镁铝异种金属激光胶接焊工艺及微观组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金和铝合金是目前工业生产中应用最为广泛的两种轻金属。镁合金和铝合金的连接问题一直受到国内外学者的广泛关注,实现二者之间的良好连接将极大地推进这两种轻金属在更广阔领域内的应用。本文从镁铝异种金属熔化焊接技术存在的问题入手,率先采用将激光焊接与胶接相复合的激光胶接焊技术,初步实现了镁铝异种金属的良好连接。激光胶接焊技术将冶金连接与机械连接有机复合,充分利用激光焊接与胶接的各自优势,使激光胶接焊试件在一定的范围内具有更高的连接性能。在此基础上本论文主要针对镁铝异质金属激光胶接焊工艺、焊接接头内部组织、元素分布以及晶体结构等方面开展了如下研究:
     1.本文以AZ31B镁合金和6061铝合金为研究对象,对镁铝异种金属激光焊接和激光胶接焊工艺开展研究。首次采用激光胶接焊实现了上述镁铝异种金属的良好连接。在本实验条件下,铝合金上激光焊接模式为热导焊模式时,熔池内部形成相对较少的金属间化合物;而在铝合金上为小孔焊接模式时,激光焊接接头和激光胶接焊接头内部都形成了大量的金属间化合物,严重影响了焊接接头性能,因此应采用热导焊模式下的参数进行镁铝异种金属的激光焊接及激光胶接焊。在最佳参数下得到的激光胶接焊(焊缝涂胶)试件具有比单独激光焊接试件更加优良的拉伸和剥离性能,因而胶粘剂的加入将会对镁铝异种金属熔池组织结构产生有益的影响。
     2.本文针对热导焊条件下激光胶接焊组织进行全面分析发现,在铝合金熔深小于0.3mm时,由于此时激光功率较小,焊缝中的胶粘剂不能完全分解并逸出熔池,进而在熔池底部形成胶粘剂的少量残留,对接头性能产生了不良影响;当铝合金上熔深为0.5mm时,此时在镁铝异质界面形成了相对较少的金属间化合物获得了具有最佳性能的焊接接头;当铝合金上熔深大于0.8mm,熔池底部形成了相对较多的金属间化合物,故性能略有降低。
     3.通过与镁铝异种金属激光焊接接头比较分析发现:在激光胶接焊中,胶粘剂的加入改变了铝合金的表面状态,提高了铝合金激光吸收率,在相同的焊接参数下增加了铝合金的焊接熔深。通过对比激光焊接接头和激光胶接焊接头中的金属间化合物种类和分布特点发现:在激光焊接接头中在熔池底部形成了连续分布的带状金属间化合物,因为熔池底部最先凝固,受到后凝固金属的收缩应力作用,金属间化合物之间的界面极易形成裂纹,因而降低了接头的性能。在镁铝异种金属激光胶接焊接头中,胶粘剂的加入改变了镁铝异种金属在熔池中分布的特点,使其主要处在镁铝异质熔池中间区域,金属间化合物厚度略有减薄,在熔池中主要以金属间化合物Mg17Al12和非常薄的Mg2Al3形式存在,这样则减小了镁铝异种金属间化合物的不良影响,在一定程度上提高了焊接接头的性能。
     4.通过对镁铝异种金属激光焊接接头和激光胶接焊接头内部裂纹的比较分析发现:由于激光胶接焊中的金属间化合物分布相对分散、成分相对简单,部分区域的金属间化合物厚度也小于激光焊接接头,进而减少了熔池内部形成裂纹的趋势。通过对镁合金和铝合金熔池温度的测量发现,激光胶接焊内部镁合金熔池与铝合金熔池温度差小于激光焊接镁合金熔池与铝合金熔池的温度差,在镁铝异种金属激光胶接焊镁铝异质熔池界面区域由于温度差异引起的热应力也会小于激光焊接熔池,因而镁铝异种金属激光胶接焊接头具有相对更小的裂纹形成趋势。
     5.使用透射电镜对镁铝异种金属激光胶接焊接头熔池内部晶体结构进行分析,通过对金属间化合物的透射电镜形貌和晶体结构分析发现,Mg17Al12具有与镁合金晶体更加接近的结构,因而能够与熔化的镁合金相互混合形成相对稳定的共晶类组织,而Mg2Al3具有与铝合金更加接近的晶体结构,所以在本实验中Mg2Al3的出现在一定程度上会降低焊接接头的性能。通过对铝合金熔池的晶体结构特征进行分析发现,晶粒上出现了大量的位错滑移现象,这主要是受到激光焊接产生的金属蒸汽的反冲作用以及上层后凝固金属收缩压力作用在熔池底部形成的,这也证明了熔池底部存在着比较明显的冲击应力。因此在镁铝异种金属激光焊接接头中,在熔池底部形成的金属间化合物,更容易出现裂纹。
Mg and Al are two kinds of light metals widely used in the industry. The joining technology has attracted much attention of abroad and home reaserchers. The well joining of Mg and Al alloys could improve the using area of these kinds of light metals. In order to solve the problem in melting welding Mg to Al process, laser weld bonding as a new kind of hybrid welding technology is used to join Mg to Al sucessfully. Laser weld bonding technology is a synergy of metallurgy joining and mechnical joining, and develops in which the tensile and peel performance of the weld-bonded structure exceeds that of either technology alone. In this thesis, a study would be done on the process laser weld bonding technoloy, microstructure in the fusion zone, microcracks in the joint and the crystal structure in the fusion zone.
     1. In this thesies, AZ31B Mg alloy and 6061 Al alloy are the subject investigated. Laser weld bonding (LWB) technology is used to join Mg to Al sucessfully firstly. By analyzing laser welding and LWB Mg to Al process, it is found that when the laser welding mode in Al alloy is in conductive mode, there is less Mg-Al intermetallic forming in the fusion zone. However, when the welding mode in Al alloy is in keyhole mode, there is more Mg-Al intermetallic forming in the fusion zone, which makes obviously harmful effect on the property of the joint. Therefore, conductive mode should be used in laser welding and LWB process. The LWB Mg to Al joint without cured has a better tensile shear and peel properties than that of laser welding joint. Thus the addition of the adhesive would make effect on the microstructure of Mg and Al joint.
     2. By studying the microstuctures of LWB Mg to Al joint in conductive mode, it is found that when the welding depth in Al alloy of LWB joint is less than 0.3mm, there is some resudial adhesive in the Al fusion zone because of the low laser power, which makes harmful effect on the property of the joint; when the welding depth in Al alloy of LWB joint is about 0.5mm, there is relatively less Mg-Al intermetallic, and the best shear load is obtained in this kind of joint; when the welding depth in Al alloy in LWB joint is larger than 0.8mm, there is a little more Mg-Al intermetallics forming in the fusion zone, which makes the property of the joint decreased.
     3. Through the comparative experiments of laser welding and LWB joint, it is found that the addition of adhesive could change the surface state of Al alloy, and increase the laser absorptive of Al alloy. In same welding parameters, the welding depth of LWB Mg to Al joint has a deeper penetration than that of laser welding joint. By analyzing the species and distributions of Mg-Al intermetallics in laser welding fusion zone, there is a continous Mg-Al intermetallics layer at the bottom of the fusion zone in laser welding Mg to Al joint, which should has a lowest the temperature and freeze the firstly in the fusion zone. As the temperature at the bottom of the Al fusion zone in laser welding joint was the lowest, the intermetallics would be freezing firstly, and then the melted Mg alloy would freeze. The shrink stress of Mg freezing and the laser welding recoil pressure would act on the interface between the Mg17Al12 and Mg2Al3. Therefore some microcracks could form at this interface, which make harmful effect on the property of the joint. In LWB Mg to Al process, the addition of adhesive makes effect on the distribution of Mg-Al intermetallics, which locates in the middle of the fusion zone. The thickness of Mg-Al intermetallics is decreased in extent, and the intermetallics in the fusion zone are composed by a mainly Mg17Al12 and few Mg2Al3, which makes less harmful effect on the joint.
     4. The microcracks in laser welding and LWB joint are analyzed in comparison. In LWB Mg to Al joint, the intermetallics distribution is deconcentration, the content of intermetallics is singleness relatively, and the thickness of intermetallics is decreased. Therefore the tendency of microcracks formation in LWB Mg to Al joint is less than that in laser welding joint. Through the observation of the temperature in Mg and Al fusion zone, the temperature contrast between Mg and Al fusion zone in LWB joint is less than that in laser welding joint. Therefore the thermal stress acting on the Mg and Al interface in LWB joint should be less than that in laser welding joint. Therefore the microcracks forming tendency in LWB joint should be less than that in laser welding joint.
     5. Transmission electron microscope (TEM) is used to analysis crystal strucuture in different parts of the LWB Mg to Al joint. By analysis the crystal of the intermetallics, the Mg17Al12 intermetallics has a similar structure with that of Mg alloy and could forming a steady mixing eutectic phase with Mg alloy. However the Mg2Al3 intermetallic has a similar structure with that of Al alloy, which would make bad effect on the LWB joint. A number of dislocations are found in Al grains, which is formed by the impact stress of the laser welding recoil pressure and the.shrink stress of the upper alloy freezing. Therefore, there is obviously pressure stress at the bottom of the fusion zone in laser welding Mg to Al joint, which makes the tendency of microcracks in intermetallics enlarged.
引文
[1]翟春泉,曾小勤,丁文江,王渠东,吕宜振,徐小平.镁合金的开发与应用[J],机械工程材料,2001(25):6-10.
    [2]张永忠,张奎,樊建中,刘国钧,崔代金,吴绪平,崔波,郑宇新,雷健.压铸镁合金及其在汽车工业中的应用[J],特种铸造及有色合金,1999.3:54-57.
    [3]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用[J],材料导报,2000,14(6):22-24.
    [4]曹小勤,王渠东,吕宜振,丁文江,朱燕萍.镁合金应用新进展[J],铸造,1998,11:39-43.
    [5]李金锋,耿浩然,杨中喜,王英姿,崔峰,孙春静.钇对AZ91镁合金组织和力学性能的影响[J].铸造,2005,54(1):53-56.
    [6]山川.祥云火炬:科技与艺术的结晶[J],科技潮,2008,7:17-18.
    [7]管学理.汽车节能(节油)技术发展动态[J],水利电力科技,1995,22(2):40-45.
    [8]李新生,李富仓.现代汽车发展趋势与思考[J],内蒙古公路与运输,2002,74(2):27-30.
    [9]张中举,熊铁星.国外城市汽车发展新趋势[J],节能技术,2002,20(3):19-22.
    [10]程振彪.轻材料中汽车上的应用[J],世界汽车,2000,4:14-15.
    [11]W. S. Miller, L.Zhang, J. Bottenna,et al, Recent Development in Aluminum Alloys for the Automotive Industry. Materials Science and Engineering A [J],2000,280:27-49.
    [12]Masaaki Saito, Shuuichiro Iwatsuki, Kunihiro Yasunaga, et al. Development of 年 Aluminum Body for the most Fuel Efficient [J],Vehicle, JSAE Review,2000,21:511-516.
    [13]杨丽华.21世纪汽车发展趋势[J],汽车技术,2000,4:1-3.
    [14]陈小复.汽车用轻质材料研究[J],世界汽车,2000,12:13.
    [15]孙咏金.汽车车身结构的发展动向[J],世界汽车,1995,6:10-11.
    [16]华林.汽车铝板应用新进展[J],世界汽车,1995,4:20-23.
    [17]王竑,陈昌明,吴宪.铝在现代汽车轻量化中的作用[J],上海汽车,2004,12:32-34.
    [18]肖艳.现代车用金属材料及其发展趋势[J],金属世界,2005,4:48-51.
    [19]鞠晓峰,陈昌明,吴宪.现代汽车轻量化技术[J],上海汽车,2006,9.
    [20]张屹林.汽车轻量化与铝合金[J],内燃机配件,2004,5:37-40.
    [21]Heinz A, et al. Recent development in aluminum alloys for aerospace applications [J], Materials Science and Engineering A,2000,280:102-110.
    [22]Staley James, T. Liu, John Hunt, Warren H Jr. Aluminum alloys for aerostructures[J], Advance Materials Processing,1997,1:10-17.
    [23]杨晓红.镁合金的研究及其在汽车工业中的应用与发展[J],汽车工程,2002,24(2):94-96.
    [24]陈小复.美国对汽车轻质材料应用的评估[J],上海汽车,2003,(5):24-29.
    [25]严世英.未来汽车工业的发展趋势[J],世界汽车,1999(4):42-43
    [26]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [27]白丁.俄罗斯镁合金生产技术进展[J].世界有色金属,2003(4):62-65.
    [28]KAZUHIRO N. Weldability of magnesium alloy [J]. Journal of Light Metal Welding &Construction,2001,39(12):26-35.
    [29]天津大学焊接教研室.金属熔化焊原理及工艺[M].北京:机械工业出版社,1979.
    [30]MARYA M. Theoretical and experimental assessment of chloride effects in the A-TIG welding of magnesium [J]. Welding in the World,2002,46(7-8):7-21.
    [31]MARYA M, EDWARDS G R. Chloride contributions in flux-assisted GTA welding of magnesium alloys-experiments demonstrated chlorides increased arc voltage, arc temperature, and weld penetration, with cadmium chloride being the most effective [J]. Welding Journal, 2002,81(12):291S-298S.
    [32]徐杰,刘子利,沈以赴,等.AZ31镁合金活性TIG焊接头分析[J].焊接学报,2005,26(10):54-58.
    [33]PATON B E, ZAMKOV V N, PRILUTSKY V P, et al. Contraction of the welding arc caused by the flux in tungsten-electrode argon-arc-welding[J]. Paton Welding Journal, 2000,526(1):5-11.
    [34]刘黎明,张兆栋,沈勇.活性剂对镁合金TIG焊接熔深的影响[J].金属学报,2006,42(4):399-404.
    [35]张兆栋,刘黎明,沈勇,等.镁合金的活性电弧焊接[J].中国有色金属学报,2005,15(6):912-916.
    [36]Liu L. M., Dong C. F. Gas tungsten-arc filler welding of AZ31magnesium alloy [J]. Materials Letters,2006,60:2194-2197.
    [37]徐初雄.焊接工艺500问[M].北京:机械工业出版社,2002.
    [38]姜焕中.焊接方法及设备[M].北京:机械工业出版社,1982.
    [39]LOCKWOOD L F. Gas metal-arc welding of AZ31B magnesium alloy sheet [J]. Welding Journal. 1963,42(10):807-818.
    [40]RETHEMEIER M, WIESNER S. Characteristic features of MIG welding of magnesium alloys [J]. Zeitschrift Fur Metallkunde,2001,92(3):281-285.
    [41]WOHLFAHRT H, RETHLEMEIER M, BOUAIFI B. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting,2003,55(2):80-84.
    [42]FU JIE M, NAKATA K, TONG H, et al. MIG arc welding of magnesium alloy [J]. Transactions of Joining and Welding Research Institute,2003,32(1):39-40.
    [43]FUJIE M, TONG H, MURAKAMI T, et al. Joint formation of AZ31 magnesium alloy sheet by pulsed MIG arc welding [J]. Journal of Light Metal Welding and Construction, 2004,42(5):221-228.
    [44]WATKINS K G. Laser welding of magnesium alloys [M]. Magnesium Technology, TMS Annual Meeting and Exhibition, San Diego, CA,2003,2-6:153-156.
    [45]Richard P. Martukanitz. A critical review of laser beam welding [J]. Processing of SPIE, 2005,5706(11):11-24.
    [46]SPROW E E. The laser-welding spectrum:what it has to offer you [J]. Tooling and Production,1988,54(3):556-563.
    [47]HIRAGE H, INOUE T, KAMADO S. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J]. Quarterly Journal of the Japan Welding Society, 2001, 19(4):591-599.
    [48]BLUNDELL N J.Arc takes laser welding into new territory [J]. Materials World,1998, 6(9):537-538.
    [49]吕高尚,史春元,董春林,等.激光-电弧复合热源焊接研究及应用现状[J].航空制造技术,2005(5):86-88.
    [50]BARRALLIER L, FABRE A, MASSE J E. Residual stress measurements using neutron diffraction in magnesium alloy laser welded joints[J]. Materials Science Forum, 2002,404-407:399-404.
    [51]李亚江.Mg/Al异种材料脉冲TIG焊接头的组织结构[J].焊接学报,2006,27(9):39-42.
    [52]Wang, J., Feng J. C., Wang Y. X.. Microstructure of Al-Mg dissimilar weld made by cold metal transfer MIG welding [J]. Materials Science and Technology,2008,24(5):827-831.
    [53]Rattana Borrisutthekul, Yukio Miyashita, Yoshiharu Mutoh. Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-0 [J]. Science and Technology of Advanced Materials,2005,6:199-204.
    [54]李慧,钱鸣,李达.金属间化合物对AZ31B镁/6061铝异种金属激光焊接性的影响[J].激光杂志,2007,28(5):61-63.
    [55]Liming Liu, Xujing Liu and Shunhua Liu, Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer[J], Scripta Materialia, 2006,55:383-386.
    [56]刘鹏,李亚江,王娟.Mg/Al异种材料扩散焊界面组织结构和力学性能[J].焊接学报,2007,28(6):45-48.
    [57]Zhao Limin, Zhang Zhaodong. Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints [J]. Scripta Materialia,2008,58: 283-286.
    [58]赵丽敏,刘黎明,徐荣正,张兆栋.镁合金与铝合金的夹层扩散焊连接[J].焊接学报,2007,28(10):9-12.
    [59]Liu Peng, Li Yajiang, Geng Haoran, Wang Juan, A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding [J]. Materials Letters,2005,59: 2001-2005.
    [60]Wang Juan, Li Yajiang, Liu Peng, Geng Haoran, Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding [J]. Journal of Materials Processing Technology,2008,205:146-150.
    [61]王德庆,刘日明,丁成钢,等.搅拌摩擦焊接技术的发展状况[J].大连铁道学院学 报,2002,1:75-78.
    [62]史耀武,唐伟.搅拌摩擦焊的原理与应用[J].电焊机,2000,1:6-9.
    [63]Jiuchun Yan, Zhiwu Xu, Zhiyuan Li, Lei Li, Shiqin Yang. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Materialia,2005,53:585-589.
    [64]Yutaka S Sato, Seung Hwan C Park. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Materialia,2004,50:1233-1236.
    [65]Kwon Y J, Shigematsu I, Saito N. Dissimilar friction stir welding between magnesium and aluminum alloys [J]. Materials Letters,2008,62:3827-3829.
    [66]Chen Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Materialia,2008,58:433-436.
    [67]Somasekharan A C. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization, 2004,52(1):49-64.
    [68]Kostka A, Coelho R S, Santos J dos and Pyzalla A R. Microstructure of friction stir welding of aluminium alloy to magnesium alloy [J]. Scripta Materialia, 2009,60:953-956.
    [69]A. Ben-Artzy, A. Stern, N. Frage and V. Shribman. Interface phenomena in aluminium-magnesium magnetic pulse welding [J], Science and Technology of Welding and Joining,2008,13(4):402-408.
    [70]S. D. Kore, J. Imbert, M. J. Worswick and Y. Zhou. Electromagnetic impact welding of Mg to Al sheets [J], Science and Technology of Welding and Joining,2009,14(6):549-553.
    [71]王起.国外民用客机连接技术发展概况[M].航空信息研究报告,1996.
    [72]王宝仁.苏-27飞机结构工艺浅析[J].航空科学技术,1996(3):6-10.
    [73]乔海涛,赖士洪,邹贤武等.胶铆连接性能研究[J].中国胶粘剂,2002,11(1):52-53.
    [74]胡宝刚.复合材料结构件的机械连接工艺[J].导弹与航天运载技术,1995(6):46-52.
    [75]刘志甫,徐晓伟,李玉萍,等.用无机胶粘接金属和陶瓷[J].北京科技大学学报,1999,121(5):476-478.
    [76]李凌杰,李荻,张胜涛.稀土元素在铝合金阳极氧化及其后处理工序中的应用[J].表面技术,2001,30(2):40-42.
    [77]Jones B. A Future for Weldbonding Sheet Steel [J]. Welding and Fabrication, 1978,46(7/8):415-420.
    [78]Ryazantisev I, Shavyrin V N. Strength characteristics of welded and bonded-welded joints [J]. Welding Production,1979,26(9):19-21.
    [79]Jones B, Williams N T. Fatigue in adhesive and weldbonded steel joints [J]. SAE, 1986,97(7):48-53.
    [80]常保华,史耀武,董仕节.胶焊技术及其应用[J].焊接技术,1998(1):9-12.
    [81]戴瑞玲,王玮.粘接点焊技术及最佳工艺参数的研究[J].机械强度,1996,18(3):64-67.
    [82]李春植,戴瑞玲,王玮.粘接点焊单搭接头的静力分析[J].机械强度,1997,19(2):21-24.
    [83]常保华,史耀武,董仕节.胶焊接头的三维弹塑性应力分析[J].中国机械工程,1998,9(7):73-76.
    [84]常保华,史耀武,董仕节.胶焊接头中焊点大小对应力分布的影响[J].航空工艺技术,1999(1):22-24.
    [85]常保华,史耀武,陈建忠,等.边缘定位胶焊接头的应力应变分布和强度研究[J].材料科学与工艺,2000,8(1):63-67.
    [86]常保华,史耀武,董仕节.板厚对不同胶粘剂胶焊单搭接头中应力分布影响的数值分析[J].中国机械工程,1999,10(3):341-344.
    [87]常保华,史耀武,董仕节.板宽对胶焊接头应力分布影响的数值分析[J].航空材料学报,1998,18(3):34-39.
    [88]常保华,史耀武,董仕节.搭接长度对胶焊接头应力分布的影响[J].机械强度,1999,21(2):109-111.
    [89]常保华,史耀武,董仕节.胶粘剂厚度和弹性模量对胶焊接头应力分布的影响[J].材料工程,1998(5):19-23.
    [90]Darwish S M, Ghanya A. Critical assessment of weld-bonded technologies[J]. Journal of Materials Processing Technology,2000,105:221-229.
    [91]Darwish S M, Al-Samhan A M. Peel and shear strength of spot-welded and weld-bonded dissimilar thickness joints [J]. Journal of Materials Processing Technology, 2004,147:51-59.
    [92]Darwish S M. Analysis of weld-bonded dissimilar materials [J]. International Journal of Adhesion & Adhesives,2004,24:347-354.
    [93]G. Wilson, Laser weld-bonding method developed for aluminium [J]. Advanced Materials & Processes,2005,163:31.
    [94]Messler, R. W. Weld-bonding:the best or worst of two processes? [J]. Industrial Robot, 2002,29:138-148.
    [95]R. W. Messler; Bohnenstiehl, S; Levene, J, et al. A pressure-assisted approach for laser-beam weld-bonding Al alloy structure for automobiles [J]. Assembly Automation 2004,24:370-378.
    [96]R. W. Messler, JR, J. Bell,0. Craigue. Laser Beam Weld Bonding of AA5754 for Automobile Structures [J]. Welding Journal,2003,6:151-159
    [97]M. Kemal Apalak, Kemal Aldas b, Faruk Sen. Thermal non-linear stresses in an adhesively bonded and laser-spot welded single-lap joint during laser-metal.interaction [J]. Journal of Materials Processing Technology,2003,142:1-19.
    [98]郑启光.激光先进制造技术[M].武汉:华中科技大学出版社,2002.
    [99]顾继友.胶接理论与胶接基础[M].北京:科学出版社,2003.
    [100]游敏,郑小玲.胶接强度分析及应用[M].武汉:华中科技大学出版社,2009.
    [101]黄延禄,杨福华,梁工英,苏俊义.用原位法测定铝合金对激光的吸收率[J].中国激光,2003,30(5):449-453
    [102]M. Bruckner, J. H. Schafer,.J. Uhlenbusch. Ellipsometric measurement of the optical constants of solid and molten aluminum and copper at λ=10.6μm [J]. Journal of Applied Physics,1989,66(3):1326-1332.
    [103]丁浩,傅恒志,刘忠元,等.凝固收缩补偿与合金的热裂倾向[J].金属学报,1997,33(9):921.
    [104]陈平昌,等.材料成型原理[M].北京:机械工业出版社,2001,205.
    [105]陈伯蠹.焊接工程缺欠分析与对策[M].北京:机械工业出版社,1998.
    [106]Akira Takeuchi and Akihisa Inoue. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element [J]. Materials Transactions, 2005,46(12):2817-2829.
    [107]胡其平,赵颖超,赵明纯,花村年裕.碳锰钢中亚微米和微米尺寸铁素体晶粒的长大行为[J].材料研究学报,2008,22(2):152-156.
    [108]阎杰,刘伟东,张伟,等.Mg17Al12相电子结构计算与键络分析[J].辽宁工学院学报,2006,26(1):49-52
    [109]J-Q. Su, T. W. Nelson, R. Mishra, M.. MahoneyMicrostructural investigation of friction stir welded 7050-T651 aluminium [J]. Acta Materialia,2003,51:713-729.