激光感生碰撞能量转移和电荷转移的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光感生碰撞(laser-induced collision)是指在两个不同粒子的碰撞过程中,利用激光场与粒子间碰撞的共同作用将其中一个粒子的激发能选择性地转移到另一个粒子的特定能级的一种光学过程。它只有在碰撞和激光场同时存在时才能产生,单独激光或单独碰撞不能产生这种跨越粒子之间的能级跃迁现象。由于激光的参与,使得不同粒子之间通过碰撞传递能量变得更加快速和有效;通过粒子间的碰撞作用,又可以实现直接单光子激发难以完成的跃迁,达到预期的高激发态,形成粒子数反转,获得短波长激光。因此,研究激光感生碰撞过程对于发展短波长激光光源具有非常重要的意义。此外,激发所选粒子的特定靶能级的能力也使其在控制化学反应通道方面具有巨大的潜在应用价值。
     激光感生碰撞过程包括激光感生碰撞能量转移和激光感生碰撞电荷转移。在激光感生碰撞能量转移的传统研究中,所有的理论模型都假设了在碰撞过程中粒子的相对运动速度保持不变,以往的理论计算也是在此基础上进行的,这很显然不符合实际情况;此外,激光感生碰撞电荷转移的传统实验研究都是在混合金属蒸汽系统中进行,对于气体系统则未见报道。针对这两个问题,本文对这两种重要的激光感生碰撞过程做出了一些创新性的改进和完善,并进行了理论和实验研究。
     在原子间激光感生碰撞能量转移的理论研究方面,考虑到碰撞过程中原子运动速度的统计分布,对现有的激光感生碰撞能量转移的四能级理论模型进行了完善。根据热平衡状态下的麦克斯韦速度分布函数推导了两原子间相对运动速度的分布函数,并给出了对相对运动速度统计平均的碰撞截面。
     在此基础上,对以往研究不完善的Eu-Sr、Ba-Sr以及我们新提出的Eu-Sr系统进行了数值计算。这三个系统具有典型的代表性:前两个系统分别满足激光感生碰撞能量转移的两种极限情况,从而可以通过忽略一个中间能级而由四能级系统过渡为三能级系统;而我们提出的Eu-Sr系统则不满足这两个极限条件,因此不能简化为三能级系统,而必须采用四能级模型进行求解。分别计算了三个系统在不同的系统温度和转移激光强度下的激光感生碰撞跃迁几率和碰撞截面,并从准分子势能曲线的角度解释了各个系统的谱线特征。
     本文对于弱场情况计算得到的碰撞截面谱线形状与以往的结论相同:碰撞截面谱线明显不对称,一侧为非稳态翼,碰撞截面下降非常迅速;另一侧为准稳态翼,在很宽的转移激光失谐范围内都可以得到较大的碰撞截面。但计算表明,原子间相对运动速度的统计分布对碰撞截面的大小有明显影响,因此有必要在计算时加以考虑。在强场下激光感生碰撞能量转移谱表现出了明显区别于弱场情况的特征:(1)强场时谱线的宽度显著变窄,并且谱线形状失去了弱场时的明显不对称性,随着激光强度的提高逐渐趋于对称;(2)谱线的峰值位置明显偏离了共振频率而向着非稳态翼一侧发生偏移,偏移量的大小随着转移激光强度近似成线性增加。(3)峰值碰撞截面随着转移激光强度的增加而增大,并在增大到一定程度时出现了饱和现象。
     在激光感生碰撞电荷转移的研究方面,本文提出了一个新的单光束Xe~+-N激光感生碰撞电荷转移系统,这在国内外的研究中尚未见过报道。由于其特殊的能级结构,利用一束~440nm激光即可完成从反应初始能态Xe~+的制备到激光感生碰撞电荷转移产生N~+的整个过程,这与通常的激光感生碰撞过程需要两束激光完全不同。在理论方面,首先推导了与之相应的激光感生碰撞电荷转移的二能级理论模型,得到了态振幅的运动方程,并给出了碰撞跃迁几率和碰撞截面的表达式。在此基础上,对此Xe~+-N系统进行了数值计算,得到了不同转移激光强度和失谐量时的碰撞跃迁几率和碰撞截面。对~440nm波长转移激光的计算结果表明,在此波长附近激光感生碰撞电荷转移截面随转移激光波长的变化处于水平线性区,并且随着激光强度的增加近似成线性增大,证明了在该系统中实现本文提出的单光束激光感生碰撞电荷转移过程的可行性。
     在实验上,将分子束技术和飞行时间质谱检测技术相结合,对Xe~+-N系统的激光感生碰撞电荷转移过程进行了实验研究,据我们所知,迄今为止国内外尚未发表过相关的报道。首先利用~440nm染料激光多光子共振电离的方法制备了该系统的初始储能态Xe~+,并测得了Xe在440nm波长附近的多光子共振电离谱,在不同参数条件下的实验结果表明利用光阑对光束进行模式净化以及适当减小束源压力有利于抑制电离谱的宽度以及避免离子信号出现饱和现象。在此基础上,利用一束~440nm染料激光从实验上实现了该系统由Xe~+产生N~+的激光感生碰撞电荷转移过程。利用飞行时间质谱检测法对反应的产物离子(Xe~+、N~+和N~(2+))进行了探测,并对束源压力、激光波长和强度等参数对离子强度和产额的影响进行了分析。实验结果证实了在440nm波长附近,碰撞截面随激光波长的变化近似恒定,随激光强度的增加近似成线性增大的结论,与理论计算结果相一致,证明了理论计算的合理性。
A laser-induced collision is an optical process in which a laser field is used during the collision between two different particles to induce selective energy transfer from a level in one atomic or molecular species to another level in a different species. It can’t occur unless the two mechanisms - collision and radiative interaction - are both present; any of them singly can’t induce this interparticle transition. On one hand, energy transfer between different particles is made more quickly and efficiently because of the participation of the laser field; on the other hand, the effect of interparticle collisions can implement transfers which are difficult for single photon excitation, thus can obtain the expected high excited state and consequently short wavelength laser. Therefore, to study laser-induced collision process is of great significance for development of short wavelength laser sources. In addition, the ability to excite the special target level of the chosen particle permits potential applications in controlling pathways of chemical reactions.
     Laser induced collisions involve laser-induced collisional energy transfer (LICET) and laser-induced/assisted charge transfer (LICT/LACT). In the traditional researches on LICET, nearly all the theoretical models, based on which former numerical calculations are made, have assumed that the relative speed remains unchanged during the collision process, which obviously does not match the practical situation. Moreover, all of the traditional experimental investigations of LICT/LACT are made for mixed metal vapors, with no gas systems been reported. Aiming at these issues, the two important laser-induced collision processes are innovatively studied both theoretically and experimentally.
     For the theoretical research of LICET, the existing four-level model of LICET is improved considering the velocity distribution of the atoms during the collision. The distribution function of relative speed between two atoms is derived from the Maxwellian velocity distribution function under thermal equilibrium conditions, with the velocity averaged cross section obtained.
     On this basis, the incompletely studied Eu-Sr, Ba-Sr systems and the proposed Eu-Sr system are numerically calculated. These three systems are chosen because they are representative in that the former two systems satisfy the two limiting cases of LICET, respectively, thus can be reduced to a three-level system from a four-level one by neglecting one of their intermediate states; while the proposed Eu-Sr system can’t be reduced to a three-level system because it doesn’t satisfy either of the two limiting cases, and must be solved using the four-level model. Laser induced transition probabilities and collision cross sections of the three systems under different temperature and transfer laser intensities are calculated, with the characteristics of their spectrum profile interpreted from the viewpoint of potential curves of the quasimolecules.
     Our calculations in the weak field obtain the same spectrum profiles as former calculations, in that the spectrums are strongly asymmetrical, i.e. in the antistatic wing on one side of the line peak, the cross section falls rapidly; while in the quasistatic wing on the other side, the cross section is relatively large for a wide range of transfer laser detuning. However, calculations show that the statistic distribution of the relative speed between two atoms has dramatic impacts on the collision cross section, indicating that it is necessary to consider this distribution in the calculations. The LICET spectrum in strong field shows the following features which obviously differs from those in weak field: (a), the spectrum dramatically narrows in the strong field, and the spectral line shape becomes less asymmetric as the laser intensity increases; (b), the peak of the spectrum is shifted from the resonant frequency towards the antistatic region, with the shift increasing approximately linearly with laser intensity; (c), the peak cross section increases laser intensity and shows saturation at a high intensity.
     For the research of LICT, a novel one-beam Xe~+-N LICT system is proposed in this paper, which has not been reported home and abroad. Because of the special energy structure of this system, only one ~440nm laser beam is needed to complete the whole process from preparation of the initial state Xe~+ to production of N+ through LICT, which totally differs from the usual laser induced collision processes that require two laser frequencies. The corresponding two-level model for LICT is theoretically deduced, with the motion equations for the probability amplitudes obtained, and the expressions of collisional transition probability and cross section offered. On this basis, the LICT process for this Xe~+-N system is numerically calculated, obtaining transition probabilities and cross sections for different transfer laser intensities and detunings. The results for the transfer laser of ~440nm wavelength come to the conclusion that the laser induced collisional cross section is in its horizontally linear region within this wavelength region, and increases approximately linearly with increasing laser intensity, indicating the feasibility of implementing the proposed one-beam LICT process in this system.
     Combining the molecular beam technique and time-of-flight (TOF) mass spec- trometry, the LICT process in this Xe~+-N system is experimentally sdudied, which is to our knowledge the first report up to now. The initial state Xe~+ of the system is firstly prepared through resonance enhanced multi-photon ionization (REMPI) of atomic Xe by ~440 nm laser, and ionization spectra of Xe are measured. On this basis, the LICT process for this Xe~+-N system is experimentally realized using only one ~440nm dye laser beam. The product ions are detected by using TOF mass spectrometry, with the impacts of source pressure, laser wavelength and intensity on their intensity and yields analyzed. The experimental results indicate that collision cross section remains almost unchanged with laser wavelength and increases approximately linearly with laser intensity in the vicinity of 440nm, which is con- sistent with the calculated results, indicating validity of our theoretical calculations.
引文
1 S. Harris and J. White. Numerical Analysis of Laser Induced Inelastic Collisions. IEEE Journal of Quantum Electronics. 1977, 13(12): 972-978
    2 M. Matera, M. Mazzoni, M. Bianconi, et al. Laser-Induced Collisional Energy Transfer: Experimental Study of the Spectral Profile. Phys. Rev. A. 1990, 41(7): 3766-3769
    3 S. Geltman. Calculations on Laser-Induced Collisional Energy Transfer. Phys. Rev. A. 1992, 45(7): 4792-4798
    4 R. J. Simeoni, G. Peach and I. B. Whittingham. Theoretical Study of a LICET -Like Process in Singlet Helium Systems. J. Phys. B: At. Mol. Opt. Phys. 1996, 29(22): 5567-5582
    5彭惠民,王世绩. X射线激光.国防工业出版社, 1997: 238-239, 260-261
    6王骐,赵永蓬.激光器动力学.哈尔滨工业大学出版社, 2008: 85-87
    7 J. Lukasik and S. C. Wallace. Laser-Assisted Intermolecular Energy Transfer between Electronic States of Carbon Monoxide in the Vacuum Ultraviolet. Phys. Rev. Lett. 1981, 47(4): 240-243
    8李远哲.用激光激发来引导化学反应的通道.化学通报. 1993, (8): 9
    9 E. D. Potter, J. L. Herek, S. Pedersen, et al. Femtosecond Laser Control of a Chemical Reaction. Nature. 1992, 355(6355): 66-68
    10 J. L. Herek, A. Materny and A. H. Zewail. Femtosecond Control of an Elementary Unimolecular Reaction from the Transition-State Region. Chem. Phys. Lett. 1994, 228(1-3): 15-25
    11 L. Zhu, V. Kleiman, X. Li, et al. Coherent Laser Control of the Product Distribution Obtained in the Photoexcitation of Hi. Science. 1995, 270 (5233): 77-80
    12朱武生,赵新生.相干激光控制化学反应.大学化学. 1995, 10(1): 1-5
    13 A. H. Zewail. Femtochemistry: Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States. J. Phys. Chem. 1996, 100 (31): 12701-12724
    14 R. N. Zare. Laser Control of Chemical Reactions. Science. 1998, 279(5358): 1875-1879
    15 T. B. Xia, C. Z. Wan, R. W. Roberts, et al. RNA-Protein Recognition: Single- Residue Ultrafast Dynamical Control of Structural Specificity and Function. Proceedings of the National Academy of Sciences of the United States ofAmerica. 2005, 102(37): 13013-13018
    16辛勇.激光位相相干控制CS_2分子反应的实验研究.吉林大学硕士论文. 2008.
    17 S. Yan, Y.-T. Wu and K. Liu. Tracking the Energy Flow Along the Reaction Path. Proceedings of the National Academy of Sciences. 2008, 105(35): 12667-12672
    18 D. J. Tannor and S. A. Rice. Control of Selectivity of Chemical Reaction Via Control of Wave Packet Evolution. J. Chem. Phys. 1985, 83(10): 5013-5018
    19 K. Hoki, L. Gonzalez and Y. Fujimura. Control of Molecular Handedness Using Pump-Dump Laser Pulses. J. Chem. Phys. 2002, 116(6): 2433-2438
    20 P. Brumer and M. Shapiro. Control of Unimolecular Reactions Using Coherent Light. Chem. Phys. Lett. 1986, 126(6): 541-546
    21 P. Brumer and M. Shapiro. Laser Control of Molecular Processes. Annu. Rev. Phys. Chem. 1992, 43(1): 257-282
    22 M. Shapiro and P. Brumer. Coherent Control of Molecular Dynamics. Rep. Prog. Phys. 2003, 66(6): 859-942
    23 D. J. Gauthier. Alternate Schemes for the Coherent Laser Control of Chemical Reactions. J. Chem. Phys. 1993, 99(3): 1618-1622
    24 K. M. Dunseath, M. Terao-Dunseath and G. Bourhis. Selection Rules for Laser-Assisted Electron-Atom Collisions with the Laser Field Normal to the Scattering Plane. Phys. Rev. A. 2005, 72(3): 033410
    25 F. Lan-Lan, Z. Zhi-Ping, Z. Lin-Fan, et al. Superexcited States of Carbon Monoxide Studied by Fast-Electron Impact. Chin. Phys. 2005, 14(12): 2478- 2483
    26 K. M. Dunseath and M. Terao-Dunseath. Laser-Assisted Electron-Helium Scattering at Very Low Collision Energies. Phys. Rev. A. 2006, 73(5): 053407
    27 B. Zon and V. Zon. Logarithmically Accurate Total Cross Sections of Fast Electron Scattering by Atoms. Tech. Phys. 2007, 52(1): 35-38
    28 E. Surdutovich, W. E. Kauppila, C. K. Kwan, et al. Measurements of Total and Inelastic Cross Sections in Positron-Cs and Electron-Cs Collisions. Phys. Rev. A. 2007, 75(3): 032720-032728
    29 E. J. Ma, Y. G. Ma, J. G. Chen, et al. Cross Sections of Elastic Electron and Positron Scattering from Proton-Rich Nuclei. Chin. Phys. Lett. 2006, 23(10): 2695-2698
    30 M. A. Bolorizadeh, M. J. Brunger, T. Maddern, et al. Positronium Formation as a Three-Body Reaction. I. The Second-Order Positron-Electron Interac-tion Amplitude. J. Math. Phys. 2007, 48(3): 033506
    31 S. Roth. Precision Electroweak Physics at Electron-Positron Colliders. Springer Tr. Mod. Phys. 2007, 220: 1-4
    32 F. Lique, A. Spielfiedel, G. Dhont, et al. Ro-Vibrational Excitation of the SO Molecule by Collision with the He Atom. Astron. Astrophys. 2006, 458(1): 331-337
    33 K. J. Matherson, R. D. Glover, D. E. Laban, et al. Absolute Metastable Atom-Atom Collision Cross Section Measurements Using a Magneto- Optical Trap. Rev. Sci. Instrum. 2007, 78(7): 073102
    34 L. Ponce. Analysis of an Ion-Atom Collision at Intermediate Velocities by Means of Quantum Trajectories. J. Phys. B: At. Mol. Opt. Phys. 2007, 40(3): 585-597
    35 G. Jalbert, W. Wolff, S. D. Magalhaes, et al. Electron Detachment of Negative Ions: The Influence of the Outermost Electron and Its Neutral Core Atom in Collision with He, Ne, and Ar. Phys. Rev. A. 2008, 77(1): 012722
    36 D. Ghosh, A. Deb and S. Dutta. Target Excitation Dependence of Pion Fluctuation in Relativistic Heavy Ion Collision at 2.1 and 60 AGeV. Phys. Scr. 2007, 75(5): 676-681
    37 C. Gombeaud and J. Y. Ollitrault. Covariant Transport Theory Approach to Elliptic Flow in Relativistic Heavy Ion Collision. Phys. Rev. C. 2008, 77(5): 054904
    38 R. L. Ray and M. S. Daugherity. Applicability of Monte Carlo Glauber Models to Relativistic Heavy-Ion Collision Data. J. Phys. G-Nucl. Part. Phys. 2008, 35(12): 125106
    39 Y. P. Wang, D. M. Zhou, R. D. Huang, et al. Collision Geometry and Particle Production in High Energy Heavy Ion Collision Experiments. Chin. Phys. C. 2008, 32(4): 308-328
    40 W. F. Yang, Z. Z. Zhao, S. G. Yuan, et al. Dependence of the Cross Sections for Ir Isotopes on the Values of Q(gg) in the Heavy Ion Collision. Chin. Phys. C. 2009, 33: 196-198
    41 B. I. Abelev, M. M. Aggarwal, Z. Ahammed, et al. Transverse Momentum and Centrality Dependence of High-p[Sub T] Nonphotonic Electron Suppre- ssion in Au + Au Collisions at Sqrt(s[Sub Nn]) = 200 GeV. Phys. Rev. Lett. 2007, 98(19): 192301-192306
    42 G. L. Ma, Y. G. Ma, S. Zhang, et al. Three-Particle Correlations from Parton Cascades in Au+Au Collisions. Phys. Lett. B. 2007, 647(2-3): 122-127
    43 K. Zbiri, A. L. Fevre, J. Aichelin, et al. Transition from Participant to Spectator Fragmentation in Au+Au Reactions between 60A and 150A MeV.Phys. Rev. C. 2007, 75(3): 034612-034613
    44 N. Pruthi. Elliptic Flow and the High p T Ridge in Au+Au Collisions. Eur. Phys. J. C. 2009, (2): 1-3
    45 B. A. deHarak, Z. Chen, D. H. Madison, et al. Experimental and Theoretical Momentum Transfer Dependence of the He (e, 2e) Cross Section. J. Phys. B: At. Mol. Opt. Phys. 2005, 38(10): L145-L152
    46 X. G. Ren, C. G. Ning, J. K. Deng, et al. Ionization Excitation of Helium by the (e, 2e) Reaction. Phys. Rev. A. 2005, 72(4): 042718
    47 M. K. Srivastava, R. K. Chauhan and R. Srivastava. Coplanar Doubly Symmetric (e,2e) Process on Sodium and Potassium. Phys. Rev. A. 2006, 74 (6): 064701-064703
    48 S. A. Zaytsev, V. A. Knyr, Y. V. Popov, et al. Application of the J-Matrix Method to Faddeev-Merkuriev Equations for (e,2e) Reactions: Beyond Pseudostates. Phys. Rev. A. 2007, 75(2): 022718-022711
    49 N. Watanabe, M. Takahashi, Y. Udagawa, et al. Two-Step Mechanisms in Ionization-Excitation of He Studied by Binary (e,2e) Experiments and Second-Born-Approximation Calculations. Phys. Rev. A. 2007, 75(5): 052701-052708
    50 J. R. Gotz, M. Walter and J. S. Briggs. The Effect of Dynamical Screening on Helium (e, 3e) Differential Cross-Sections. J. Phys. B: At. Mol. Opt. Phys. 2005, 38(10): 1569-1579
    51 J. R. Gotz, M. Walter and J. S. Briggs. Cross-Sections for (e, 3e) Collisions on Helium: The DS6C Wavefunction. J. Phys. B: At. Mol. Opt. Phys. 2006, 39(21): 4365-4377
    52 M. Durr, A. Dorn, J. Ullrich, et al. (e,3e) on Helium at Low Impact Energy: The Strongly Correlated Three-Electron Continuum. Phys. Rev. Lett. 2007, 98(19): 193201-193204
    53 H. J. Kull and V. T. Tikhonchuk. Fast Electrons from Electron-Ion Collisions in Strong Laser Fields. Phys. Plasmas. 2005, 12(6): 063301
    54 A. Makhoute, D. Khalil and G. Rahali. Electron-Atomic-Hydrogen Elastic Collisions in a Laser Field. Eur. Phys. J. D. 2006, 37(1): 75-82
    55 A. A. Balakin. Electron-Ion Collisions in Relativistically Strong Laser Fields. Plasma Phys. Rep. 2008, 34(4): 296-305
    56 Z. L. Zhu, M. C. Liang and J. F. Sun. Electron-Helium Atom Collisions in the Presence of a Bichromatic Laser Field. Commun. Theor. Phys. 2008, 50(2): 477-480
    57 L. I. Gudzenko and S. I. Yakovlenko. Radiative Collision. Sov Phys-JETP. 1972, 35(4): 877-881
    58 S. E. Harris and D. B. Lidow. Nonlinear Optical Processes by Van Der Waals Interaction During Collision. Phys. Rev. Lett. 1974, 33(12): 674-676
    59 R. W. Falcone, W. R. Green, J. C. White, et al. Observation of Laser-Induced Inelastic Collisions. Phys. Rev. A. 1977, 15(3): 1333-1335
    60 P. Cahuzac and P. E. Toschek. Observation of Light-Induced Collisional Energy Transfer. Phys. Rev. Lett. 1978, 40(16): 1087-1090
    61 C. Brechignac, P. Cahuzac and P. E. Toschek. High-Resolution Studies on Laser-Induced Collisional-Energy-Transfer Profiles. Phys. Rev. A. 1980, 21 (6): 1969-1974
    62 M. Matera, M. Mazzoni, R. Buffa, et al. Far-Wing Study of Laser-Induced Collisional Energy Transfer. Phys. Rev. A. 1987, 36(3): 1471-1473
    63 L. Fini, R. Buffa, R. Pratesi, et al. Laser-Induced Collisional Energy Transfer: High-Accuracy Measurement of the Spectral Line Shape in Weak- Field Regime. Europhys. Lett. 1992, 18(1): 23-27
    64 A. Débarre. Experimental Evidence of Coherences Produced by a Radiative Collision Process. J. Phys. B: At. Mol. Phys. 1982, 15(11): 1693-1700
    65 M. Mazzoni and L. Fini. Experimental Evidence of Strong-Field Effects in Light-Induced Collisional Energy-Transfer Processes in Europium and Strontium Atoms. Phys. Rev. A. 1993, 48(5): 3786-3791
    66 A. Débarre. High-Resolution Study of Light-Induced Collisional Energy Transfer in Na-Ca Mixture. J. Phys. B: At. Mol. Phys. 1983, 16(3): 431-436
    67 W. R. Green, M. D. Wright, J. Lukasik, et al. Observation of a Laser-Induced Dipole-Quadrupole Collision. Opt. Lett. 1979, 4(9): 265-267
    68 W. R. Green, J. Lukasik, J. R. Willison, et al. Measurement of Large Cross Sections for Laser-Induced Collisions. Phys. Rev. Lett. 1979, 42(15): 970- 973
    69 S. Geltman. Theory of Laser-Induced Inelastic Collisions. J. Phys. B: At. Mol. Phys. 1976, 9(18): L569-L574
    70 M. G. Payne, V. E. Anderson and J. E. Turner. Line Shapes for Laser-Induced Collisions. Phys. Rev. A. 1979, 20(3): 1032-1044
    71 H. Yagisawa and K. Yagisawa. New Approach to the Multistate Problem and Its Application to the Laser-Induced Transition Process: Sr(5s 5p 1P0)+Ca (4s2 1S)+ω→Sr(5s2 1S)+Ca(4p2 1S). Phys. Rev. A. 1984, 29(5): 2479-2484
    72 S. Geltman. Cross Sections of Laser-Induced Collisional Processes: Excita- tion Transfer and Charge Transfer. Phys. Rev. A. 1987, 35(9): 3775-3783
    73 B. Cheron and H. Lemery. Observation of Laser Induced Collisional Energy Transfer in a Rubidium-Potassium Mixture. Opt. Commun. 1982, 42(2): 109-112
    74 B. Cheron and S. Mosaddak. Laser Induced Collisional Energy Transfer Pro- cesses in a Rubidium-Potassium Mixture. Opt. Commun. 1985, 54(1): 7-11
    75 P. S. Krsti? and R. K. Janev. Nonadiabatic Transitions between Quasi- stationary States in a Laser Field. Phys. Rev. A. 1986, 34(1): 157-168
    76 W. R. Garrett, S. D. Henderson and M. G. Payne. Observation of Laser- Induced Collisional Energy Transfer in Xenon-Argon Mixtures. J. Opt. Soc. Am. B. 1987, 4(2): 133-137
    77 A. Bambini and P. R. Berman. Quasistatic Wing Behavior of Collisional- Radiative Line Profiles. Phys. Rev. A. 1987, 35(9): 3753-3757
    78 A. Agresti, P. R. Berman, A. Bambini, et al. Analysis of the Far-Wing Behavior in the Spectrum of the Light-Induced Collisional-Energy-Transfer Process. Phys. Rev. A. 1988, 38(5): 2259-2273
    79 F. Dorsch, S. Geltman and P. E. Toschek. Laser-Induced Collisional-Energy Transfer in Thermal Collisions of Lithium and Strontium. Phys. Rev. A. 1988, 37(7): 2441-2447
    80 B. Cheron, H. Kucal and D. Hennecart. Laser-Induced Collisional Energy Transfer in a Rubidium-Sodium Mixture: Experiment and Interpretation in the Framework of the Non-Adiabatic Collision Theory. J. Phys. B: At. Mol. Opt. Phys. 1990, 23(23): 4281-4291
    81 P. R. Berman, F. Schuller and G. Nienhuis. Generation of Magnetic-State Polarization in Light-Induced Collisional Energy Transfer: Weak-Field, Quasistatic-Wing Limit. Phys. Rev. A. 1990, 42(1): 459-473
    82 A. Bambini, M. Matera, A. Agresti, et al. Strong-Field Effects on Light- Induced Collisional Energy Transfer. Phys. Rev. A. 1990, 42(11): 6629-6640
    83 A. Bambini, P. R. Berman, R. Buffa, et al. Laser-Induced Collisional Energy-Transfer. Phys. Rep. 1994, 238(5): 245-339
    84 J. Szudy and W. E. Baylis. Profiles of Line Wings and Rainbow Satellites Associated with Optical and Radiative Collisions. Phys. Rep. 1996, 266(3-4): 127-227
    85陈德应,王骐,马祖光.激光感生碰撞能量转移的四能级理论模型.光学学报. 1996, 16(11): 1563-1569
    86陈德应,王骐,马祖光. Eu-Sr中激光感生碰撞能量转移的数值计算.中国科学(A辑). 1997, 27(5): 449-460
    87 R. J. Simeoni, G. Peach and I. B. Whittingham. A LICET Process Involving Metastable Singlet Helium. J. Phys. B: At. Mol. Opt. Phys. 1997, 30(4): 1071-1075
    88 D. Chen, Q. Wang, Y. Xia, et al. Numerical Study of Laser-Induced Inelastic Collisions in Cs-Sr. Sci. China, Ser. A. 2000, 43(6): 638-646
    89陈德应,郑瑞华,王骐等.弱场中Ba-Sr系统激光感生碰撞过程的理论研究.光学学报. 2000, 20(12): 1602-1608
    90 H. Y. Zhang, Y. Q. Xia, D. Y. Chen, et al. Numerical Study of Laser-Induced Collision Process in Eu-Sr in Strong Field. Sci. China, Ser. G. 2005, 48(1): 78-88
    91 D. A. Copeland and C. L. Tang. Photon-Assisted Nonresonant Charge Exchange: A Simple Molecular Model. J. Chem. Phys. 1976, 65(8): 3161- 3171
    92 D. A. Copeland and C. L. Tang. On the Optimal Photon Energy for Photon- Assisted Nonresonant Charge Exchange. J. Chem. Phys. 1977, 66(11): 5126- 5129
    93 W. R. Green, M. D. Wright, J. F. Young, et al. Laser-Induced Charge Transfer to an Excited Ionic State. Phys. Rev. Lett. 1979, 43(2): 120-123
    94 M. D. Wright, D. M. O'Brien, J. F. Young, et al. Laser-Induced Charge- Transfer Collisions of Calcium Ions with Strontium Atoms. Phys. Rev. A. 1981, 24(4): 1750-1755
    95 T.-S. Ho, S.-I. Chu and C. Laughlin. Laser Assisted Charge Transfer Reactions in Slow Ion--Atom Collisions: Coupled Dressed Quasimolecular- States Approach. J. Chem. Phys. 1984, 81(2): 788-798
    96 J. F. Seely. Laser-Induced Charge Transfer in the HeH+2 and H2+ Quasimole- cules. J. Chem. Phys. 1981, 75(7): 3321-3324
    97 L. F. Errea, L. Mendez and A. Riera. On Laser-Induced Charge Transfer in the HeH2+ Quasimolecule. J. Chem. Phys. 1983, 79(9): 4221-4226
    98 L. F. Errea, L. Méndez and A. Riera. Laser-Induced Charge Transfer in the LiH3+ Quasi-Molecule. Chem. Phys. Lett. 1984, 104(4): 401-404
    99 Y. P. Hsu, M. Kimura and R. E. Olson. Laser-Assisted Charge-Transfer Collisions: K++Na. Phys. Rev. A. 1985, 31(2): 576-584
    100 Y. P. Hsu and R. E. Olson. Satellite Structure in Laser-Assisted Charge- Transfer Cross Sections. Phys. Rev. A. 1985, 32(5): 2707-2711
    101 T.-S. Ho, C. Laughlin and S.-I. Chu. Laser-Assisted Charge-Transfer Reactions (Li3++H): Coupled Dressed-Quasimolecular-State Approach. Phys. Rev. A. 1985, 32(1): 122-133
    102 A. Débarre and P. Cahuzac. Interpretation of the Experimental Cross Section Profile of a Laser-Induced Charge Exchange Process. J. Phys. B: At. Mol. Phys. 1986, 19(23): 3965-3973
    103 F. Liang and Y.-k. Ho. Energy Absorption by Charge-Resonance-Enhanced Ionization During Atom-Ion Collisions in an Intense Laser Field. Phys. Rev. A. 1998, 58(3): 2332-2336
    104 L. B. Madsen, J. P. Hansen and L. Kocbach. Excitation in Ion-Atom Collisions inside Subfemtosecond Laser Pulses. Phys. Rev. Lett. 2002, 89(9): 093202
    105 T. Kirchner. Manipulating Ion-Atom Collisions with Coherent Electromag- netic Radiation. Phys. Rev. Lett. 2002, 89(9): 093203
    106 T. Kirchner. Laser-Field-Induced Modifications of Electron-Transfer Proce- sses in Ion-Atom Collisions. Phys. Rev. A. 2004, 69(6): 063412
    107 M. Lein and J. M. Rost. Ultrahigh Harmonics from Laser-Assisted Ion-Atom Collisions. Phys. Rev. Lett. 2003, 91(24): 243901
    108 F. Anis, V. Roudnev, R. Cabrera-Trujillo, et al. Laser-Assisted Charge Transfer in He2++H Collisions. Phys. Rev. A. 2006, 73(4): 043414
    109 M. F. Ciappina. Fully Differential Cross Sections for Ion-Atom Impact Ioni- zation in the Presence of a Laser Field. J. Phys. B: At. Mol. Opt. Phys. 2007, 40(21): 4155-4163
    110 M. F. Ciappina and L. B. Madsen. Laser-Assisted Ion-Atom Collisions: Plateau, Cutoff, and Multiphoton Peaks (Vol 77, Art No 023412, 2008). Phys. Rev. A. 2008, 77(2): 029904
    111 L. Fernandez-Menchero, T. Kirchner and H. J. Ludde. Extension of the Basis Generator Method for Application to Laser-Molecule Interactions. Phys. Rev. A. 2009, 79(2): 023416
    112郑瑞华,陈德应,吕志伟等.激光感生碰撞能量转移综述.激光与光电子学进展. 2000, (1): 6-13
    113郑瑞华,陈德应,赵晓彦等.激光感生碰撞能量转移末态几率.哈尔滨工业大学学报. 2001, 33(5): 709-713
    114赵凯华,罗蔚茵.热学.高等教育出版社, 1998.
    115陈德应.激光感生碰撞过程的理论研究.哈尔滨工业大学博士论文. 1995.
    116 V. S. Lisitsa and S. I. Yakovlenko. Optical and Radiative Collisions. Soviet Physics JETP. 1974, 39: 759-763
    117 Meetoo Singh, J. Parashar and N. K. Gaur. Plasma Wave Excitation and Charged Particle Acceleration in an Overdense Plasma. Laser Phys. Lett. 2005, 2(8): 392-395
    118 K. Krushelnick, Z. Najmudin and A. E. Dangor. Particle Acceleration Using Intense Laser Produced Plasmas. Laser Phys. Lett. 2007, 4(12): 847-862
    119徐克尊.高等原子分子物理学.第二版.科学出版社, 2006.
    120任海振.原子分子与飞秒强激光场的相互作用.北京大学博士论文. 2004.
    121汪志诚.热力学?统计物理.第三版.高等教育出版社, 2003.
    122 H. Wabnitz, A. R. B. de Castro, P. Gurtler, et al. Multiple Ionization of Rare Gas Atoms Irradiated with Intense VUV Radiation. Phys. Rev. Lett. 2005, 94 (2): 023001-023004
    123 Z.-H. Loh, M. Khalil, R. E. Correa, et al. Quantum State-Resolved Probing of Strong-Field-Ionized Xenon Atoms Using Femtosecond High-Order Harmonic Transient Absorption Spectroscopy. Phys. Rev. Lett. 2007, 98(14): 143601-143604
    124 N. Miyamoto, M. Kamei, D. Yoshitomi, et al. Observation of Two-Photon above-Threshold Ionization of Rare Gases by XUV Harmonic Photons. Phys. Rev. Lett. 2004, 93(8): 083903-083904
    125 J. Wu, H. Zeng and C. Guo. Comparison Study of Atomic and Molecular Single Ionization in the Multiphoton Ionization Regime. Phys. Rev. Lett. 2006, 96(24): 243002-243004
    126 D. J. Jackson, J. J. Wynne and P. H. Kes. Resonance-Enhanced Multiphoton Ionization: Interference Effects Due to Harmonic Generation. Phys. Rev. A. 1983, 28(2): 781-794
    127 V. E. Peet. Selective Laser-Induced Breakdown of Xenon. Phys. Rev. A. 1995, 51(5): 3982-3990
    128 V. E. Peet. Resonantly Enhanced Multiphoton Ionization of Xenon in Bessel Beams. Phys. Rev. A. 1996, 53(5): 3679-3682
    129 V. E. Peet and R. V. Tsubin. Multiphoton Ionization and Optical Breakdown of Xenon in Annular Laser Beams. Opt. Commun. 1997, 134(1-6): 69-74
    130 W. R. Garrett and V. E. Peet. Wave-Mixing Effects in Resonance-Enhanced Multiphoton Ionization of Xenon in Bessel Beams. Phys. Rev. A. 2000, 61 (6): 063804
    131 M. G. Payne and W. R. Garrett. Cooperative Effects on Multiphoton Ioniza- tion and Third-Harmonic Generation in the Region near Three-Photon Reso- nance. Phys. Rev. A. 1982, 26(1): 356-371
    132 M. G. Payne and W. R. Garrett. Theory of the Effect of Third-Harmonic Generation on Three-Photon Resonantly Enhanced Multiphoton Ionization in Focused Beams. Phys. Rev. A. 1983, 28(6): 3409-3429
    133 M. G. Payne, W. R. Garrett and W. R. Ferrell. Three-Photon Resonantly Enhanced Multiphoton Ionization and Third-Harmonic Generation with Unfocused Laser Beams. Phys. Rev. A. 1986, 34(2): 1143-1164