基于高分辨非共振X射线散射和快电子散射的He、H_2和Na的动力学参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缘于原子分子物理自身的发展及航天事业、激光技术、受控核聚变、环境保护等高新技术领域的需要,原子分子的动力学参数研究成为了原子分子研究的最重要的前沿领域之一。目前,主要有两种技术手段用于原子分子的动力学参数研究,分别为高分辨非共振X射线散射技术和快电子散射技术。通过这两种技术,均能获得原子分子的激发能量、动量转移以及跃迁强度的三维物理信息,经过转换,还可以得到原子分子的波函数信息。
     高分辨非共振X射线散射技术是研究原子分子动力学参数的一种新兴的技术手段。以第三代同步辐射SPring-8的BL12XU光束线为实验平台,我们实验组于2009年首次成功将这种技术应用到原子分子动力学参数的研究,并且显示出了极大的优势。快电子散射技术是最早发展的、研究原子分子动力学参数的重要技术手段,应用于原子分子的动力学参数研究已经有几十年的时间,提供了大量的原子分子动力学参数。虽然高分辨非共振X射线散射技术和快电子散射技术在实验方法上存在巨大的差异,但是在原子分子的动力学参数研究方面,它们有非常紧密的联系,各有优势,相互补充,共同促进了原子分子动力学参数研究的发展。
     利用高分辨非共振X射线散射技术和快电子散射技术,作者主要开展了以下工作:
     (1)利用高分辨非共振X射线散射技术,在能量分辨为70meV的条件下,测量了H2分子的弹性形状因子平方,并研究了其随动量转移的依赖行为。研究发现,对于分子,由于入射电子和多个原子核的散射以及入射电子和靶电子的散射之间的干涉,不能通过高能电子碰撞方法得到H2分子弹性形状因子平方,这体现了高分辨X射线散射技术研究分子基态电子结构的独特优势。
     (2)利用高分辨非共振X射线散射技术,在能量分辨为25meV的条件下,直接测量了He原子的弹性形状因子平方,并研究了其随动量转移的依赖行为。与多原子分子不同,在一阶Born近似下,He原子的弹性形状因子平方能通过电子微分散射截面转化获得。通过对比X射线散射的结果和电子散射的结果发现,在小动量转移时,电子弹性微分散射截面对超出一阶Born近似的贡献非常灵敏,其原因是入射电子与原子核的散射几乎全部抵消了入射电子与靶电子散射中的一阶玻恩项,使得电子碰撞中的前向散射几乎全部是来自于高阶项的贡献,并且因子1/q4对超出一阶Born近似的部分进行了放大。在大动量转移时,电子弹性微分散射截面几乎全部来自于核散射的贡献,因此电子碰撞方法很难检验大q2下(在位置空间靠近原子核处)的电子结构,而这恰恰是X射线散射的长处。总的来说,在小动量转移范围,高能电子弹性微分散射截面更有利于精确检测一阶Born近似的有效性;在大动量转移范围,X射线散射测量的形状因子平方更有利于精确测试波函数在内区的准确性。
     (3)高分辨非共振X射线散射技术除了可以研究原子分子的弹性散射以及非弹性激发外,在小动量转移时,也即满足光学近似的条件下,也能研究原子分子的绝对光学振子强度。类比于Dipole(e,e)方法,我们实验组首次提出用高分辨非共振X射线散射技术在小动量转移下(例如2°)测量原子分子的光学振子强度,我们称之为Dipole(γ,γ)方法。利用Dipole(γ,γ)方法,在能量分辨为70meV的条件下,测量了H2分子Lyman带和Werner带的各个振动态的绝对光学振子强度,并且与以前的理论及实验结果符合良好,证实了Dipole(γ,γ)方法的正确性。
     (4)在2012-2013年,作者对实验室现有的高分辨快电子能量损失谱仪进行了整体升级改造,谱仪的真空度、稳定性等各方面性能均有了很大程度的提高。以我们实验室现有的高分辨快电子能量损失谱仪为实验平台,结合新研制的金属蒸汽束流源,在高入射电子能量(1500eV)和高能量分辨(70meV)条件下,作者初步研究了钠原子价壳层激发的广义振子强度。由于受气压效应的影响,目前的32P和42P的广义振子强度与一阶Born近似计算结果有一定的偏差。目前的42S.52S.42D+42F+52P和52D+52F+52G+62S的广义振子强度与一阶Born近似计算结果基本符合,这表明当入射电子能量E0=1500eV时已经基本满足一阶Born近似的成立条件。
Due to the demands of atomic and molecular physics as well as the devel-opment of aerospace industry, laser science, controlled fusion and environmental protection, the investigations of dynamic parameters of atoms and molecules has been one of the most important fronts of atomic and molecular physics. At present, there are two main experimental techniques to study the dynamic parameters of atoms and molecules, which are high-resolution non-resonant X-ray scattering technique and fast-electron scattering technique. The three-dimensional physical information of atoms and molecules, including the excitation energy, momentum transfer and transition intensity, can be determined by either of these two tech-niques, and the information of the wavefunctions of the ground state and excited states of atoms and molecules can also be obtained from the dynamic parameters.
     High-resolution non-resonant X-ray scattering technique is a new technique in the field of atomic and molecular physics. Using BL12XU beamline in the third-generation synchrotron radiation of SPring-8, for the first time this technique was successfully used to study the dynamic parameters of atoms and molecules by our group in2009, which shows great advantages. Fast-electron scattering tech-nique is the earliest technique to study the dynamic parameters of atoms and molecules, which has being used for several decades and a lot of experimental dy-namic parameters of atoms and molecules have been determined by this technique. Although there is apparent difference between the high-resolution non-resonant X-ray scattering technique and the fast-electron scattering technique, they have close relationship, and jointly promote the research of dynamic parameters of the atoms and molecules.
     In this thesis, the following works are reported:
     (1)Using the high-resolution non-resonant X-ray scattering technique, the elastic squared form factors of molecular hydrogen were measured for the first time, and its momentum transfer dependence behavior was studied. For molecules, due to the interference between the scattering of separate nuclei and the scattering of the electrons in the target, the elastic squared form factors cannot be deter-mined by the high-energy electron impact method. So the high-resolution X-ray scattering technique has the unique advantages in the study of the electronic structure of atoms and molecules in the ground state.
     (2) Using the high-resolution non-resonant X-ray scattering technique, the elastic squared form factor of atomic helium were measured, and its momentum transfer dependence behavior was studied. Unlike molecules, the elastic squared form factors of atomic helium can be obtained from the elastic differential cross section measured by high-energy electron scattering under the first-order Born approximation. By comparing the results of high-energy electron scattering with the X-ray scattering ones, it is found that in the small momentum transfer region the differential cross section of electron scattering is sensitive to the contribu-tion beyond the first-order Born approximation, because the scattering amplitude between the incident electron and the nuclei almost offsets the first Born scat-tering amplitude between the incident electrons and the electrons in the target. In the large momentum transfer region, the elastic differential cross sections of electron scattering are almost due to the contribution from the nuclei scattering, so it is very difficult to test the electronic structure. However the differential cross sections of the X-ray elastic scattering is only due to the contribution from the target's electrons, so X-ray scattering is very suitable to test the electronic structure of atoms in the large momentum transfer region. In one word, the elastic differential cross section measured by the high-energy electron scattering can strictly test the validity of the first-order Born approximation in the small momentum transfer, and the elastic squared form factors measured by the high-resolution non-resonant X-ray scattering can strictly test the wavefunctions in the inner region.
     (3) By analogizing to the Dipole(e,e) method, our group proposed a new method to determine the absolute optical oscillator strengths of atoms and molecules using the high-resolution non-resonant X-ray scattering technique at a very small momentum transfer, i.e., q2≤0.01a.u., for the first time, and it is called as Dipole(γ,γ) method. Using the Dipole(γ,γ) method, the absolute optical oscilla-tor strengths of Lyman and Werner bands of molecular hydrogen are determined. The optical oscillator strengths of Lyman and Werner bands of molecular hydrogen obtained by Dipole(γ,γ) method are agreement with the previous experimental and calculated results, which indicates the validity of the Dipole(γ,γ) method.
     (4) The author updated the high-resolution fast-electron energy loss spec-trometer in2012-2013, so there is a great improvement of the vacuum, stability of the spectrometer. With the high-resolution fast-electron energy loss spectrometer and the newly designed metal-vapor oven, the generalized oscillator strengths of valence-shell excited states of atomic sodium were studied preliminarily with a high incident electron energy of1500eV and a high energy resolution of70meV. Due to the pressure effect, the generalized oscillator strengths of32P and42P deviates from the results calculated by the first-order Born approximation. The generalized oscillator strengths of42S,52S,42D+42F+52P and52D+52F+52G+62S are in good agreement with the results calculated by the first-order Born approx-imation, which indicates the first-order Born approximation at incident electron energy E0=1500eV is satisfied.
引文
[1]B. P. Xie, L. F. Zhu, K. Yang, et al. Phys. Rev. A.,82,032501,2010.
    [2]L. F. Zhu, W. Q. Xu, K. Yang, et al. Phys. Rev. A.,85,030501(R),2012.
    [3]L. F. Zhu, L. S. Wang, B. P. Xie, et al. J. Phys. B:At. Mol. Opt. Phys.,44,025203,2011.
    [4]X. Kang, K. Yang, Y. W. Liu, et al. Phys. Rev. A.,86,022509,2012.
    [5]Y. W. Liu, X. X. Mei, X. Kang, et al. Phys. Rev. A,89,014502,2014.
    [6]Y. G. Peng, X. Kang, K. Yang, et al. Phys. Rev. A.,89,032512,2014.
    [7]蔡永强.物理双月刊,26,408,2004.
    [8]C. C. Kao, W. A. L. Caliebe, J. B. Hastings, et al. Phys. Rev. B.,54,163.61,1996.
    [9]A. H. Compton. Phys. Rev.,21,483,1923.
    [10]M. Cooper, J. A. Leake, R. J. Weiss. Philos. Mag.,12,797,1965.
    [11]W. C. Phillips, R. J. Weiss. Phys. Rev.,171,790,1968.
    [12]P. Eisenberger, W. A. Reed. Phys. Rev. A.,5,2085,1972.
    [13]M. J. Cooper. Rep. Prog. Phys.,48,415,1985.
    [14]P. Nozieres, D. Pines. Phys. Rev,113,1254,1959.
    [15]G. Priftis. Phys. Rev. B,2,54,1970.
    [16]P. Eisenberger, P. M. Platzman, K. C. Pandy. Phys. Rev. Lett.,31,311,1973.
    [17]W. Schulke, U. Berg, O. Briimmer. Phys. Status. Solidi. B.,35,227,1969.
    [18]P. M. Platzman, P. Eisenberger. Phys. Rev. Lett.,33,152,1974.
    [19]W. Schiilke, W. Lautner. Phys. Status. Solidi. B.,66,211,1974.
    [20]P. M. Platzman, P. Eisenberger. Solid. State. Commun,14,1,1974.
    [21]N. Schell, R. O. Simmons, A. Kaprolat, et al. Phys. Rev. Lett.,74,2535,1995.
    [22]Y. Q. Cai, H. K. Mao, P. C. Chow, et al. Phys. Rev. Lett.,94,025502,2005.
    [23]M. Schwoerer-Bohning, A. T. Macrander. Phys. Rev. Lett.,80,5572,1998.
    [24]Y. Q. Cai, P. C. Chow, O. D. Restrepo, et al. Phys. Rev. Lett.,97,176402,2006.
    [25]W. L. Mao, H. K. Mao, P. J. Eng, et al. Science.,302,425,2003.
    [26]K. Yang, L. P. Chen, Y. Q. Cai, et al. Phys. Rev. Lett.,98,036404,2007.
    [27]M. Blume. J. Appl. Phys.,57,3615,1985.
    [28]P. Eisenberger, P. M. Platzman, P. Schmidt. Phys. Rev. Lett.,34,18,1975.
    [29]P. Eisenberger, P. M. Platzman. Phys. Rev. B.,13,934,1976.
    [30]J. H. Hubbell, W. J. Veigele, E. A. Briggs, et al. J. Phys. Chem. Ref. Data.,4,471,1975.
    [31]A. T. Nelms, I. Oppenheim. J. Res. Nat. Bur. Stand.,55,53,1955.
    [32]R. W. James, G. W. Brindley. Z. Kristallogr.,78,470,1931.
    [33]R. W. James, G. W. Brindley. Phil. Mag.,12,81,1931.
    [34]N. M. Cann, A. J. Thakkar. J. Electron. Spectrosc. Relat. Phenom.,123,143,2002.
    [35]X. J. Liu, L. F. Zhu, Z. S. Yuan, et al. J. Electron. Spectrosc. Relat. Phenom.,135,15,2004.
    [36]X. Y. Han, J. M. Li. Phys. Rev. A.,74,062711,2006.
    [37]徐克尊.现代物理知识,1,33,1993.
    [38]W. F. Chan, G. Cooper, C. E. Brion. Phys. Rev. A.,44,186,1991.
    [39]S. L. Wu, Z. P. Zhong, R. F. Feng, et al. Phys. Rev. A.,51,4494,1995.
    [40]K. Z. Xu, R. F. Feng, S. L. Wu, et al. Phys. Rev. A.,53,3081,1996.
    [41]X. J. Liu, L. F. Zhu, X. M. Jiang, et al. Rev. Sci. Instrum.,72,3357,2001.
    [42]M. Inokuti. Rev. Mod. Phys.,43,297,1971.
    [43]H. Bethe. Ann. Phys.,5,325,1930.
    [44]H. Bethe. Z. Phys.,76,293,1930.
    [45]E. N. Lassettre, A. Skerbele, M. A. Dillon. J. Chem. Phys.,50,1829,1969.
    [46]Z. P. Zhong, R. F. Feng, K. Z. Xu, et al. Phys. Rev. A.,55,1799,1997.
    [47]R. A. Bonham, P. R. Goruganthu. J. Chem. Phys.,84,3068,1986.
    [48]A. Z. Msezane, R. J. W. Henry. Chem. Phys. Lett.,119,81,1985.
    [49]A. Z. Msezane, R. J. W. Henry. Phys. Rev. Lett.,55,2277,1985.
    [50]A. Z. Msezane, R. J. W. Henry. Phys. Rev. Lett.,32,3778,1985.
    [51]J. Mitroy. Phys. Rev. A.,35,4434,1987.
    [52]G. P. Li, T. Takayanagi, K. Wakiya, et al. Phys. Rev. A.,38,1240,1988.
    [53]M. A. Dillon, E. N. Lassettre. J. Chem. Phys.,62,2373,1975.
    [54]钟志萍.博士论文.中国科学技术大学,1997.
    [55]E. O. Wollan. Phys. Rev.,37,862,1931.
    [56]D. R. Chipman, L. D. Jennings. Phys. Rev.,132,728,1963.
    [57]F. Smend, H. Czerwinski. Z. Phys. D.,1,139,1986.
    [58]F. Smend, D. Schaupp, H. Czerwinski, et al. Phys. Rev. A.,36,5189,1987.
    [59]G. P. Arrighini, F. Biondi, C. Guidotti. Mol. Phys.,41,1501,1980.
    [60]J. J. Bentley, R. F. Stewart. J. Comput. Phys.,11,127,1973.
    [61]K. T. Leung. J. Electron. Spectrosc. Relat. Phenom.,100,237,1999.
    [62]J. J. Bentley, R. F. Stewart. J. Chem. Phys.,62,875,1975.
    [63]E. R. Davidson, L. L. Jones. J. Chem. Phys.,37,2966,1962.
    [64]W. Kolos, C. C. J. Roothaan. Rev. Mod. Phys.,32,219,1960.
    [65]J. A. Bradley, G. T. Seidler, G. Cooper, et al. Phys. Rev. Lett.,105,053202,2010.
    [66]J. A. Bradley, A. Sakko, G. T. Seidler, et al. Phys. Rev. A.,84,022510,2011.
    [67]A. L. Ford, J. C. Browne. Chem. Phys. Lett.,20,284,1973.
    [68]N. Oda, F. Nishimura, S. Tahira. J. Phys. Soc. Jpn.,33,462,1972.
    [69]Q. C. Shi, R. F. Feng, Q. Ji, et al. J. Phys. B:At. Mol. Opt. Phys.,30,5479,1997.
    [70]R. H. J. Jansen, F. J. Heer, H. J. Luyken, et al. J. Phys. B:At. Mol. Opt. Phys.,9,185,1976.
    [71]G. E. Chamberlain, S. R. Mielczarek, C. E. Kuyatt. Phys. Rev. A.,2,1905,1970.
    [72]J. P. Bromberg. J. Chem. Phys.,61,963,1974.
    [73]M. V. Kurepa, L. Vuskovic. J. Phys. B:At. Mol. Opt. Phys.,8,2067,1975.
    [74]R. W. Wagenaar, A. deBoer, T. vanTubergen, et al. J. Phys. B:At. Mol. Opt. Phys.,19,3121, 1986.
    [75]D. F. Register, S. Trajmar, S. K. Srivastava. Phys. Rev. A.,21,1134,1980.
    [76]A. L. Hughes, J. H. McMillen, G. M. Webb. Phys. Rev.,41,154,1932.
    [77]L. Vriens, C. E. Kuyatt, S. R. Mielczarek. Phys. Rev.,170,163,1968.
    [78]K. Jost.8th International Conference on the Physics of Electronic and Atomic Collision. Belgrade: Institute of Physics,1973:269.
    [79]S. K. Sethuraman, J. A. Rees, J. R. Gibson. J. Phys. B:At. Mol. Opt. Phys.,7,1741,1974.
    [80]S. C. Gupta, J. A. Rees. J. Phys. B:At. Mol. Opt. Phys.,8,1267,1975.
    [81]C. B. Crooks. Ph. D Thesis. Lincoln:University of Nebrerke,1972.
    [82]M. Fink, A. C. Yates. Atomic. Data.,1,385,1970.
    [83]F. W. J. Byron, C. J. Joachain. Phys. Rev. A.,8,1267,1973.
    [84]T. Scott, H. S. Taylor. J. Phys. B:At. Mol. Opt. Phys.,12,3385,1979.
    [85]S. Vucic, R. M. Potvliege, C. J. Joachain. J. Phys. B:At. Mol. Opt. Phys.,20,3157,1987.
    [86]I. E. McCarthy, C. J. Noble, B. A. Phillips, et al. Phys. Rev. A.,15,2173,1977.
    [87]施启存.博士论文.中国科学技术大学,1996.
    [88]P. M. Platzman, N. Tzoar. Phys. Rev.,139, A410,1965.
    [89]P. Eisenberger, P. M. Platzman. Phys. Rev. A.,2,415,1970.
    [90]M. A. Dillon. J. Chem. Phys.,63,2035,1975.
    [91]Z. P. Zhong, R. F. Feng, S. L. Wu, et al. J. Phys. B:At. Mol. Opt. Phys.,30,5305,1997.
    [92]T. Y. Suzuki, H. Suzuki, F. J. Currell, et al. Phys. Rev. A.,57,1832,1998.
    [93]B. H. Bransden, C. J. Joachain. Physics of atoms and molecules. Prentice Hall,2003.
    [94]K. Yoshino, D. E. Freeman, J. R. Esmond, et al. Planet. Space. Sci.,36,1201,1988.
    [95]E. S. Fry, W. L. Williams. Phys. Rev.,183,81,1969.
    [96]J. M. Burger, A. Lurio. Phys. Rev. A.,3,64,1971.
    [97]I. Martinson, W. S. Bickel. Phys. Lett.,30A,524,1969.
    [98]R. Lincke, H. R. Griem. Phys. Rev.,143,66,1966.
    [99]F. A. Korolyov, V. I. Odintsov. Opt. Spectrosc.,18,547,1965.
    [100]H. G. Kuhn, J. M. Vaughan. Proc. R. Soc. Lond. A.,277,297,1964.
    [101]S. Tsurubuchi, K. Watanabe, T. Arikawa. J. Phys. B:At. Mol. Opt. Phys.,22,2969,1989.
    [102]J. P. DeJongh, J. VanEck. Physica.,51,104,1971.
    [103]W. B. Westerveld, J. VanEck. J. Quant. Spectrosc. Radiat. Transfer.,17,131,1977.
    [104]Y. M. Aleksandrov, P. F. Gruzdev, M. G. Kozlov, et al. Opt. Spectrosc.,54,4,1983.
    [105]W. R. Ferrell, M. G. Payne, W. R. Garrett. Phys. Rev. A.,35,5020,1987.
    [106]R. D. Hudson. Rev. Geophys. Space. Phys.,9,305,1971.
    [107]G. F. Lothian. Analyst.,88,678,1963.
    [108]R. D. Hudson, V. L. Carter. J. Opt. Soc. Am.,58,227,1968.
    [109]P. Giirtler, V. Saile, E. E. Koch. Chem. Phys. Lett.,48,245,1977.
    [110]G. M. Lawrence, D. L. Mickey, K. Dressler. J. Chem. Phys.,48,1989,1968.
    [111]V. L. Carter. J. Chem. Phys.,56,4195,1972.
    [112]M. J. Vanderwiel. Physica.,49,411,1970.
    [113]M. J. Vanderwiel, G. Wiebes. Physica.,53,225,1971.
    [114]M. J. Vanderwiel, G. Wiebes. Physica.,54,411,1971.
    [115]W. Fabian, B. R. Lewis. J. Quant. Spectrosc. Radiat. Transfer.,14,523,1974.
    [116]G. N. Haddad, K. H. Lokan, A. J. D. Farmer, et al. J. Quant. Spectrosc. Radiat. Transfer.,8, 1193,1968.
    [117]J. E. Hesser, N. H. Brooks, G. M. Lawrence. J. Chem. Phys.,49,5388,1968.
    [118]M. Glassmaujean, J. Breton, P. M. Guyon. Chem. Phys. Lett.,112,25,1984.
    [119]M. Glassmaujean, J. Breton, P. M. Guyon. J. Chem. Phys.,83,1468,1985.
    [120]M. Glassmaujean, J. Breton, P. M. Guyon. Z. Phys. D.,5,189,1987.
    [121]J. Geiger. Z. Physik.,181,413,1964.
    [122]J. Geiger, M. Topschowsky. Z. Naturforsch., A21,626,1966.
    [123]J. Geiger, H. Schmoranzer. J. Mol. Spectrosc.,32,39,1969.
    [124]W. F. Chan, G. Cooper, C. E. Brion. Chem. Phys.,168,375,1992.
    [125]Z. P. Zhong, K. Z. Xu, R. F. Feng, et al. J. Electron. Spectrosc. Relat. Phenom.,94,127,1998.
    [126]Z. P. Zhong, W. H. Zhang, K. Z. Xu, et al. Phys. Rev. A.,60,236,1999.
    [127]H. Kato, H. Kawahara, M. Hoshino, et al. Phys. Rev. A.,77,062708,2008.
    [128]B. R. Lewis. Phys. Rev. A.,78,026701,2008.
    [129]A. C. Allison, A. Dalgarno. Atomic. Data.,1,289,1970.
    [130]A. C. Allison, A. Dalgarno. Mol. Phys.,19,567,1970.
    [131]G. P. Arrighini, F. Biondi, C. Guidotti, et al. Chem. Phys.,52,133,1980.
    [132]I. Broges, C. E. Bielschowsky. Phys. Rev. A.,60,1226,1999.
    [133]U. Fantz, D. Wiinderlich. At. Data. Nucl. Data. Tables.,92,853,2006.
    [134]C. E. Bielschowsky, C. A. Lucas, G. G. B. deSouza, et al. Phys. Rev. A.,43,5975,1991.
    [135]T. Shuttleworth, W. R. Newell, A. C. H. Smith. J. Phys. B:At. Mol. Opt. Phys.,10,1641,1977.
    [136]S. J. Buckman, P. J. O. Teubner. J. Phys. B:At. Mol. Opt. Phys.,12,1741,1979.
    [137]P. J. O. Teubner, J. L. Riley, M. J. Brunger, et al. J. Phys. B:At. Mol. Opt. Phys.,19,3313, 1986.
    [138]L. Vuskovic, M. V. Kurepa. J. Phys. B:At. Mol. Opt. Phys.,9,837,1976.
    [139]B. Marinkovic, V. Pejcev, D. Filipovic, et al. J. Phys. B:At. Mol. Opt. Phys.,25,5179,1992.
    [140]T. Y. Jiang, C. H. Ying, L. Vuskovic, et al. Phys. Rev. A.,42,3852,1990.
    [141]X. Y. Han, Y. M. Li, H. Zhong, et al. Phys. Rev. A.,78,052702,2008.
    [142]X. Y. Han, Y. M. Li, J. Yan, et al. J. Phys. B:At. Mol. Opt. Phys.,42,195003,2009.
    [143]I. V. Hertel, K. A. Rost. J. Phys. B:At. Mol. Opt. Phys.,4,690,1971.
    [144]G. D. Carse. J. Phys. B:At. Mol. Opt. Phys.,5,1928,1972.
    [145]H. R. J. Walters. J. Phys. B:At. Mol. Opt. Phys.,6,1003,1973.
    [146]D. L. Moores. J. Phys. B:At. Mol. Opt. Phys.,9,1329,1976.
    [147]J. V. Kennedy, V. P. Myercough, M. R. C. McDowell. J. Phys. B:At. Mol. Opt. Phys.,10,3759, 1977.
    [148]Issa. PhD Thesis. Durham University,1977.
    [149]B. G. Tian, J. M. Li. Acta. Phys. Sin.,33,1401,1984.
    [150]I. E. McCarthy, J. D. Mitroy, A. T. Stelbovics. J. Phys. B:At. Mol. Opt. Phys.,18,2509,1985.
    [151]J. D. Mitroy, I. E. McCarthy, A. T. Stelbovics. J. Phys. B:At. Mol. Opt. Phys.,20,4827,1987.
    [152]A. Z. Msezane. Phys. Rev. A.,37,1787,1988.
    [153]A. Z. Msezane, C. R. Handy, G. Mantica, et al. Phys. Rev. A.,38,1604,1988.
    [154]V. V. Balashov, A. N. Grum-Grzhimailo, O. I. Klochkova. J. Phys. B:At. Mol. Opt. Phys.,22, L669,1989.
    [155]I. Bray, D. A. Konovalov, I. E. McCarthy. Phys. Rev. A.,44,7179,1991.
    [156]D. H. Madison, K. Bartschat, R. P. McEachran. J. Phys. B:At. Mol. Opt. Phys.,25,5199,1992.
    [157]Z. F. Chen, A. Z. Msezane. Phys. Rev. A.,61,030703(R),2000.
    [158]林梅.博士论文.中国科学技术大学,2013.
    [159]朱林繁,刘小井,李文斌,苑震生,成华东,钟志萍,徐克尊.原子核物理评论,19,150,2002.
    [160]H. D. Cheng, L. F. Zhu, Z. S. Yuan, et al. Phys. Rev. A.,72,012715,2005.
    [161]L. F. Zhu, H. D. Cheng, Z. S. Yuan, et al. Phys. Rev. A.,73,042703,2006.
    [162]Y. Y. Wang, J. M. Sun, L. F. Zhu. J. Chem. Phys.,132,124301,2010.
    [163]W. Q. Xu, J. M. Sun, Y. Y. Wang, et al. Phys. Rev. A.,82,042716,2010.
    [164]S. K. Srivastava, L. Vuskovic. J. Phys. B:At. Mol. Opt. Phys.,13,2633,1980.
    [165]姜维春.博士论文.中国科学技术大学,2008.
    [166]王友燕.硕士论文.中国科学技术大学,2011.