复合抗菌正畸树脂粘接剂的研制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Development and Performance of Complex Comprising Antimicrobial Resin Adhesive
  • 作者:付春茂
  • 论文级别:博士
  • 学科专业名称:口腔临床医学
  • 学位年度:2008
  • 导师:孙新华
  • 学科代码:100302
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-03-01
摘要
本研究将具有抗菌性能的有机配体季铵阳离子和无机阳离子银离子进行合成,形成一种新型的复合抗菌剂(CTS),使之兼具有机抗菌剂的高效性、持续性及无机抗菌剂的安全性、不易产生耐药性。然后通过一种新型的无机填料介孔二氧化硅SBA-15吸附复合抗菌剂,并经表面处理后加入自行研制的光敏树脂粘接剂中。介孔二氧化硅SBA-15可对树脂粘接剂起到增韧作用,利用SBA-15良好的水热稳定性和分子吸附特性能赋予粘接剂缓释抗菌物质的新性能。
     对合成后的复合抗菌光敏树脂粘接剂,采用X-射线衍射、氮气吸附实验、银离子释放性能测试、抑菌环实验和扫描电镜观察等方法,研究树脂粘接剂的剪切性能,老化性能,抗菌性能与生物相容性。结果显示:吸附CTS的SBA-15颗粒,在树脂中含量为15%的条件下,树脂粘接剂的剪切性能最为理想,达到13.1MPa,能充分满足临床需要。树脂的老化实验表明:吸附CTS的SBA-15含量为0%-15%的树脂粘接剂的剪切强度与断裂面结构于0周和24周时无明显的差异。银离子释放性能和抑菌环实验表明:当吸附CTS的SBA-15含量为10%-20%,8-24周时,银离子长期释放性能无明显差距,复合抗菌树脂粘接剂的抑菌环范围则保持相对稳定。依据常规复合树脂的性能标准及中华人民共和国医药行业管理标准的规定,对所研制的复合抗菌粘接剂的生物学性能进行评价,结果表明研制的复合抗菌粘接剂符合口腔材料生物学性能标准的规定。
     本研究为国内首次研制的复合抗菌树脂粘接剂。复合抗菌树脂粘接剂在剪切性能上能够满足临床的要求,复合抗菌剂在溶液中缓慢释放能有效抑制变形链球菌的繁殖,并具有良好的生物相容性。复合抗菌树脂粘接剂丰富了口腔粘接剂的种类,为固定矫治器托槽周围釉质脱矿的预防提供一种新思路和新方法。
The direct cementation technology for was being unbalanced clinically on has brought enormous convenient, but its negative effect also day by day in relief.Holds around the trough often to occur especially escapes the ore obviously and appears the glaze floccosoids.According to escapes the mechanism its preventing and controlling way which the ore forms to have two:First, the enhancement tooth enamel acid resistance ability, its two, prevented the fungus spot adheres to stick cohere.The enhancement tooth enamel acid resistance ability mainly is the partial use fluoride and contains the fluorine cementation medicinal preparation.The partial use fluorine preparation has the accurate enhancement anti- to escape the ore ability, but its effect must rely on patient's cooperation.Contains the fluorine cementation medicinal preparation the release fluorine to enter the tooth enamel the ability in to leave in the body experiment to be possible to obtain the confirmation, but the clinical experimental conclusion still could not determine this spot.The tradition prevented the fungus spot adheres to stick cohere the method has the machinery elimination and chemistry preparation application.The use elimination fungus spot method prevented correcting is being unbalanced the patient tooth enamel to escape the ore fixedly to have easy and feasible, the clinical effect accurate characteristic, but this way efficiency is low, also cooperates the dependence to the patient to be big.After consults the domestic and foreign literature, at present includes antibacterial material the cementation medicinal preparation to substitute gradually contains the fluorine cementation medicinal preparation to become is being unbalanced the direction which the cementation medicinal preparation further studies. This research main use has the antibacterial performance to match the body organically and to have the antibacterial performance the inorganic positive ion to form the compound antibiotics, causes it to have at the same time the organic antibiotics effectiveness, long-enduring and the inorganic antibiotics security, not easy to have the drug resistance, and adsorbs the compound antibiotics after one kind of new inorganic padding SBA-15, add-on enters after the surface treatment is being unbalanced in the cementation medicinal preparation, cuts the performance, the antibacterial performance and biological compatibility these aspects to it conducts the research.
     This research including three aspects:
     1、compound antibacterial resin cementation medicinal preparation synthesis
     Lies between hole silicon dioxide SBA-15 because has the big relative surface to accumulate with the hole volume aperture one also may adjust the appearance controllable surface easy functional group in a nanometer size and so on a series of characteristics thus has the broad application prospect in the biological macro-molecule separation as well as the nanometer material size and the dimension control aspect, we first the water hot way synthesized had the foreword to lie between hole silica material SBA-15, and designed through the orthogonal experiment further optimizes the experimental craft and the condition, obtained had the aperture to distribute 9.9nm, the relative surface and the hole volume respectively is700m2/gand1.45cm3/g.The structure good also the appearance neat has the foreword to lie between hole oxide compound material SBA-15.Afterwards synthesizes has the compound antibacterial function antibiotics medicinal preparation CTS, and carries on the determination to the CTS antibacterial activeness, CTS is higher than to the distortion chain coccus antibacterial activeness matches body CPC.CTS through heats up - the vacuum adsorption law to assemble CTS to the SBA-15 passageway in, carries on the determination with the atomic absorption law to the loading,1gthe SBA-15 average adsorbs CTS 915.8mg.After SBA-15 silicon hydride coupling medicinal preparation processing joins in the photosensitive resin cementation medicinal preparation by the different proportion which independently develops to make the compound antibacterial resin cementation medicinal preparation.
     2、compound antibacterial resin cementation medicinal preparation performance test
     To the compound antibacterial resin cementation medicinal preparation which develops cuts the performance, the resin based on the conventional compound resin performance standard gets older, antibiotics release performance carries on the appraisal; The result showed that, holds the trough cementation intensity test result to fill in adds decorates after after the coupling to lie between hole SBA-15 to be possible to enhance the resin stretch performance remarkably, increases along with the SBA-15 content, resin system intensity obvious increase, when the SBA-15 content is 15%, the compound resin shearing strength is most greatly 13.1Mpa, may reach the resin matrix 1.45 times. When the SBA-15 content continues the increase, the compound resin shearing strength appears drops obviously, the shearing strength and the domestically produced end product Beijing and Tianjin tooth enamel cementation medicinal preparation and overseas transbond compared somewhat low still slightly. The shearing strength 24 weeks aging experiments demonstration, lengthens the different group along with the time the resin cementation medicinal preparation shearing strength to appear the varying degree to drop, the SBA-15 proportion is 20% resin drops obviously. The electricity mirror structure demonstrated the SBA-15 content is 0%-15% resin fracture structure 0 weeks and 24 week not obvious differences. The SBA-15 content is 20% time 0 week and 24 weeks has the obvious difference. The silver ion release tests demonstrated the compound antibacterial resin cementation medicinal preparation soaks the 2~24 week after the distilled water the silver ion release quantity, soaks when the 2nd week the silver ion release are most, accounts for the 24th week total quantity 30%, after soaks 8 weeks the silver ion release gradually to become stable decides, the SBA-15 content is 10%~20% time compound antibacterial resin cementation medicinal preparation soaks the 8~24 week silver ion release density not obvious difference. Damps the ring experiment to contain not on the same scale the CTS resin cementation medicinal preparation gathers fully when 2 weeks all around the resin all to appear obviously damps the ring, when 8-24 week, the SBA-15 content is around 2.5% resins cementation medicinal preparation damps the ring to reduce obviously, when 24 weeks, damps the ring to vanish nearly. The SBA-15 content is 5% resin cementation medicinal preparation its bacteriostasis scope also lengthens its bacteriostasis scope along with the time also gradually to reduce. The SBA-15 content is 7.5%, 10%, 15%, 20% resin cementation medicinal preparation damps the ring scope to maintain relatively stably.
     3、compound antibacterial cementation resin biology performance evaluation
     Toxicity test in vitro, acute systemic toxicity test by oral, oral mucosa stimulation test, pulp and dentition applying test, etc show that the resin composites we developed has no cell toxicity, pulp and dentition stimulation, acute systemic toxicity and oral mucosa stimulation as well. This new type of material possesses well biological compatibility.
引文
1. Frankenberger R, Lohbauer U, Taschner M, Petschelt A, Nikolaenko SA. Adhesive luting revisited: influence of adhesive, temporary cement, cavity cleaning, and curing mode on internal dentin bond strength. J Adhes Dent. 2007;9 Suppl 2:269-273.
    2. Kocadereli I, Ciger S. Retention of orthodontic bands with three different cements. J Clin Pediatr Dent. 1995 Winter;19(2):127-130.
    3. Dincer B, Erdinc AM. A comparison between zinc polycarboxylate and glass ionomer cement in the orthodontic band cementation. J Clin Pediatr Dent. 2002 Spring;26(3):285-288.
    4. Coups-Smith KS, Rossouw PE, Titley KC. Glass ionomer cements as luting agents for orthodontic brackets. Angle Orthod. 2003 Aug;73(4):436-444.
    5. White LW. Glass ionomer cement. J Clin Orthod. 1986 Jun;20(6):387-391.
    6. Phijaisanit P, Tyas MJ. Comparison of the shear bond strength of a so-called 'dual-cured glass-ionomer cement' and a conventional resin composite used in orthodontic bonding. Aust Orthod J. 1997 Oct;15(1):23-29.
    7. Bowen RL, Rodriguez MS. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc. 1962 Mar;64:378-387.
    8. Newman GV. Epoxy adhesives for orthodontic attachments: progress report. Am J Orthod. 1965 Dec;51(12):901-912.
    9. Vicente A, Bravo LA, Romero M, Ortiz AJ, Canteras M. A comparison of theshear bond strength of a resin cement and two orthodontic resin adhesive systems. Angle Orthod. 2005 Jan;75(1):109-113.
    10. Millett DT, McCluskey LA, McAuley F, Creanor SL, Newell J, Love J. A comparative clinical trial of a compomer and a resin adhesive for orthodontic bonding. Angle Orthod. 2000 Jun;70(3):233-240.
    11. Nicholson JW. Polyacid-modified composite resins ("compomers") and their use in clinical dentistry. Dent Mater. 2007 May;23(5):615-622.
    12. Hatanaka K, Irie M, Tjandrawinata R, Suzuki K. Effect of spherical silica filler addition on immediate interfacial gap-formation in Class V cavity and mechanical properties of resin-modified glass-ionomer cement. Dent Mater J. 2006 Sep;25(3):415-422.
    13. Hegarty DJ, Macfarlane TV. In vivo bracket retention comparison of a resin-modified glass ionomer cement and a resin-based bracket adhesive system after a year. Am J Orthod Dentofacial Orthop. 2002 May;121(5):496-501.
    14. Gaworski M, Weinstein M, Borislow AJ, Braitman LE. Decalcification and bond failure: A comparison of a glass ionomer and a composite resin bonding system in vivo. Am J Orthod Dentofacial Orthop. 1999 Nov;116(5):518-521.
    15. 胡炜. 树脂改良型玻璃离子粘固剂粘接正畸托槽的临床评价. 口腔正畸学. 2005;12(3):97-100.
    16. Coutinho E, Yoshida Y, Inoue S, Fukuda R, Snauwaert J, Nakayama Y, et al. Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res. 2007 Jul;86(7):656-661.
    17. Buonocore MG. A simple method of increasing the adhesion of acrylic fillingmaterials to enamel surfaces. J Dent Res. 1955 Dec;34(6):849-853.
    18. Barkmeier WW, Shaffer SE, Gwinnett AJ. Effects of 15 vs 60 second enamel acid conditioning on adhesion and morphology. Oper Dent. 1986 Summer;11(3):111-116.
    19. Gardner A, Hobson R. Variations in acid-etch patterns with different acids and etch times. Am J Orthod Dentofacial Orthop. 2001 Jul;120(1):64-67.
    20. Kurtz JS, Perdigao J, Geraldeli S, Hodges JS, Bowles WR. Bond strengths of tooth-colored posts, effect of sealer, dentin adhesive, and root region. Am J Dent. 2003 Sep;16 Spec No:31A-36A.
    21. Crane DL, Heuer MA, Kaminski EJ, Moser JB. Biological and physical properties of an experimental root canal sealer without eugenol. J Endod. 1980 Feb;6(2):438-445.
    22. Kataoka H, Yoshioka T, Suda H, Imai Y. Dentin bonding and sealing ability of a new root canal resin sealer. J Endod. 2000 Apr;26(4):230-235.
    23. Bishara SE, VonWald L, Laffoon JF, Warren JJ. Effect of a self-etch primer/adhesive on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop. 2001 Jun;119(6):621-624.
    24. Bishara SE, Oonsombat C, Ajlouni R, Laffoon JF. Comparison of the shear bond strength of 2 self-etch primer/adhesive systems. Am J Orthod Dentofacial Orthop. 2004 Mar;125(3):348-350.
    25. Bishara SE, Ajlouni R, Laffoon JF, Warren JJ. Comparison of shear bond strength of two self-etch primer/adhesive systems. Angle Orthod. 2006 Jan;76(1):123-126.
    26. Bishara SE, Ostby AW, Laffoon JF, Warren J. Shear bond strength comparison of two adhesive systems following thermocycling. A new self-etch primer and a resin-modified glass ionomer. Angle Orthod. 2007 Mar;77(2):337-341.
    27. da Silva Telles PD, Aparecida M, Machado M, Nor JE. SEM study of a self-etching primer adhesive system used for dentin bonding in primary and permanent teeth. Pediatr Dent. 2001 Jul-Aug;23(4):315-320.
    28. House K, Ireland AJ, Sherriff M. An investigation into the use of a single component self-etching primer adhesive system for orthodontic bonding: a randomized controlled clinical trial. J Orthod. 2006 Mar;33(1):38-44; discussion 28.
    29. Oliveira SS, Pugach MK, Hilton JF, Watanabe LG, Marshall SJ, Marshall GW, Jr. The influence of the dentin smear layer on adhesion: a self-etching primer vs. a total-etch system. Dent Mater. 2003 Dec;19(8):758-767.
    30. Abo T, Uno S, Sano H. Comparison of bonding efficacy of an all-in-one adhesive with a self-etching primer system. Eur J Oral Sci. 2004 Jun;112(3):286-292.
    31. Kimura T, Dunn WJ, Taloumis LJ. Effect of fluoride varnish on the in vitro bond strength of orthodontic brackets using a self-etching primer system. Am J Orthod Dentofacial Orthop. 2004 Mar;125(3):351-356.
    32. Elkhatib H, Nakajima M, Hiraishi N, Kitasako Y, Tagami J, Nomura S. Surface pH and bond strength of a self-etching primer/adhesive system to intracoronal dentin after application of hydrogen peroxide bleach with sodium perborate. Oper Dent. 2003 Sep-Oct;28(5):591-597.
    33. Jacques P, Hebling J. Effect of dentin conditioners on the microtensile bondstrength of a conventional and a self-etching primer adhesive system. Dent Mater. 2005 Feb;21(2):103-109.
    34. Nikaido T, Takada T, Kitasako Y, Ogata M, Shimada Y, Yoshikawa T, et al. Retrospective study of five-year clinical performance of direct composite restorations using a self-etching primer adhesive system. Dent Mater J. 2006 Sep;25(3):611-615.
    35. Farrar SR, Attril DC, Dickinson MR, King TA, Blinkhorn AS. Etch rate and spectroscopic ablation studies of Er:YAG laser-irradiated dentine. Appl Opt. 1997 Aug 1;36(22):5641-5646.
    36. Melendez EJ, Arcoria CJ, Dewald JP, Wagner MJ. Effect of laser-etch on bond strengths of glass ionomers. J Prosthet Dent. 1992 Mar;67(3):307-312.
    37. Armengol V, Jean A, Enkel B, Assoumou M, Hamel H. Microleakage of class V composite restorations following Er:YAG and Nd:YAP laser irradiation compared to acid-etch: an In vitro study. Lasers Med Sci. 2002;17(2):93-100.
    38. Moore ME, Gepford HJ, Hoffman JM, McKeever RJ, Devine RT. Operational specifications of the laser illuminated track etch scattering dosemeter reader. Radiat Prot Dosimetry. 2006;120(1-4):466-469.
    39. Ramos RP, Chinelatti MA, Chimello DT, Borsatto MC, Pecora JD, Palma-Dibb RG. Bonding of self-etching and total-etch systems to Er:YAG laser-irradiated dentin. Tensile bond strength and scanning electron microscopy. Braz Dent J. 2004;15 Spec No:SI9-20.
    40. Walsh LJ. Split-mouth study of sealant retention with carbon dioxide laser versus acid etch conditioning. Aust Dent J. 1996 Apr;41(2):124-127.
    41. Feuerstein O, Mayer I, Deutsch D. Physico-chemical changes of human enamel irradiated with ArF excimer laser. Lasers Surg Med. 2005 Sep;37(3):245-251.
    42. Hashiguchi K, Hashimoto K. Effects of KrF excimer laser irradiation on human dental enamel. Okajimas Folia Anat Jpn. 2000 Mar;76(6):321-333.
    43. Wilder-Smith P, Lin S, Nguyen A, Liaw LH, Arrastia AM, Lee JP, et al. Morphological effects of ArF excimer laser irradiation on enamel and dentin. Lasers Surg Med. 1997;20(2):142-148.
    44. Chin-Ying SH, Xiaoli G, Jisheng P, Wefel JS. Effects of CO2 laser on fluoride uptake in enamel. J Dent. 2004 Feb;32(2):161-167.
    45. Tsai CL, Lin YT, Huang ST, Chang HW. In vitro acid resistance of CO2 and Nd-YAG laser-treated human tooth enamel. Caries Res. 2002 Nov-Dec;36(6):423-429.
    46. Chiba Y, Yamaguchi K, Miyazaki M, Tsubota K, Takamizawa T, Moore BK. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength. Oper Dent. 2006 Mar-Apr;31(2):233-239.
    47. Hiraishi N, Breschi L, Prati C, Ferrari M, Tagami J, King NM. Technique sensitivity associated with air-drying of HEMA-free, single-bottle, one-step self-etch adhesives. Dent Mater. 2007 Apr;23(4):498-505.
    48. Kanellis MJ, Warren JJ, Levy SM. Comparison of air abrasion versus acid etch sealant techniques: six-month retention. Pediatr Dent. 1997 May-Jun;19(4):258-261.
    49. Knobloch LA, Meyer T, Kerby RE, Johnston W. Microleakage and bond strength of sealant to primary enamel comparing air abrasion and acid etch techniques.Pediatr Dent. 2005 Nov-Dec;27(6):463-469.
    50. Boonstra W, de Vries J, ten Bosch J, Ogaard B, Arends J. Inhibition of bovine dentin demineralization by a glutardialdehyde pretreatment: an in vitro caries study. Scand J Dent Res. 1993 Apr;101(2):72-77.
    51. Ogaard B, Rolla G, Ruben J, Dijkman T, Arends J. Microradiographic study of demineralization of shark enamel in a human caries model. Scand J Dent Res. 1988 Jun;96(3):209-211.
    52. Rundegren J, Koulourides T, Ericson T. Contribution of maltitol and lycasin to experimental enamel demineralization in the human mouth. Caries Res. 1980;14(2):67-74.
    53. Chang HS, Walsh LJ, Freer TJ. Enamel demineralization during orthodontic treatment. Aetiology and prevention. Aust Dent J. 1997 Oct;42(5):322-327.
    54. Kukleva MP, Shetkova DG, Beev VH. Comparative age study of the risk of demineralization during orthodontic treatment with brackets. Folia Med (Plovdiv). 2002;44(1-2):56-59.
    55. Lovrov S, Hertrich K, Hirschfelder U. Enamel Demineralization during Fixed Orthodontic Treatment - Incidence and Correlation to Various Oral-hygiene Parameters. J Orofac Orthop. 2007 Sep;68(5):353-363.
    56. Balenseifen JW, Madonia JV. Study of dental plaque in orthodontic patients. J Dent Res. 1970 Mar-Apr;49(2):320-324.
    57. Mattingly JA, Sauer GJ, Yancey JM, Arnold RR. Enhancement of Streptococcus mutans colonization by direct bonded orthodontic appliances. J Dent Res. 1983 Dec;62(12):1209-1211.
    58. Dionysopoulos P, Kotsanos N, Koliniotou-Koubia E, Tolidis K. Inhibition of demineralization in vitro around fluoride releasing materials. J Oral Rehabil. 2003 Dec;30(12):1216-1222.
    59. Underwood ML, Rawls HR, Zimmerman BF. Clinical evaluation of a fluoride-exchanging resin as an orthodontic adhesive. Am J Orthod Dentofacial Orthop. 1989 Aug;96(2):93-99.
    60. Bishara SE, Swift EJ, Jr., Chan DC. Evaluation of fluoride release from an orthodontic bonding system. Am J Orthod Dentofacial Orthop. 1991 Aug;100(2):106-109.
    61. Kindelan JD. In vitro measurement of enamel demineralization in the assessment of fluoride-leaching orthodontic bonding agents. Br J Orthod. 1996 Nov;23(4):343-349.
    62. ten Cate JM, Damen JJ, Buijs MJ. Inhibition of dentin demineralization by fluoride in vitro. Caries Res. 1998;32(2):141-147.
    63. Othman HF, Wu CD, Evans CA, Drummond JL, Matasa CG. Evaluation of antimicrobial properties of orthodontic composite resins combined with benzalkonium chloride. Am J Orthod Dentofacial Orthop. 2002 Sep;122(3):288-294.
    64. Al-Musallam TA, Evans CA, Drummond JL, Matasa C, Wu CD. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop. 2006 Feb;129(2):245-251.
    65. Rahiotis C, Vougiouklakis G. Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J Dent. 2007 Aug;35(8):695-698.
    66. Oshiro M, Yamaguchi K, Takamizawa T, Inage H, Watanabe T, Irokawa A, et al. Effect of CPP-ACP paste on tooth mineralization: an FE-SEM study. J Oral Sci. 2007 Jun;49(2):115-120.
    67. Cellini L, Piccolomini R, Allocati N, Ravagnan G. Adhesive properties of Proteus genus related to antimicrobial agents resistance. Microbiologica. 1987 Jul;10(3):291-299.
    68. Korbmacher HM, Huck L, Kahl-Nieke B. Fluoride-releasing adhesive and antimicrobial self-etching primer effects on shear bond strength of orthodontic brackets. Angle Orthod. 2006 Sep;76(5):845-850.
    69. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, F B, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998(279):548-552.
    70. Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J. A New Property of MCM-41: Drug Delivery System. Chem Mater. 2001;13(2):308-311.
    71. Zhu S, Zhou Z, Zhang D. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. Chemphyschem. 2007 Dec 3;8(17):2478-2483.
    72. Liu Y, Miyoshi H, Nakamura M. Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: preparation and fluorescein isothiocyanate (FITC) release kinetics. Colloids Surf B Biointerfaces. 2007 Aug 1;58(2):180-187.
    73. Doadrio AL, Sousa EM, Doadrio JC, Perez Pariente J, Izquierdo-Barba I, Vallet-Regi M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicindrug delivery. J Control Release. 2004 May 31;97(1):125-132.
    74. Hartmann M, Vinu A, Chandrasekar G. Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves. Chem Mater. 2005;17(4):829-833.
    75. Jin G-Q, Guo X-Y. Synthesis and characterization of mesoporous silicon carbide. Microporous and Mesoporous Materials. 2003;60(1-3):207-212.
    76. Fujiwara M, Shiokawa K, Zhu Y. Preparation of mesoporous silica/polymer sulfonate composite materials. Journal of Molecular Catalysis A: Chemical. 2007;264(1-2):153-161.
    77. Golenchenko VA, Silaeva SA, Gavil'chak AV, Shekhter AB, Nikolaev A, Chumakov VG, et al. [A quaternary ammonium salt of oligomer 25 conidine accelerates skin wound healing in rats]. Biull Eksp Biol Med. 1995 Oct;120(10):407-409.
    78. Annunziata R, Benaglia M, Cinquini M, Cozzi F, Tocco G. A poly(ethylene glycol)-supported quaternary ammonium salt: An efficient, recoverable, and recyclable phase-transfer catalyst. Org Lett. 2000 Jun 15;2(12):1737-1739.
    79. 郭 志 强 . 烷基 氯 化铵季铵 盐 的抗菌性能研究 . 日 用 化 学 品 科 学 . 2004;27(2):20-22.
    80. Yoon KY, Byeon JH, Park CW, Hwang J. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol. 2008 Feb 15;42(4):1251-1255.
    81. Kwakye-Awuah B, Williams C, Kenward MA, Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol. 2007 Dec 20.
    82. Percival SL, Bowler PG, Dolman J. Antimicrobial activity of silver-containingdressings on wound microorganisms using an in vitro biofilm model. Int Wound J. 2007 Jun;4(2):186-191.
    83. Bayston R, Mills A, Howdle SM, Ashraf W. Comment on: the increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007 Aug;60(2):447; author reply 447-448.
    84. 李锦州, 张光林, 沙靖全, 安郁美. 呋喃甲酰基吡唑啉酮缩氨基硫脲配合物的合成、光谱表征及生物活性. 光谱学与光谱分析. 2005;25(2):216-218.
    85. 范迎菊, 赵全芹, 盛永丽, 马玉翔. 5-溴水杨醛 Sclliff 碱及其铜(Ⅱ)配合物的表征和抑菌活性的研究. 化学世界. 2005;46(6):352-353,357.
    86. Wachhold M, Kanatzidis MG. Cs3AgAs4Se8 and CsAgAs2Se4: selenoarsenates with infinite 1 infinity[AsSe2]- chains in different Ag+ coordination environments. Inorg Chem. 2000 May 29;39(11):2337-2343.
    87. Marone P, Monzillo V, Perversi L, Carretto E. Comparative in vitro activity of silver sulfadiazine, alone and in combination with cerium nitrate, against staphylococci and gram-negative bacteria. J Chemother. 1998 Feb;10(1):17-21.
    88. Balas F, Kokubo T, Kawashita M, Nakamura T. Surface modification of organic polymers with bioactive titanium oxide without the aid of a silane-coupling agent. J Mater Sci Mater Med. 2007 Jun;18(6):1167-1174.
    89. Goyne KW, Chorover J, Kubicki JD, Zimmerman AR, Brantley SL. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. Journal of Colloid and Interface Science. 2005;283(1):160-170.
    90. Zhang D, Wan Y, Li G, Zhang J, Li H, Dongyuan Zhao SQYT, et al. Synthesis of silver nanowire/mesoporous silica composite as a highly active antiseptic.Studies in Surface Science and Catalysis: Elsevier; 2007. p. 841-846.
    91. Salis A, Meloni D, Ligas S, Casula MF, Monduzzi M, Solinas V, et al. Physical and chemical adsorption of Mucor javanicus lipase on SBA-15 mesoporous silica. Synthesis, structural characterization, and activity performance. Langmuir. 2005 Jun 7;21(12):5511-5516.
    92. Tate MP, Eggiman BW, Kowalski JD, Hillhouse HW. Order and orientation control of mesoporous silica films on conducting gold substrates formed by dip-coating and self-assembly: a grazing angle of incidence small-angle X-ray scattering and field emission scanning electron microscopy study. Langmuir. 2005 Oct 25;21(22):10112-10118.
    93. Suzuki H, Taira M, Wakasa K, Yamaki M. Refractive-index-adjustable fillers for visible-light-cured dental resin composites: preparation of TiO2-SiO2 glass powder by the sol-gel process. J Dent Res. 1991 May;70(5):883-888.
    94. Yu RY, Zhou YS, Feng HL, Liu XY. Biocompatibility test of polymethylmethacrylate denture base resin containing silver-supported antimicrobial agent STR-1 at nanometer level. Beijing Da Xue Xue Bao. 2006 Oct 18;38(5):522-524.
    95. Zhang LQ, Gao B, Tang LH, Chen G. The influence of nanometer inorganic filling carrying silver on the properties of composite resin. Shanghai Kou Qiang Yi Xue. 2006 Feb;15(1):73-76.
    96. Gierszal KP, Jaroniec M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc. 2006 Aug 9;128(31):10026-10027.
    97. Tosheva L, Parmentier J, Saadallah S, Vix-Guterl C, Valtchev V, Patarin J. Carbon and SiC macroscopic beads from ion-exchange resin templates. J Am Chem Soc. 2004 Oct 27;126(42):13624-13625.
    98. Chan DCN, Titus HW, Chung KH, Dixon H, Wellinghoff ST, Rawls HR. Radiopacity of tantalum oxide nanoparticle filled resins. Dental Materials. 1999;15(3):219-222.
    99. Debnath S, Wunder SL, McCool JI, Baran GR. Silane treatment effects on glass/resin interfacial shear strengths. Dental Materials. 2003;19(5):441-448.
    100. Chan DC, Swift EJ, Jr., Bishara SE. In vitro evaluation of a fluoride-releasing orthodontic resin. J Dent Res. 1990 Sep;69(9):1576-1579.
    101. Bishara SE, Soliman M, Laffoon J, Warren JJ. Effect of antimicrobial monomer-containing adhesive on shear bond strength of orthodontic brackets. Angle Orthod. 2005 May;75(3):397-399.
    102. Shinya M, Shinya A, Lassila LV, Gomi H, Varrela J, Vallittu PK. Treated enamel surface patterns associated with five orthodontic adhesive systems--surface morphology and shear bond strength. Dent Mater J. 2008 Jan;27(1):1-6.
    103. Thomas RL, de Rijk WG, Evans CA. Tensile and shear stresses in the orthodontic attachment adhesive layer with 3D finite element analysis. Am J Orthod Dentofacial Orthop. 1999 Nov;116(5):530-532.
    104. 纪昌蓉, 屠克庆. 京津釉质粘合剂在口腔正畸临床应用的评价. 中华口腔医学杂志1990,25(2)-76-78. 1990;25(2):76-78.
    105. Armstrong D, Shen G, Petocz P, Darendeliler MA. Excess adhesive flash upon bracket placement. A typodont study comparing APC PLUS and Transbond XT.Angle Orthod. 2007 Nov;77(6):1101-1108.
    106. Elaut J, Wehrbein H. The effects of argon laser curing of a resin adhesive on bracket retention and enamel decalcification: a prospective clinical trial. Eur J Orthod. 2004 Oct;26(5):553-560.
    107. Croll TP. Light-hardened glass-ionomer-resin cement restoration adjacent to a bonded orthodontic bracket: a case report. Quintessence Int. 1994 Jan;25(1):65-67.
    108. Scougall Vilchis RJ, Yamamoto S, Kitai N, Hotta M, Yamamoto K. Shear bond strength of a new fluoride-releasing orthodontic adhesive. Dent Mater J. 2007 Jan;26(1):45-51.
    109. Cozza P, Martucci L, De Toffol L, Penco SI. Shear bond strength of metal brackets on enamel. Angle Orthod. 2006 Sep;76(5):851-856.
    110. Ogaard B, Larsson E, Henriksson T, Birkhed D, Bishara SE. Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am J Orthod Dentofacial Orthop. 2001 Jul;120(1):28-35.
    111. Ogaard B, Larsson E, Glans R, Henriksson T, Birkhed D. Antimicrobial effect of a chlorhexidine-thymol varnish (Cervitec) in orthodontic patients. A prospective, randomized clinical trial. J Orofac Orthop. 1997;58(4):206-213.
    112. Bizhang M, Seemann R, Duve G, Romhild G, Altenburger JM, Jahn KR, et al. Demineralization effects of 2 bleaching procedures on enamel surfaces with and without post-treatment fluoride application. Oper Dent. 2006 Nov-Dec;31(6):705-709.
    113. Mjor IA. Fluoride and demineralization. J Am Dent Assoc. 2007 Jul;138(7):938;author reply 938, 940.
    114. Reynolds I. A review of direct orthodontic bonding. Br J Orthod. 1975;2:171-178.
    115. Eminkahyagil N, Korkmaz Y, Gokalp S, Baseren M. Shear bond strength of orthodontic brackets with newly developed antibacterial self-etch adhesive. Angle Orthod. 2005 Sep;75(5):843-848.
    116. 艾红军, 永井正洋, 等. 冷热循环刺激对粘接性树脂粘接性能的影响. 中国医科大学学报. 2001;30(6):433-434.
    117. Clark SA, Gordon PH, McCabe JF. An ex vivo investigation to compare orthodontic bonding using a 4-META-based adhesive or a composite adhesive to acid-etched and sandblasted enamel. J Orthod. 2003 Mar;30(1):51-58; discussion 23.
    118. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J. 2008 Jan;27(1):99-104.
    119. Lee YK, Powers JM. Influence of background color on the color changes of resin composites after accelerated aging. Am J Dent. 2007 Feb;20(1):27-30.
    120. Lee YK, Lu H, Powers JM. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent Mater. 2006 Jul;22(7):653-660.
    121. Ravindranath V, Gosz M, De Santiago E, Drummond JL, Mostovoy S. Effect of cyclic loading and environmental aging on the fracture toughness of dental resin composite. J Biomed Mater Res B Appl Biomater. 2007 Jan;80(1):226-235.
    122. Lu H, Powers JM. Color stability of resin cements after accelerated aging. Am JDent. 2004 Oct;17(5):354-358.
    123. Yap AU, Lye KW, Sau CW. Effects of aging on repair of resin-modified glass-ionomer cements. J Oral Rehabil. 2000 May;27(5):422-427.
    124. Vallittu PK. Effect of 10 years of in vitro aging on the flexural properties of fiber-reinforced resin composites. Int J Prosthodont. 2007 Jan-Feb;20(1):43-45.
    125. el-Sheikh MM, Powers JM. Tensile bond strength of porcelain teeth to denture resin before and after aging. Int J Prosthodont. 1998 Jan-Feb;11(1):16-20.
    126. 蓝立文, 顾凡. 在高温水浸环境中环氧树脂的吸湿性研究. 高分子材料科学与工程. 1989;5(5):62-67.
    127. Radovic I, Monticelli F, Papacchini F, Magni E, Cury AH, Vulicevic ZR, et al. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach. J Dent. 2007 Aug;35(8):683-689.
    128. Yap AU, Sau CW, Lye KW. Effects of aging on repair bond strengths of a polyacid-modified composite resin. Oper Dent. 1999 Nov-Dec;24(6):371-376.
    129. Zhou M, Drummond JL, Hanley L. Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent Mater. 2005 Feb;21(2):145-155.
    130. Hashimoto M, Fujita S, Kaga M, Yawaka Y. In vitro durability of one-bottle resin adhesives bonded to dentin. Dent Mater J. 2007 Sep;26(5):677-686.
    131. Attar N, Taner TU, Tulumen E, Korkmaz Y. Shear bond strength of orthodontic brackets bonded using conventional vs one and two step self-etching/adhesive systems. Angle Orthod. 2007 May;77(3):518-523.
    132. Mavropoulos A, Karamouzos A, Kolokithas G, Athanasiou AE. In vivoevaluation of two new moisture-resistant orthodontic adhesive systems: a comparative clinical trial. J Orthod. 2003 Jun;30(2):139-147; discussion 127-138.
    133. House K, Ireland AJ, Sherriff M. An in-vitro investigation into the use of a single component self-etching primer adhesive system for orthodontic bonding: a pilot study. J Orthod. 2006 Jun;33(2):116-124.
    134. Bishara SE, VonWald L, Laffoon JF, Warren JJ. The effect of repeated bonding on the shear bond strength of a composite resin orthodontic adhesive. Angle Orthod. 2000 Dec;70(6):435-441.
    135. Nakamura M, Takahashi K, Fujioka T, Kado S, Sakamoto H, Kimura K. Evaluation of photoinduced changes in stability constants for metal-ion complexes of crowned spirobenzopyran derivatives by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry. 2003;14(10):1110-1115.
    136. Kim T-H, Jang M, Park JK. Bifunctionalized mesoporous molecular sieve for perchlorate removal. Microporous and Mesoporous Materials. 2008;108(1-3):22-28.
    137. Yu D, Chen P, Wang L, Gu Q, Li Y, Wang Z, et al. A chemo-enzymatic process for sequential kinetic resolution of (R,S)-2-octanol under microwave irradiation. Process Biochemistry. 2007;42(9):1312-1318.
    138. Elci L, Kartal AA, Soylak M. Solid phase extraction method for the determination of iron, lead and chromium by atomic absorption spectrometry using Amberite XAD-2000 column in various water samples. Journal of Hazardous Materials. 2008;153(1-2):454-461.
    139. Mendil D, Tuzen M, Soylak M. A biosorption system for metal ions on Penicillium italicum- loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. Journal of Hazardous Materials. 2008;152(3):1171-1178.
    140. Yebra MC, Cancela S, Cespon RM. Automatic determination of nickel in foods by flame atomic absorption spectrometry. Food Chemistry. 2008;108(2):774-778.
    141. Nelson DE, Crane DD, Taylor LD, Dorward DW, Goheen MM, Caldwell HD. Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect Immun. 2006 Jan;74(1):73-80.
    142. Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surg Infect (Larchmt). 2002;3 Suppl 1:S79-87.
    143. Jugdutt BI, Idikio H, Uwiera RR. Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem. 2007 Sep;303(1-2):27-38.
    144. Romero-Grimaldi C, Gheusi G, Lledo PM, Estrada C. Chronic inhibition of nitric oxide synthesis enhances both subventricular zone neurogenesis and olfactory learning in adult mice. Eur J Neurosci. 2006 Nov;24(9):2461-2470.
    145. Miller RA, Reimschuessel R. Epidemiologic cutoff values for antimicrobialagents against Aeromonas salmonicida isolates determined by frequency distributions of minimal inhibitory concentration and diameter of zone of inhibition data. Am J Vet Res. 2006 Nov;67(11):1837-1843.
    146. Benitez C, O'Sullivan D, Tinanoff N. Effect of a preventive approach for the treatment of nursing bottle caries. ASDC J Dent Child. 1994 Jan-Feb;61(1):46-49.
    147. Wu W, Nancollas GH. The relationship between surface free-energy and kinetics in the mineralization and demineralization of dental hard tissue. Adv Dent Res. 1997 Nov;11(4):566-575.
    148. Darmani H, Al-Hiyasat AS. The effects of BIS-GMA and TEG-DMA on female mouse fertility. Dental Materials. 2006;22(4):353-358.
    149. Jinno S, Kawai T, Ishikawa A, Suzuki T, Hattori N, Okeya H, et al. Influence of novel resin monomer on viability of L-929 mouse fibroblasts in vitro. Dent Mater J. 2006 Dec;25(4):693-699.
    150. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006 Oct;85(10):870-877.
    151. Weaver RE, Goebel WM. Reactions to acrylic resin dental prostheses. J Prosthet Dent. 1980 Feb;43(2):138-142.
    152. Lefebvre CA, Schuster GS, Rueggeberg FA, Tamareselvy K, Knoernschild KL. Responses of oral epithelial cells to dental resin components. J Biomater Sci Polym Ed. 1996;7(11):965-976.
    153. Inoue T, Miyakoshi S, Shimono M. The in vitro and in vivo influence of 4-META/MMA-TBB resin components on dental pulp tissues. Adv Dent Res.2001 Aug;15:101-104.
    154. Zalkind M, Heling I, Sela J. Response of the dental pulp to capping with a composite resin-bonded ceramic and dental adhesive in rat molars. Isr J Dent Sci. 1989 Oct;2(3):133-136.
    155. Itota T, Torii Y, Sogawa N, Sogawa C, Inoue K. Cytotoxicity of a trial resin composite liner containing TiK2F6 on rat dental pulp cells. Dent Mater J. 1999 Sep;18(3):271-277.
    156. Kan KC, Messer LB, Messer HH. Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J Dent Res. 1997 Aug;76(8):1502-1507.
    157. Souza PP, Aranha AM, Hebling J, Giro EM, Costa CA. In vitro cytotoxicity and in vivo biocompatibility of contemporary resin-modified glass-ionomer cements. Dent Mater. 2006 Sep;22(9):838-844.
    158. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater. 2004 Jan;20(1):12-20.
    159. Quinlan CA, Zisterer DM, Tipton KF, O'Sullivan MI. In vitro cytotoxicity of a composite resin and compomer. Int Endod J. 2002 Jan;35(1):47-55.