缺氧条件下绒毛外滋养细胞凋亡和细胞基质蛋白Cyr61表达下调在子痫前期发病机制的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分子痫前期患者胎盘组织中Cyr61及CTGF表达研究
     目的
     检测在正常孕妇和子痫前期患者胎盘组织中Cyr61和CTGF的表达情况,探讨它们在子痫前期发病机制中的作用及两者间的关联。
     方法
     采用免疫组化SP法和实时荧光定量PCR法检测34例重度子痫前期孕妇和16例正常晚期妊娠孕妇胎盘组织中Cyr61和CTGF蛋白定位表达、mRNA水平表达。
     结果
     1.Cyr61在胎盘绒毛合体滋养细胞、细胞滋养细胞和内皮细胞中均有表达,主要表达在合体滋养细胞的胞浆内;CTGF在胎盘绒毛合体滋养细胞、细胞滋养细胞和内皮细胞中均有表达,主要表达在细胞滋养细胞的胞浆内。重度子痫前期患者胎盘中Cyr61蛋白表达水平明显低于正常组(P<0.01)。CTGF在重度子痫前期组胎盘中蛋白表达水平明显高于正常组(P<0.05)。2. Cyr61 mRNA在重度子痫前期组的表达水平较正常组明显下降,差别有统计学意义(P<0.05);CTGF mRNA在重度子痫前期组的表达水平较正常妊娠晚期组明显增加,差别有统计学意义(P<0.01)。3.在重度子痫前期患者胎盘组织中Cyr61与CTGF表达水平呈负相关(r=-0.34,P<0.01)。
     结论1.子痫前期胎盘滋养细胞中Cyr61与CTGF的表达异常,导致VEGF的生成减少和ECM的重塑障碍,可能与子痫前期的发病有关。
     2.子痫前期胎盘滋养细胞中的Cyr61与CTGF的表达水平呈负相关,外源性加入Cyr61或VEGF可能拮抗CTGF在子痫前期发病中的作用。
     第二部分缺氧条件下绒毛外滋养细胞增殖及凋亡情况
     目的
     通过二氯化钴化学物质来诱导绒毛外滋养细胞缺氧过程的出现,探讨缺氧条件下滋养细胞的增殖能力及细胞凋亡情况。
     方法
     1.MTT法检测滋养细胞增殖能力:滋养细胞在二氯化钴终浓度为150μmol/L、300μmol/L的培养基中分别培养:6h、12h、24h、48h和72h。常氧组细胞在不含COCl2的培养基中培养。
     2.流式细胞仪检测滋养细胞的凋亡情况:滋养细胞在二氯化钴终浓度为:300μmol/L的培养基中培养6h、12h、24h、48h和72h。
     结果
     1.与正常组相比,滋养细胞在经过CoCl2处理后细胞增殖活力受到抑制;且当COCl2的浓度为300μmol/L时,对滋养细胞增殖的抑制效应较150μmol/更为明显(P<0.05)。当滋养细胞在300μmol/L COCl2作用24h时、细胞增殖能力受到显著抑制(P<0.01)。2.与正常对照组相比,滋养细胞在终浓度为300μmol/L CoCl2预下,其细胞凋亡水平随着时间的延长增加,在缺氧12h凋亡增加明显(10.7+/-0.8-fold;P<0.01)且在缺氧24h细胞凋亡水平达峰值(24.0+/-3.4-fold:P<0.05)。
     结论
     采用CoCl2模拟的化学缺氧能抑制滋养细胞的增殖并促进其细胞凋亡,随着缺氧时间的延长细胞凋亡增加且在缺氧24h细胞凋亡最显著。
     第三部分缺氧作用下绒毛外滋养细胞中Cyr61表达在子痫前期发病中的作用研究
     目的
     研究滋养细胞在CoCl2模拟的化学缺氧条件下,细胞基质蛋白Cyr61在滋养细胞中的表达情况;探讨Cyr61的表达与子痫前期发病机制的相关研究。
     方法
     1.采用细胞免疫荧光法检测Cyr61蛋白在滋养细胞中的定位表达。
     2.实时荧光定量PCR检测缺氧条件下滋养细胞中Cyr61转录水平的表达情
     况。3.蛋白印迹法检测缺氧条件下滋养细胞中Cyr61的蛋白水平的表达。
     结果
     1.细胞基质蛋白Cyr61主要表达在滋养细胞的胞浆中,部分表达在细胞核中。
     2.在缺氧6h和12h时,滋养细胞中的Cyr61表达增加;随着缺氧时间延长达24h和48h后,该蛋白表达下调(P<0.05)。
     结论
     低氧环境可以诱导滋养细胞中Cyr61的产生;但是随着缺氧时间的延长,滋养细胞中的Cyr61表达下调。
     第四部分子痫前期患者外周血清干预下绒毛外滋养细胞中Cyr61表达下调在子痫前期发病中的相关研究
     目的
     研究绒毛外滋养细胞在正常孕妇和子痫前期患者外周血清干预下,该细胞中Cyr61的表达情况。
     方法
     1.采用细胞免疫荧光法检测滋养细胞中Cyr61的表达定位。
     2.实时荧光定量PCR检测子痫前期患者外周血清处理24h后,滋养细胞中Cyr61转录水平的表达情况。
     3.蛋白印迹法检测子痫前期患者外周血清处理24h后,滋养细胞中Cyr61的蛋白水平的表达。
     结果
     1.细胞基质蛋白Cyr61主要表达在滋养细细胞的胞浆中,部分表达子在细胞核中。2.与正常孕妇外周血清干预相比,滋养细胞经子痫前期外周血清处理后,该细胞中Cyr61转录和蛋白水平均下降(P<0.05)。
     结论
     子痫前期孕妇外周血清可下调滋养细胞中Cyr61的表达,从而说明该蛋白的下调可能与子痫前期发病有关。
Part one
     Study expression of Cyr61 and CTGF in placentas from preeclamptic women
     Objective:
     To detect the expression of Cyr61 and CTGF in placentas from normal term pregnancy and preeclampsia women, and explore their roles in the pathogenesis of preeclampsia.
     Methods:
     The protein and mRNA expression levels of Cyr61 and CTGF of placenta tissue in 16 cases of normal term pregnancy and 34 cases of severe preeclampsia women were determined by immunohistochemistry and real-time fluorescence quantitative PCR, respectively. Results:
     1. Cyr61 was expressed in syncytiotrophoblast, cytotrophoblast and endothelial cell and mainly located in the cytoplasm of the placental villous syncytiotrophoblast. CTGF was expressed in cytotrophoblast and endothelial cell and mainly located in the cytoplasm of the placental villous cytotrophoblast. Compared with control group, the expression of Cyr61 in the severe preeclampsia group was significantly lower (P<0.01), while CTGF in the severe preeclampsia group was significantly higher than that of control group (P<0.05).
     2. Cyr61 mRNA expression in the severe preeclampsia group was significantly lower than normal levels, the difference was statistically significant (P<0.05); CTGF mRNA expression in severe preeclampsia were significantly increased comparing with normal levels, the difference was statistically significant (P<0.01).
     3. There was a negatively correlation between the expression of Cyr61 and CTGF in placentas from severe preeclampsia (r=-0.34, P<0.01). Conclusions:
     1. Abnormal expression of Cyr61 and CTGF in trophoblast might lead toVEGF reduce and the failure of ECM formation and remodeling thus resulted in the pathogenesis of preeclampsia.
     2. The expression of Cyr61 and CTGF in preeclampsia is negatively. Therefore, the addition of exogenous VEGF or Cyr61 could be antagonized the effect of CTGF in the pathogenesis of preeclampsia.
     Part two
     The cell proliferation and apoptosis of extravillous trophoblast under hypoxia
     Objective:
     To investigate the proliferation and apoptosis of extravillous trophoblast under hypoxic conditions and Cobalt chloride (CoCl2) was used to mimic the effects of hypoxia in villous explants.
     Methods:
     1. Methl thiazolyl tetrazolium (MTT) assay was implied to evaluate the cell proliferation function. Cells were treated with 150 or 300μmol/L of cobalt chloride. TEV-1 cells were treated with cobalt chloride for 6h,12h,24h,48h and 72h. Normoxic cell lines were cultured in the same way without the use of cobalt chloride.
     2. Flow cytometry analysis was used to detect trophoblast apoptosis and the cells were treated with 300μmol/L of cobalt chloride for 6h,12h,24h,48h and 72h.
     Results:
     1. Compared with the control, CoCl2 inhibited growth parameters of TEV-1 cells.The cell proliferation was remarkably inhibited at a concentration of 300μmol/L CoCl2 in contrast to 150μmol/L CoCl2(P<0.05). When TEV-1 cells were treated with 300μmol/L CoCl2 for 24h, the cell reached the lowest point of proliferation(P<0.01).
     2. Annexin-V/PI double staining assay showed that, compared to the cells cultured in normal group, exposure of extravillous trophoblasts to low oxygen concentration(300μmol/L CoCl2), enhanced cell apoptosis in a time-dependent manner, with a significant increase in apoptosis levels after 12h (10.7+/-0.8-fold; P<0.01), reaching a maximum of 24.0+/-3.4-fold at 24h(P<0.05).
     Conclusions:
     Cobalt chloride, which is used to mimic the effects of hypoxia in TEV-1 cells, inhibits the cell proliferation and promotes cell apoptosis. As the hypoxic condition extends, TEV-1 cells apoptosis increases and peaks, exposure to hypoxic conditions for 24h.
     Part three
     The expression of Cyr61 in extravillous trophoblast under hypoxia and its role in the pathogenesis of preeclampsia
     Objective:
     To examine the expression of matricellular protein Cyr61 functional changes involved in adaptation to hypoxia of the TEV-1 cells, using cobalt chloride (CoCl2) as hypoxic mimic and explore Cyr61 activity in the pathological mechanism of preeclampsia.
     Methods:
     1. Immunofluorescence microscopy analysis was used to detect the location and expression of Cyr61 in extravillous trophoblast.
     2. Real-time quantitative PCR was implied to analyze hypoxic regulation of Cyr61 mRNA.
     3. The protein level of Cyr61 was investigated by Western blot analysis
     Results:
     1. The matricellular protein Cyr61 was mainly observed in the cytoplasm and partly in nuclear.
     2. Expression of Cyr61 in extravillous trophoblast increased upon hypoxic treatment for 6h and 12h. However, as the hypoxic time extended, Cyr61 expression decreased.
     Conclusions:
     Although hypoxia transiently induced Cy61 production, as the hypoxic condition extended, the expression of Cyr61 was down-regulated.
     Part four
     Preeclamptic sera induces Cyr61 decrease in extravillous trophoblast and its relation with preeclampsia
     Objective:
     To investigate the expression of Cyr61 in extravillous trophoblast and the cells was treated with normal pregnant serum and PE serum, espectively.
     Methods:
     1. The location and expression of Cyr61 in extravillous trophoblast was demonstrated by immunofluorescence microscopy analysis.
     2. The protein and transcriptional level of Cyr61 in extravillous trophoblast, which was cultivated under PE serum for 24h, was investigated by using real-time quantitative PCR and Western blot analysis, respectively.
     Results:
     1. Cyr61 protein was mainly located in the cytoplasm and partly in nuclear.
     2. In contrast to normal pregnant serum, the Cyr61 mRNA expression level as well as protein decreased in extravillous trophoblast exposed to PE serum (P<0.05).
     Conclusions:
     Preeclamptic sera evoked Cyr61 down regulation and Cyr61 deficiency might play roles in the pathogenesis of preeclampsia.
引文
1. Myatt L. Role of placenta in preeclampsia. Endocrine,2002,19(1):103-111
    2. Fisher SJ. The placental problem:linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol,2004,2:53
    3. Zhou Y, Damsky CH, Chiu K, et al. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest, 1993,91(3):950-960
    4. Gilbert JS, Nijland MJ, Knoblich P. Placental ischemia and cardiovascular dysfunction in preeclampsia and beyond:making the connections. Expert Rev Cardiovasc Ther,2008,6(10):1367-1377
    5. Pringle KG, Kind KL, Sferruzzi-Perri AN, et al. Beyond oxygen:complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update,2010,16(4):415-431
    6. Sharp AN, Heazell AE, Crocker IP, et al. Placental apoptosis in health and disease. Am J Reprod Immunol,2010,64(3):159-169
    7. Soleymanlou N, Jurisicova A, Wu Y, et al. Hypoxic switch in mitochondrial myeloid cell leukemia factor-1/Mtd apoptotic rheostat contributes to human trophoblast cell death in preeclampsia. Am J Pathol,2007,171(2):496-506
    8. Crocker IP, Tansinda DM, Baker PN. Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J Pathol,2004,204(1):11-18
    9. Gerretsen G, Huisjes HJ, Hardonk MJ, et al. Trophoblast alterations in the placental bed in relation to physiological changes in spiral arteries. Br J Obstet Gynaecol,1983,90(1):34-39
    10. Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol,2006,194(2):557-563
    11. Meekins JW, Pijnenborg R, Hanssens M, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol,1994,101(8):669-674
    12. Hung TH, Skepper JN, Charnock-Jones DS, et al. Hypoxia-reoxygenation:a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res,2002,90(12):1274-1281
    13. Babic AM, Kireeva ML, Kolesnikova TV, et al. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA,1998,95(11):6355-6360
    14. Lau LF, Lam SC. The CCN family of angiogenic regulators:the integrin connection. Exp cell res,1999,248(1):44-57
    15. Chen N, Leu SJ, Todorovic V, et al. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for proangiogenic activities in vascular endothelial cells. J Biol Chem,2004,279(42):44166-44176
    16. Kolesnikova TV and Lau LF. Human CYR61 mediated enhancement of bFGF induced DNA synthesis in human umbilical vein endothelial cells. Oncogene, 1998,16(6):747-754
    17. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61(CYR61). Angiogenesis,2003,5(3):153-165
    18. Shimo T, Kubota S, Kondo S, et al. Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett,2001,174(1):57-64
    19. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem,2001,276(13):10443-10452
    20. Suzuma K, Naruse K, Suzuma I, et al. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem,2000,275(52):40725-40731
    21. Gellhaus A, Schmidt M, Dunk C, et al. The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients. Reprod Sci,2007,14(8 Suppl):46-52
    22. Kucharczak J, Simmons MJ, FanY, et al. To be, or not to be:NF-kappa B is the answer--role of Rel/NF-kappa B in the regulation of apoptosis. Oncogene,2003, 22(56):8961-8962
    23. Li C, Issa R, Kumar P, et al. CD 105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci,2003,116(Pt 13):2677-2685
    24. Ark M, Yilmaz N, Yazici G, et al. Rho-associated protein kinase Ⅱ(Rock Ⅱ) expression in normal and preeclamptic human placentas. Placenta,2005,26(1):81 84
    25. Nelson DM. Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta,1996,17(7):387-391
    26. Menendez JA, Mehmi I, Griggs DW, et al. The angiogenic factor CYR61 in breast cancer:molecular pathology and therapeutic perspectives. Endocr Relat Cancer, 2003,10(2):141-152
    27. Lin MT, Chang CC, Chen ST, et al. Cyr61 Expression Confers Resistance to Apoptosis in Breast Cancer MCF-7 Cells by a Mechanism of NF-B-dependent XIAP Up-Regulation. J Biol Chem,2004,279(23):24015-24023
    28. Wolf N, Yang W, Dunk CE, et al. Regulation of the matricellular Proteins CYR61 (CCN1) and NOV (CCN3) by hypoxia-inducible factor-la and transforming-growth factor-(33 in the human trophoblast. Endocrinology,2010,151(6):2835- 2845
    29. Gellhaus A, Schmidt M, Dunk C, et al. The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients. Reproductive Sciences,2007,14(8 Suppl):46-52
    1. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science, 2005,308(5728):1592-1594
    2. Fisher SJ. The placental problem:linking abnormal cytotrophoblast differentiation
    to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol,2004,2:53
    3. Zhou D, Herrick DJ, Rosenbloom J, et al. Cyr61 mediates the expression of VEGF,
    alphav-integrin, and alpha-actin genes through cytoskeletally based
    mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol, 2005,98(6):2344-2354
    4. Chen CC, Mo FE and Lau LF. The angiogenic inducer Cyr61 induces a genetic program for wound healing in human skin fibroblasts. J Biol Chem,2001,276(50): 47329-47337
    5. Mo FE, Muntean AG, Chen CC, et al. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol,2002,22(24):8709-8720
    6. Leask A.Potential therapeutic targets for cardiac fibrosis:TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res,2010, 106(11):1675-1680
    7. Kuiper EJ, Hughes JM, Van Geest RJ, et al. Effect of VEGF-A on expression of profibrotic growth factor and extracellular matrix genes in the retina. Invest Ophthalmol Vis Sci,2007,48(9):4267-4276
    8. Dhar A and Ray A.The CCN family proteins in carcinogenesis.Exp Oncol,2010,32(1):2-9
    9. Gellhaus A, Schmidt M, Dunk C, et al. The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients. Reprod Sci,2007,14(8 Suppl):46-52
    10. Oh SY, Song SE, Seo ES, et al. The expression of connective tissue growth factor in pregnancies complicated by severe preeclampsia or fetal growth restriction. Placenta,2009,30(11):981-987
    11. Rimon E, Chen B, Shanks AL, et al. Hypoxia in human trophoblasts stimulates the expression and secretion of connective tissue growth factor. Endocrinology,2008, 149(6):2952-2958
    12. Francischetti IM, Kotsyfakis M, Andersen JF, et al. Cyr61/CCN1 displays high-affinity binding to the somatomedin B (1-44) domain of vitronectin. PLoS One,2010,5(2):e9356
    13. Inoki I, Shiomi T, Hashimoto G, et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB,2002,16(2):219-221
    14. Chaqour B and Goppelt-Struebe M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS,2006,273(16):3639-3649
    15. Bourillot PY, Aksoy I, Schreiber V, et al. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells,2009,27(8):1760-1771
    1. Yui J, Garcia-Lloret M, Wegmann TG, et al. Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta,1994,15(8):819-835
    2. Crocker IP, Tansinda DM, Baker PN. Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction, J Pathol,2004,204(1):11-18
    3. Hung TH, Skepper JN, Charnock-Jones DS, et al. Hypoxia-reoxygenation:a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res,2002,90(12):1274-1281
    4. Levy R, Smith SD, Chandler K, et al. Apoptosis in human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. Am J Physiol Cell Physiol,2000,278(5):C982-988
    5. Heazell AE, Lacey HA, Jones CJ, et al. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta, 2008,29(2):175-186
    6. Hu R, Zhou S and Li X. Altered Bcl-2 and Bax expression is associated with cultured first trimester human cytotrophoblasts apoptosis induced by hypoxia. Life Sci,2006,79(4):351-355
    7. Ishihara N, Matsuo H, Murakoshi H, et al. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol,2002,186(1):158-166
    8. Crocker IP, Tansinda DM, Baker PN. Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J Pathol,2004,204(1):11-18
    9. Gerretsen G, Huisjes HJ, Hardonk MJ, et al. Trophoblast alterations in the placental bed in relation to physiological changes in spiral arteries. Br J Obstet Gynaecol,1983,90(1):34-39
    10. Mamed Kadyrov MD, John CP, Kingdom MD, et al. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol,2006,194(2):557-563
    11. Meekins JW, Pijnenborg R, Hanssens M, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies.Br J Obstet Gynaecol,1994,101 (8):669-674
    12. Hung TH, Skepper JN, Charnock-Jones DS, et al. Hypoxia-reoxygenation:a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res,2002,90(12):1274-1281
    13. Allaire AD, Ballenger KA, Wells SR, et al. Placental apoptosis in preeclampsia. Obstet Gynecol,2000,96(2):271-276
    14. Heazell AE, Moll SJ, Jones CJ, et al. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta,2007,28(Suppl A):S33-40
    15. Huppertz B, Gauster M, Orendi K, et al. Oxygen as modulator of trophoblast invasion. J Anat,2009,215(1):14-20
    16. Fisher SJ.The placental problem:linking abnormal cytotrophoblast differentiation to thematernal symptoms of preeclampsia. Reprod Biol Endocrinol,2004,2:53
    17. Wang A, Rana S, Karumanchi SA. Preeclampsia:the role of angiogenic factors in its pathogenesis. Physiology,2009,4:147-158
    18. ZhouY, Genbacev O, Damsky CH, et al. Oxygen regulates human cytotrophoblast differentiation and invasion:implications for endovascular invasion in normal pregnancy and in pre-eclampsia. J Reprod Immunol,1998,39(1-2):197-213
    19. McMaster MT, ZhouY, Fisher SJ. Abnormal placentation and the syndrome of preeclampsia. Semin Nephrol,2004,24(6):540-547
    20. Genbacev O, Joslin R, Damsky CH, et al. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest,1996,97(2):540-550
    21. GenbacevO, ZhouY, Ludlow JW, et al. Regulationofhuman placental development by oxygen tension. Science,1997,277(5332):1669-1672
    22. Rodesch F, Simon P, Donner C, et al. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy.Obstet Gynecol,1992,80(2):283-285
    23.Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update,2006,12(6):747-755
    24.Cartwright JE, Keogh RJ, Tissot van Patot MC. Hypoxia and placental remodelling. Adv Exp Med Biol,2007,618:113-126
    25. Caniggia I, Winter J, Lye SJ, et al. Oxygen and placental development during the first trimester:implications for the pathophysiology of pre-eclampsia. Placenta,2000,21(Suppl A):S25-30
    26. Watson AL, Skepper JN, Jauniaux E, et al. Susceptibility of human placental syncytiotrophoblastic mitochondria to oxygen mediated damage in relation to gestational age. J Clin Endocrinol Metab,1998,83(5):1697-705
    27. Nevo O, Soleymanlou N, Wu Y, et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol,2006,291(4):1085-1093
    28. Redman CW and Sargent IL. Placental debris, oxidative stress and preeclampsia. Placenta,2000,21(7):597-602
    29. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature,1996,379:88-91
    30. Levy R, Smith SD, Chandler K, et al. Apoptosis in human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. Am J Physiol Cell Physiol,2000,278(5):982-988
    31. Leach RE, Kilburn BA, Petkova A, et al. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding EGF-like growth factor. Am JObstet Gynecol,2008, 198(4):471.e1-471.e8
    32.Ishihara N, Matsuo H, Murakoshi H, et al. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol,2002,186(1):158-166
    33. DiFederico E, Genbacev O, Fisher SJ. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within theuterinewall. Am J Pathol,1999, 155(1):293-301
    34.Genbacev O, DiFederico E, McMaster M, et al. Invasive cytotrophoblast apoptosis in pre-eclampsia. Hum Reprod,1999,14(Suppl 2):59-66
    35. Reister F, Frank HG, Kingdom JC, et al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest,2001,81(8):1143-1152
    1. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol,2009,41(4):771-783
    2. Gellhaus A, Schmidt M, Dunk C, et al. Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated withpre-eclampsia. Mol Hum Reprod,2006,12(6):389-399
    3. Gellhaus A, Schmidt M, Dunk C, et al. The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients. Reprod Sci,2007,14(Suppl 8):46-52
    4. Wolf N, Yang W, Dunk CE, et al. Regulation of the matricellular Proteins CYR61 (CCN1) and NOV (CCN3) by hypoxia-inducible factor-la and transforming growth factor-β3 in the human trophoblast. Endocrinology,2010,151(6):2835-45
    5. Yang GP, Lau LF. Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ,1991,2(7):351-357
    6. Lau LF, Lam SC. The CCN family of angiogenic regulators:the integrin connection. Exp Cell Res,1999,248(1):44-57
    7. Chen CC, Young JL, Monzon RI, et al. Cytotoxicity of TNF alpha is regulated by integrin-mediated matrix signaling. EMBO J,2007,26(5):1257-1267
    8. Juric V, Chen CC, Lau LF. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol,2009,29(12): 3266-3279
    9. Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature,2008,453(7193):314-321
    10. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci,2009,122(8):3209-3213
    11. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med,1999,341 (10): 738-746
    12. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair:molecular and cellular mechanisms. J Invest Dermatol,2007,127(3):514-525
    13. Stramer BM, Mori R, Martin P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol, 2007,127(5):1009-1017
    14. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol,2008,214 (2):199-210
    15. Chen CC, Lau LF. Functions and Mechanisms of Action of CCN Matricellular Proteins. Int J Biochem Cell Biol,2009,41(4):771-783
    16. Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY),2010,2(9):627-631
    17. Mo FE, Muntean AG, Chen CC, et al. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol,2002,22:8709-8720
    18. Zhou D, Herrick DJ, Rosenbloom J, et al. Cyr61 mediates the expression of VEGF, alphav-integrin, and alpha-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol,2005,98(6):2344-2354
    19. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61(CYR61). Angiogenesis,2002,5(3):153-165
    20. Gellhaus A, Schmidt M, Dunk C, et al. Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia. Mol Hum Reprod,2006,12:389-399
    21. Zhang Y, Diao Z, Su L, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61.Am J Obstet Gynecol,2010,202(5):466.e1-7
    22. Leu, SJ, Lam SC, and Lau LF. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6betal in human umbilical vein endothelial cells. J Biol Chem,2002,277(48):46248-46255
    23. Athanasopoulos AN, Schneider D, Keiper T, et al. Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem,2007,282(37):26746-26753
    1. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol,2009, 33(3):130-137
    2. Steegers EA, von Dadelszen P, Duvekot JJ, et al. Pre-eclampsia. Lancet,2010, 376(9741):631-644
    3. Dechend R, Luft FC. Angiogenesis factors and preeclampsia. Nat Med,2008,14: 1187-1188
    4. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension,2005,46:1077-1085
    5. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol,2009,41(4):771-783
    6. Yang GP, and Lau LF. Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ,1991,2(7):351-357
    7. Lau LF, Lam SC. The CCN family of angiogenic regulators:the integrin connection. Exp Cell Res,1999,248(1):44-57
    8. Pringle KG, Kind KL, Sferruzzi-Perri AN, et al. Beyond oxygen:complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update,2010,16(4):415-431
    9. Gellhaus A, Schmidt M, Dunk C, et al. Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia. Mol Hum Reprod,2006,12:389-399
    10. Gellhaus A, Schmidt M, Dunk C, et al. The circulating proangiogenic factors CYR61 (CCN1) and NOV (CCN3) are significantly decreased in placentae and sera of preeclamptic patients. Reprod Sci,2007,14(8 Suppl):46-52
    11. Lau LF, Lam SC. The CCN family of angiogenic regulators:the integrin connection. Exp Cell Res,1999,248(1):44-57
    12. Seki H, Matuoka K, Inooku H, et al. TNF-alpha from monocyte of patients with pre-eclampsia-induced apoptosis in human trophoblast cell line. J Obstet Gynaecol Res,2007,33(4):408-416
    13. Mo FE, Muntean AG, Chen CC, et al. CYR61 (CCN1) Is Essential for Placental Development and Vascular Integrity. Mol Cell Biol,2002,22(24):8709-8720
    14. Mo FE, Lau LF. The matricellular protein CCN1 is essential for cardiac development. Circ Res,2006,99(9):961-969
    15. Babic AM, Chen CC, Lau LF. Fispl2/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin av(33, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol,1999, 19(4):2958-2966
    16. Leu SJ, Lam SC, Lau LF. Proangiogenic activities of CYR61 (CCN1) mediated through integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J Biol Chem,2002,277(48):46248-46255
    17. Grote K, Salguero G, Ballmaier M, et al. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells:potential role in angiogenesis and endothelial regeneration. Blood,2007,110(3):877-885
    18. Chen CC, Mo FE, Lau LF. The angiogenic inducer Cyr61 induces a genetic program for wound healing in human skin fibroblasts. J Biol Chem,2001,276(50): 47329-47337
    19. Dean RA, Butler GS, Hamma-Kourbali Y, et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens:disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol,2007,27 (24):8454-8465
    20. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis,2002,5(3):153-165
    21. Kubota S, Takigawa M. CCN family proteins and angiogenesis:from embryo to adulthood. Angiogenesis,2007,10(1):1-11
    22. Zhang Y, Diao Z, Su L, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61.Am J Obstet Gynecol,2010,202(5):466.el-7
    23. Leu, SJ, Lam SC, and Lau LF. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6betal in human umbilical vein endothelial cells. J Biol Chem,2002,277(48):46248-46255
    24. Athanasopoulos AN, Schneider D, Keiper T, et al. Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem,2007,282(37):26746-26753
    1. Sibai BM, Dekker G, Kupferminc M. Pre-eclampsia. Lancet,2005,365(9461): 785-799
    2.Verlohren S, Muller DN, Luft FC, et al.Immunology in hypertension, preeclampsia, and target-organ damage. Hypertension,2009,54(3):439-443.
    3. Ilekis JV, Reddy UM, Roberts JM. Preeclampsia--a pressing problem:an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci,2007,14(6):508-523
    4. Dekker G, Sibai B. Primary, secondary, and tertiary prevention of pre-eclampsia. Lancet.2001,357(9251):209-215
    5. Pijnenborg R, Ball E, Bulmer JN, et al.In vivo analysis of trophoblast cell invasion in the human. Methods Mol Med,2006,122:11-44
    6. Brosens I, Dixon HG, Robertson WB. Fetal growth retardation and the arteries of the placental bed.Br J Obstet Gynaecol,1977,84(9):656-63
    7. Meekins JW, Pijnenborg R, Hanssens M, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol,1994,101 (8):669-74
    8. Pijnenborg R, Bland JM, Robertson WB, et al. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placent, 1981,2(4):303-316
    9. Craven CM, Morgan T, Baker PN, et al. Decidual spiral artery remodelling begins before cellular interaction with cytotrophoblasts. Placenta,1998,19(4):241-252
    10. Ashton SV, Whitley GS, Dash PR, et al. Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions. Arterioscler Thromb Vase Biol,2005,25(1):102-108
    11. Dunk C, Petkovic L, Baczyk D, et al. A novel in vitro model of trophoblast-mediated decidual blood vessel remodeling. Lab Invest,2003,83(12):1821-1828
    12. Smith SD, Dunk CE, Aplin JD, et al. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol,2009, 174(5):1959-1971
    13. Meekins JW, Luckas MJ, Pijnenborg R, McFadyen IR. Histological study of decidual spiral arteries and the presence of maternal erythrocytes in the intervillous space during the first trimester of normal human pregnancy. Placenta, 1997,18(5-6):459-464
    14. Jauniaux E, Hempstock J, Greenwold N, et al. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol,2003,162(1):115-125
    15. Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol,2006,194(2):557-563
    16. DiFederico E, Genbacev O, Fisher SJ. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol,1999, 155(1):293-301
    17. Meekins JW, Pijnenborg R. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. BJOG,1994, 101(8):669-674
    18. Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol,2009,54(2-3): 303-312
    19. Hutchinson ES, Brownbill P, Jones NW, et al. Utero-placental haemodynamics in the pathogenesis of pre-eclampsia. Placenta,2009,30(7):634-641
    20. Cohen JJ, Duke RC, Fadok VA, et al. Apoptosis and programmed cell death in immunity. Annu Rev Immunol,1992,10:267-293
    21. Golstein P, Ojcius DM, Young JD. Cell death mechanisms and the immune system. Immunol Rev,1991,121:29-65
    22. Huppertz B and Kingdom JC. Apoptosis in the trophoblast—role of apoptosis in placental morphogenesis. J Soc Gynecol Invest,2004,11(6):353-362
    23. Rama S and Rao AJ. Regulation of growth and function of the human placenta. Mol Cell Biochem,2003,253(1-2):263-268
    24. Smith SC, Baker PN, Symonds EM. Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol,1997,177(1):57-65
    25. Huppertz B, Kadyrov M, Kingdom JC. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol,2006,195(1):29-39
    26. Hung TH, Skepper JN and Burton GJ. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol.2001.159(3):1031-1043
    27. Chen B, Longtine MS, Sadovsky Y, et al. Hypoxia downregulates p53 but induces apoptosis and enhances expression of BAD in cultures of human syncytiotrophoblasts. Am J Physiol Cell Physiol,2010,299(5):C968-C976
    28. Shimizu S, Eguchi Y, Kamiike W,et al. Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL.Cancer Res,1996,56(9):2161-2166
    29. Hung TH, Skepper JN, Charnock-Jones DS, et al. Hypoxia-reoxygenation:a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res,2002,90(12):1274-1281
    30. Crocker IP, Cooper S, Ong SC, et al. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol, 2003,162(2):637-643
    31. Crocker I. Gabor than award lecture 2006:pre-eclampsia and villous trophoblast turnover:perspectives and possibilities. Placenta,2007,28 (Suppl A):S4-13
    32. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E, et al. Nuclear factor-kB, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress. Am J Pathol,2007,170(5):1511-1520
    33. Heazell AE, Lacey HA, Jones CJP, et al. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta, 2008,29(2):175-186
    34. Jessmon P, Kilburn1BA, Romero R, et al. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts. Biol Reprod,2010,82(5):921-929
    35. DiFederico E, Genbacev O, Fisher SJ. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol,1999, 155(1):293-301
    36. Whitley GS, Dash PR, Ayling LJ, et al. Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am J Pathol,2007,170(6):1903-1909
    37. Tomas SZ, Prusac IK, Roje D, et al.Trophoblast Apoptosis in Placentas from Pregnancies Complicated by Preeclampsia. Gynecol Obstet Invest,2011, Jan 25. [Epub ahead of print]
    38. Crocker IP, Tansinda DM, Baker PN.Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction.J Pathol,2004,204(1):11-18
    39. Levy R, Smith SD, Yusuf K, et al. Sadovsky and D.M. Nelson, Trophoblasts apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am J Obstet Gynecol,2002,186(5)1056-1061
    40. Xiong Y, Liebermann DA, Tront JS, Holtzman EJ, Y. Huang, B. Hoffman and O. Geifman-Holtzman, Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. J Cell Physiol,2009,220(3):632-639
    41. Neubauer JA. Invited review:physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol,2001,90(4):1593-1599
    42. Rodesch F, Simon P, Donner C, et al. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol,1992,80(2):283-285
    43. Charnock-Jones DS, Burton GJ. Placental vascular morphogenesis. Baillieres Best Pract Res Clin Obstet Gynaecol,2000,14(6):953-968
    44. Espinoza J, Sebire NJ, McAuliffe F, et al. Placental villus morphology in relation to maternal hypoxia at high altitude. Placenta,2001,22 (6):606-608
    45. Mayhew TM, Charnock-Jones DS and Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. Ⅲ. Changes in complicated pregnancies.Placenta,2004,25 (2-3):127-139
    46. Maltepe E, Krampitz GW, Okazaki KM, et al. Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development,2005,132(15):3393-3403
    47. Rosario GX, Konno T and Soares MJ. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev Biol,2008,314(2):362-375
    48. Roberts JM and Hubel CA.Is oxidative stress the link in the two-stage model of preeclampsia. Lancet,1999,354(9198):788-789
    49.Burton GJ, Woods AW, Jauniaux E. et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta,2009,30(6):473-482
    50. Hung TH and Burton GJ.Hypoxia and reoxygenation:a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol,2006,45(3): 189-200
    51. Nevo O, Soleymanlou N, Wu Y, et al.Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol,2006,(291):1085-1093
    52. Redman CW and Sargent IL. Placental debris, oxidative stress and preeclampsia. Placenta,2000,21 (7):597-602
    53. Gilbert JS, Ryan MJ, LaMarca BB, et al. Pathophysiology of hypertension during preeclampsia:linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol,2008,294(2):541-550
    54. Levine RJ, Maynard SE, Qian C, et al.Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med,2004,350(7):672-683
    55. Thadhani R, Mutter WP, Wolf M, et al.Karumanchi, First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab,2004,89(2):770-775
    56. Karumanchi SA and Stillman IE. In vivo rat model of preeclampsia. Methods Mol Med,2006,122:393-399
    57. Burton GJ, Charnock-Jones DS, Jauniaux E. Regulation of vascular growth and function in the human placenta. Reproduction,2009,138(6):895-902
    58. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet,2005,365(9461): 785-799
    59. Irgens HU, Reisaeter L, Irgens LM, et al.Long term mortality of mothers and fathers after pre-eclampsia:population based cohort study. B M J,2001,323 (7323):1213-1217