaneous polarization attributes and directional filtering. Geophysics, 61:872-881, 1996.
    Nadeau R.M. and McEvilly T.V. Seismological studies at parkfield v: Characteristic mi-croearthquake sequences as fault-zone drilling targets. Bull. Seism. Soc. Am., 87:1463-1472, 1997.
    Nadeau R.M. and Johnson L.R. Seismological studies at parkfield vi: Moment release rates and estimates of source parameters for small repeating earthquakes. Bull. Seism. Soc. Am., 88:790-814, 1998.
    Nadeau R.M., Foxall W., and McEvilly T.V. Clustering and periodic recurrence of mi-croearthquakes on the san andreas fault at parkfield, California. Science, 267:503-507,1995.
    Nazareth J.J. and Clayton R.W. Crustal structure of the borderland-continent transition zone of southern California adjacent to los angeles. J. Geophy. Res., 108(B8):2404, doi: 10.1029/2001JB000223,2003.
    Ni S., Kanamori H., and Helmberge D. Energy radiation from the Sumatra earthquake. Nature, 434:582, doi: 10.1038/434a,2005.
    Nishenko S.P. and Buland R. A generic recurrence interval distribution for earthquake forecasting. Bull. Seism. Soc. Am., 77(4): 1382-1399, 1987.
    Okaya D., Bhowmik J., Fuis G., Murphy J., Robertson M., Chakraborty A., Benthien M., Hafner K., and Norris J. Multichannel seismic-reflection profiling on the r/v maurice ewing during the los angeles region seismic experiment (larse), California. U.S. Geololical Survey Open-File Report, 96-019, 1996.
    Okaya D., Stern T., Holbrook S., Avendonk H. V., Davey F., and Henrys S. Imaging a plate boundary using double-sided oneshore-offshore seismic profiling. The Leading Edge, 22:256-260,2003.
    Okaya D., Henrys S., and Stern T. Double-sided onshore-offshore seismic imaging of a plate boundary: "super-gathers" across south island, new Zealand. Tectonophysics, 255:247-263, 2002.
    Oldenburg D.W., Levy S., and Stinson K.J. Root-mean-square velocities and recovery of the acoustic impedance. Geophysics, 49:1653-1663, 1984.
    Oliver J., Cook F., and Brown L. Cocorp and the continental crust. J. Geophy. Res., 88(B4):3329-3347, 1983.
    Park J. Frequency dependent polarization analysis of high-frequency seismograms. J. Geophy. Res., 92:12664-12674, 1987.
    Poupinet G., Ellsworth W.L., and Frechet J. Monitoring velocity variations in the crust using earthquake doublets: an application to the calaveras fault,california. J. Geophy Res., 89(B7):5719-5731, 1984.
    Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag., 34:94-99, 1917.
    Reading A.M., Mao W., and Gubbins D. Polarization filtering for automatic picking of seismic data and improved converted phase detection. Geophys. J. Int., 147:227-234, 2001.
    Reasenberg P. and Aki K. A precise, continuous measurement of seismic velocity for monitoring in situ stress. J. Geophys. Res., 79:399-406, 1974.
    Richards P.G. Weakly coupled potentials for high-frequency elastic waves in continuously stratified media. Bull. Seism. Soc. Am., 64:1575-1588, 1974.
    Roberts R.G. and Christoffersson A. Seismic signal detection—a better mousetrap? Bull. Seism. Soc. Am., 81(6):2511-2515, 1991.
    Roberts P.M., Phillips W.S., and Fehler M.C. Development of the active doublet method for measuring small velocity and attenuation changes in solids. J. Acoust. Soc. Am., 91(6):3291-3302, 1992.
    Robinson J.C. Statistically optimal stacking of seismic data. Geophysics, 35:435-446, 1970.
    Rost S. and Thomas C. Array seismology: Methods and applications. Rev. Geophys., 40(3): 1008, doi: 10. 1029/2000RG000100,2002.
    Rubin A.M. Using repeating earthquakes to correct high-precision earthquake catalogs for time-dependent station delays. Bull. Seism. Soc. Am., 92:1647-1659,2002.
    Ronen S. Psi, pascal, bars, and decibels. The Leading Edge, 21(1):60-62, 2002.
    Rudd B.O. and Husebye E.S. A new three component detector and automatic single-station bulletin production. Bull. Seism. Soc. Am., 82(1):221-237, 1992.
    Safar M.H. Single water gun far-field pressure signatures estimated from near-field measurements. Geophysics, 50(2):257-261, 1985.
    Samson J.C. Matrix and stokes vector representations of detectors for polarized waveforms: theory, with some applications to teleseismic waves. Geophysics J. R. astr Soc, 51:583-603, 1977.
    Samson J.C. Descriptions of the polarization states of vector processes: applications to ulf magnetic fields. Geophysics J. R. astrSoc, 34:403-419,1973.
    Samson J.C. and Olson J.V. Some comments on the descriptions of the polarization states of waves. Geophysics J. R, astrSoc, 61:115-129,1980.
    Samson J.C. and Olson J.V. Data-adaptive polarization filters for multichannel geophysical data. Geophysics, 46(10): 1423-1431,1981b.
    Samson J.C. and Olson J.V. Generalized stokes vectors and generalized power spectra for second-order stationary vector-processes. SIAM J. Appl. Math., 40(1): 137-149, 1981a.
    Samson J.C. The spectral matrix, eigenvalues, and principal components in the analysis of multichannel geophysical data. Ann. Geophys., 1:115-119, 1983.
    Schaff D.P., Beroza G.C., and Shaw B.E. Postseismic response of repeating aftershocks. Geophys. Res. Lett., 25:4549-4552, 1998.
    Schaff D.P. and Richards P.G. Repeating seismic events in china. Science, 303:1176-1178,2004.
    Sheriff R.E. and Geldart L.P. Exploration Seismology: History, Theory, and Data Acquisition. Cambridge: Cambridge Univ. Press, 1982.
    Silver P., Daley T., Niu F., and Majer E. Active source monitoring of crosswell seismic travel time for stress induced changes. Bull. Seism. Soc. Am., 97:281-293,2007.
    Shimshoni M. and Smith S.W. Seismic signal enhancement with three-component detectors. Geophysics, 29(5):664-671, 1964.
    Snieder R. The theory of coda wave interferometry. Pure Appl. Geophys., 163:455—473, doi: 10.1007/s00024-005-0026-6,2006.
    Soma N., Niitsuma H., and Baria R. Reflection technique in time-frequency domain using mul-ticomponent acoustic emission signals and application to geothermal reservoirs. Geophysics, 67:928-938,2002.
    Song X.D. and Richards P.G. Seismological evidence for differential rotation of the earth's inner core. Nature, 382:221-224,1996.
    Stern T., Okaya D., and Scherwath M. Structure and strength of a continental transform from onshore-offshore seismic profiling of south island, new Zealand. Earth Planets Space, 54:1011-1019,2002.
    Steve R. Seismic data acquisition (?)the new millennium. Geophysics, 66(1):54,2001.
    
    Stolt R.H. and Benson A.K. Seismic Migration: Theory and Practice. London: Geophysical Press, 1986.
    
    Thatcher W. The earthquake deformation cycle, recurrence and the time-predictable model. J. Geophy. Res., 89(B7):5674-5680, 1984.
    Van Avendonk H.J.A., Holbrook W.S., Okaya D., and et al. Continental crust under compression: a seismic refraction study of south island geophysical transect, south island, new Zealand. J. Geophy. Res., 109:B06302, doi: 10.1029/2003JB002790,2004.
    Vidale J.E. Complex polarization analysis of particle motion. Bull. Seism. Soc. Am., 76:1393-1405, 1986.
    Vidale J.E., Ellsworth W.L., Cole A., and Marone C. Variations in rupture process with recurrence interval in a repeated small earthquake. Nature, 368:624—626, 1994.
    Wang B.S., Zhu P., Chen Y., Niu F., and Wang B. Continuous subsurface velocity measurement with coda wave interferometry. J. Geophy. Res., Revised, 2008.
    Wagner G.S. and Owens T.J. Signal detection using multi-channel seismic data. Bull. Seism. Soc. Am., 86(1a):221-231,1996.
    Waldhauser F. and Ellsworth W.L. A double difference earthquake location algorithm: Method and application to the northern hayward fault, California. Bull. Seism. Soc. Am., 90(6): 1353-1368, 2000.
    White R.Y. Signal and noise estimation from seismic reflection data using spectral coherence methods. Proceedings of the IEEE, 72(10):1340-1356, 1984.
    White R.E. The performance of optimum stacking filters in suppressing uncorrelated noise. Geophysical Prospecting, 25:165-178, 1977.
    Wiens D.A. and Snider N.O. Repeating deep earthquakes: Evidence for fault reactivation at great depth. Science, 293:1463-1466,2001.
    Yamamura K., Sano O., Utada H., and et al. Long-term observation of in situ seismic velocity and attenuation. J. Geophy. Res., 108(B6):2317,doi: 10.1029/2002JB002005,2003.
    Yilmaz O. Seismic Data Processing. Tulsa: Society of Exploration Geophysicists, 1987.
    Zelt C.A. and Smith R.B. Seismic traveltime inversion for 2-d crustal velocity structure. Geophys. J. Int., 108:16-34,1992.
    Zelt C.A. and Forsyth D.A. Modeling wide-angle seismic data for crustal structure: Southeastern grenville province. J. Geophy. Res., 99(B6):11687-11704, 1994.
    Zelt C.A. Modelling strategies and model assessment for wide-angle seismic traveltime data. Geo-phys. J. Int., 139:183-204, 1999.
    Zhang J., Song X., Li Y., and et al. Inner core differential motion confirmed by earthquake waveform doublets. Science, 309:1357-1360,2005.
    Ziolkowski A. A method for calculating the output pressure waveform from an air gun. Geophys. J. Roy. Astr. Soc, 21:137-161,1970.
    Ziolkowski A. Measurement of air-gun bubble oscillations. Geophysics, 63(6):2009-2024, 1998.
    Zhou H. Multi-scale tomography for crustal p and s velocities in southern California. Pure Appl. Geophys., 161:283-302,2004.