微波辐射下耐硫型Pd催化剂的可控制备及在一步法合成二甲醚中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲醚(DME)用途广泛,具有广阔的市场前景。合成气一步法制取二甲醚(Syngas to Dimethyl ether,简称STD)可以打破合成甲醇的热力学平衡限制,大大提高原料的转化率,尤其适用于大规模煤基合成气转化的工业生产。目前,IGCC制取工艺下的煤基合成气通过酸性气体粗脱硫后,仍残留至少40 ppm的硫,而当前工业上用于甲醇合成的Cu/ZnO/Al_2O_3催化剂往往会因合成气中含有超过0.1 ppm H_2S而发生中毒,因此开发耐硫型催化剂,缩短合成气精制工艺流程对发展DME生产工业意义重大。同时,利用微波技术实现微波作用下催化剂的可控制备,简化催化剂制备工艺,对微波在催化剂制备工艺中的应用也具有非常高的理论价值。本论文针对STD工艺的研究现状,采用微波技术开发了具有较好耐硫效果的Pd系二甲醚合成催化剂,具体从以下三方面进行了研究开发。
     首先,进行了Pd系STD反应催化剂制备研究。分别以γ-Al_2O_3、HZSM-5和Al-MCM-41为载体,采用浸渍法制备了三个系列负载型Pd金属催化剂,通过调控焙烧条件、Pd负载量、助剂类型和复合方式及助剂添加量等实现了对催化剂表面的物相及吸附特性、还原特性、表面酸性等性能的控制,探讨了催化剂STD反应活性与样品本身所固有特性的关系。确定不同载体条件下的Pd催化剂的优化制备条件、助剂成分不尽相同,γ-Al_2O_3、HZSM-5和Al-MCM-41系列催化剂的微波处理功率分别为420 W、560 W和560 W。Pd/γ-Al_2O_3体系的优化助剂类型和添加量为2% CeO_2~(-1)% ZrO_2-2% Pd,Pd/HZSM-5体系为硅铝比50,2% CeO_2~(-1)% CaO-2% Pd,Pd/Al-MCM-41体系为0.4 mol SO+_4~(2-)1% ZrO_2-2% Pd。相比之下,2% CeO_2~(-1)% CaO-2% Pd/HZSM-5催化性能更稳定,最高能达到34.75 mmol·g~(-1)·h~(-1)的DME时空收率。
     其次,进行了Pd系催化剂耐硫机理研究。以H_2S和噻吩为探针毒物研究硫中毒实验和再生实验后Pd催化剂用于STD反应性能,考察了催化剂载体和助剂类型对Pd催化剂耐硫性能的影响,运用多种表征手段对催化剂的物性结构和反应物化学结构进行表征,分别揭示了Pd金属表面和酸中心上的硫化物吸附形态和吸附特点,分析发现载体表面B酸中心越强,越有利于弱化金属钯与硫化物的反应能力,降低结合硫的生成,提高Pd金属中心的抗硫能力,CeO_2或CeO_2-CaO助剂添加可以降低CeO_2-CaO-Pd/HZSM-5表面的Pd金属的硫化度,提高再生样品的酸活性位的保留率进而有效提高CeO_2-CaO-Pd/HZSM-5催化剂的抗硫性能。最后利用GC-MS分析确定了有机硫和无机硫毒物在CeO_2-CaO-Pd/HZSM-5催化剂表面的吸附位置,并推测出其表面的硫化物转化机理。最后,对CeO_2-CaO-Pd/HZSM-5催化剂的STD反应动力学进行了研究。选取STD反应活性和耐硫性能优异的CeO_2-CaO-Pd/HZSM-5催化剂进行了STD反应工艺条件研究,确定优化工艺条件范围为:反应温度240~300 oC,反应压力3~4 MPa,空速2000~3000 L·kg~(-1)·h~(-1),n(H_2)/n(CO)为2~3;在此范围内,建立了CeO_2-CaO-Pd/HZSM-5双功能催化剂颗粒的动力学方程,统计检验显示该模型可靠,模型计算值与实验值吻合良好。
     该论文有图73幅,表42个,参考文献167篇。
Dimethyl ether (DMA) is an important chemical, used in many areas, therefore, production of DME have attracted ever-increasing attentions. Direct syngas to DME (STD) is especially suitable for industrial production of large-scale coal-hased syngas conversion, which can break the limit of thermodynamic equilibrium in themethanol synthesis, greatly improve the conversion rate of raw materials, reactivity under very mild reaction condition. Today the integrated gasification combined cycle (IGCC) is a new process schemes for the synthesis of DME from coal. However, IGCC syngas still contains at least 40 ppm sulfur if desulfurized by acid gas removal technologies, while commonly used Cu/ZnO/Al_2O_3 catalysts for CH3OH synthesis do not tolerate more than 0.1 ppm H2S, thus developed sulfur-resistance catalyst to shorten the production process are significant to develop DME poductions industry. At the same time, utilizing modern microwave technology to shorten the catalyst preparation process, and realize the controllable preparation of catalyst, which has a very high theory value for the application of microwave to catalysts preparation technology. According to the development of the STD technology, in this work, the hybrid catalyst preparation of Palladiuman (Pd) metal-support for DME synthesis by microwave technology has been studied and developed, which has a good effect of sulfur tolerance. All research is divided into following three sections.
     Firstly, Pd metal-support catalyst for STD reaction has been researched. Three series of Palladiuman catalysts supported on different carriers,γ-Al_2O_3, HZSM-5 and Al-MCM-41 respectively, were prepared by impregnation. The properties of catalysts, such as surface phase structure and adsorption, reduction properties, surface acidity have been controlled by changing calcination condition, Pd loading, or single and binary promoters and its added amount. The relationship between STD reactivity and the intrinsic characteristics of the catalyst had been investigated. The results show that there are different optimum preparation conditions and promoters for the Pd catalysts with different carriers. The suitable microwave power of Pd/γ-Al_2O_3, Pd/HZSM-5 and Pd/Al-MCM-41 catalysts is 420 W, 560 W and 560 W respectively. And the best preparation conditions for Pd/γ-Al_2O_3 series catalysts is 2%CeO_2 -1%ZrO_2-2%Pd, Pd/HZSM-5 series catalysts is silicon-aluminum ratio 50 and 2%CeO_2-1%CaO-2%Pd and Pd/Al-MCM-41 series catalysts is 0.4molSO42-1%ZrO_2-2%Pd. By coMParison, 2%CeO_2~(-1)%CaO-2%Pd/HZSM-5 has higher stability and better catalysis ability, over which the DME space-time yield could reach 34.75 mmol·g~(-1)·h~(-1).
     Secondly, the sulfur-tolerant mechanism of Pd catalysts has been researched. The STD activity of catalysts after the process of sulfur poisoning with H2S or thiophene and regeneration with syngas has been investigated, the influence of carriers type and promoters type on the catalysts’sulfur tolerance has been analysis, the catalysts’structure and the reactants’chemical structures were characterized based on various characterizations, and then the adsorption patterns and characteristics of sulfide on Pd metal active sides and acid active sides were revealed. It was found that the stronger of Bronsted acid on the carrier, the weaker reaction ability between palladium and sulfide, and the less formation of combinable sulfur, ultimately, the sulfur-tolerant performance of Pd metal was improved. Adding CeO_2 or CeO_2-CaO promoters can reduce Pd metal sulfide of CeO_2-CaO-Pd/HZSM-5 catalyst, improve the acid sides retention rate of regeneration catalyst and thus effectively improve sulfur-tolerant performance of CeO_2-CaO-Pd/HZSM-5 catalyst.Finally, adsorption position of organic sulfur poisons and inorganic sulfur poisons on in CeO_2-CaO-Pd/HZSM-5 catalyst was determined based on GC-MS, and the possible transformation mechanism of sulfides on catalyst were suggested.
     Finally, the kinetics of STD reaction over CeO_2-CaO- Pd/HZSM-5 catalyst has been researched. Because owing to good STD reactivity and sulfur tolerant, STD process conditions over CeO_2-CaO- Pd/HZSM-5 catalyst was further studied. The results show that the best process conditions are: reaction temperature 240~300 oC, reaction pressure 3~4 MPa, weight hourly space velocit 2000~3000 L·kg~(-1)·h~(-1) and n(H_2)/n(CO)=2:1. The kinetic equations for STD reaction over CeO_2-CaO- Pd/HZSM-5 catalyst in a fixed-bed reactor within the process conditions above were established. Statistical test shows the data calculated by the mechanism models are consistent with the experiments, so these models are reliable. 73 figs., 42 tabs. , 167 refs.
引文
[1]中国石油业运行分析及2009年趋势预测.产经分析,2009,1,19-20.
    [2]中国能源发展报告.中国社科院,2009.
    [3]吴秀章.中国煤炭转化的发展与机遇[J].洁净煤技术,2008,14(1):5-8.
    [4]上海市化工轻工供应公司编.化学危险品实用手册[M].北京:化学工业出版社,1992 96-97.
    [5]金汉强,赵思远,陈永平.二甲醚燃料的应用和生产[J].化工时刊,2001,16(8):47-48.
    [6] Arkharov A M, Glukhov S D, Grekhov L V et al. Use of dimethyl ether as a motor fuel and a refrigerant[J]. Chemical and Petroleum Engineering, 2003, 39(5-6): 330-336.
    [7]葛晓华,郭波,常丽萍.高温煤气脱硫剂的研究进展[J].工业催化,2005,13(11):6-11.
    [8] Ge Q, Huang Y, Qiu F et al. Bifunctional catalysts for conversion of synthesis gas to dimethyl ether[J]. Applied Catalysis A, General, 1998, 167(1): 23-30.
    [9] Ma Y, Ge Q, Li W et al. A sulfur-tolerant Pd/CeO2 catalyst for methanol synthesis from syngas[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 387-390.
    [10] Berube M N, Sung B, Vannice M A. Sulfur poisoning of supported palladium methanol synthesis catalysts[J]. Applied Catalysis, 1987, 31(1): 133-157.
    [11] Koizumi N, Murai K, Tamayama S et al. Promoting effects of some metal additives on the methanol synthesis activity of sul?ded Pd/SiO2 catalyst from syngas containing H2S[J]. Energy & Fuels, 2003, 17(4): 829-835.
    [12]褚睿智,孟献梁,宗志敏等.微波技术在催化剂制备中的应用[J].现代化工,2007,27增刊(1):382-386.
    [13]常雁红,韩怡卓,王心葵.二甲醚的生产、应用及下游产品的开发[J].天然气化工,2000,25(3):452-491.
    [14]赵贤俊.二甲醚生产工艺技术现状及发展趋势[J].化学工业,2008,26(6):26-30.
    [15]陈建刚,牛玉琴. HZSM-25分子筛于铜基的复合催化剂上合成气制二甲醚[J].天然气化工,1997,22(6):6-10.
    [16]崔小明.二甲醚的生产应用及市场前景[J].油气加工,1999,9(3):23-26.
    [17]王志良,王金福,刁杰.合成气直接合成二甲醚过程化学平衡分析[J].石油化工,2002,(2):89-94.
    [18] Brown D M, Bhatt B L, Hsiung T H et al. Novel technology for the synthesis of dimethyl ether from syngas[J]. Catalysis Today, 1991, 8(3):279-304.
    [19]刘志光.国内外二甲醚市场和生产工艺水平[J]. Chemical Technology,2003,12:16-19.
    [20]曹浩.二甲醚的生产现状及市场分析[J].河南化工,2009,26:1-3.
    [21]葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂[J].天然气化工,1996,21(6):16-19.
    [22] Lee S, Gogate M R, Kulik C J. A novel single-step dimethyl ether (DME) synthesis in a three-phase slurry reactor from co-rich syngas[J]. Chemical Engineering Science, 1992, 47:3769-3776.
    [23]张海涛,曹发海,刘殿华等.合成气直接合成二甲醚与甲醇的热力学分析[J].华东理工大学学报,2001,27 (2):198-201.
    [24]王志良,王金福,刁杰等.合成气直接合成二甲醚过程化学平衡分析[J].石油化工,2002,31(2):89-93.
    [25]房鼎业,宋维端,朱炳辰. C202型锌铬催化剂和C107型铜基催化剂上甲醇合成的动力学方程[J].天然气化工,1981,1:31-36.
    [26] Weimer R F, Tery D M, Stepanoff P R. Laboratory kinetics and mass transfer in the liquid phase methanol process[C]. AICHE national meeting, New York, 1987.
    [27] Bussche K M, Froment G F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis,1996,161:1-10.
    [28] Ber G, Levec J. Intrinsic and global reaction rate of methanol dehydration overγ-Al2O3 pellets [J]. Industrial & Engineering Chemistry Research, 1992, 31:1035-1040.
    [29] Skrzypek J, Lachowska M, Moroz H. Kinetics of methanol synthesis over comerce alcopper /zincoxide/alumina catalysts[J].Chemical Engineering Science, 1991,46(11):2809-2815.
    [30]栗同林,胡惠民.合成气制甲醇与二甲醚的研究[J].天然气化工,1990,15(5):12-17.
    [31] Brown D M, Bhatt B L, Hsiung T H et al. Novel technology for synthesis of dimethyl ether from syngas[J]. Catalysis Today,1991,8:279-304.
    [32] Peng X D, Toseland B A, Tijm P J. Kinetic understanding of the chemical synergy under LPDMETM conditions-once-through applications[J]. Chemical Engineering Science, 1999,54: 2787-2792.
    [33] Ng K L, Chadwich D, Toseland B A. Kinetics and modeling of dimethyl ether synthesis from synthesis gas[J]. Chemical Engineering Science, 1999, 54:3587-3592.
    [34]江大好,费金华,张一平等.合成气一步法制二甲醚的动力学研究[J].浙江大学学报(理学版),2003,30(2):167-172.
    [35]贾广信,谭猗生,韩怡卓.浆态床二甲醚合成的本征动力学研究[J].石油化工,2004,33 (12):1124-1129.
    [36]刘宏伟,刘殿华,应卫勇等.含氮合成气直接合成二甲醚复合催化剂与混合催化剂性能及本征动力学[J].高等化学工程学报,2005,19(1):59-64.
    [37] Nie Z G, Liu H W, Liu D H et al. Intrinsic kinetics of dimethyl ether synthesis from syngas[J]. Journal of Natural gas Chemistry, 2005, 14:22-28.
    [38]郭莉.合成甲醇催化剂应用及研究进展[J].石油化工应用,2007,26(4):1-5.
    [39]张喜通,常杰,王铁军等.Cu-Zn-Al-Li催化生物质合成气合成甲醇[J].过程工程学报,2006,6(1):104-107.
    [40]李国琨,李卫东. XNC-98型合成甲醇催化剂的性能及工业应用[J].化肥工业,2005,32(5):28-32.
    [41]林乐腾,蔡飞鹏,王建梅.合成气制二甲醚双功能催化剂的研究进展[J].现代化工,2006,26增刊:43-47.
    [42] Kim S D, Baek S C, Lee Y J et al. Effect ofγ-alumi-na content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Applied Catalysis A: General, 2006, 309: 139-143.
    [43]高占笙.甲醇脱水制二甲醚及其分离精制[J].化肥工业,1993,(5):58-61.
    [44] Xu M, Lunsford J H, Goodman D W et al. Synthesis of dimethyl ether from methanol over solid-acid catalysts[J]. Applied Catalysis A: General, 1997, 149: 289-301.
    [45]林仲倩,高耀鹏,赵思远等.甲醇制二甲醚用铝基催化剂的制备及其性能研究[J].化学工业与工程技术,1998,19(2):15-17.
    [46]慈志敏,储伟,戴晓雁等.气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究[J].四川大学学报(工程科学版),2004,36(1):28-31.
    [47]毛东森,杨为民,张斌等.氧化铝的改性及其在合成气直接制二甲醚反应中的应用[J].催化学报,2006,27(6):515-521.
    [48]杨斌,房鼎业.甲醇催化脱水制二甲醚[J].化学工程,1995,33(5):9-14.
    [49] Carlson L K, Isbester P K, Munson E J. Study of the conversion of methanol to dimethyl ether on zeolite HZSM-5 using in situ flow MAS NMR[J]. Solid State Nuclear Magnetic Resonance , 2000, 16: 93-102.
    [50]刘志坚,廖建军,谭经品等.甲醇脱水生成二甲醚的沸石催化剂[J].石油化工,1999,28(4):236-240.
    [51] Vishwanathan V, Jun K W, Kim J W et al. Vapour phase dehydration of crudemethanol to dimethyl ethero-verNa-modified H-ZSM-5 catalysts[J]. Applied Catalysis A, 2004,276: 251-255.
    [52] Mao D S, Yang W M, Xia J C et al. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngaswith magnesium oxide-modified HZSM-5 as a dehydration component[J]. Journal of Catalysis, 2005, 230: 140-149.
    [53] Kupelkova L, Novakova J, Nedomova K. Reactivity of surface species on zeolites inmethanol conversion[J]. Journal of Catalysis, 1990, 124(2): 441-450.
    [54] Komarneni S, Roy R, Li Q H. Microwave-hydrothermal synthesis of ceramic powders [J]. Materials Research Bulletin, 1992,27: 1393-1405.
    [55]华瑞年,龚剑,王东仁等.γ-Al2O3负载杂多酸催化合成二甲醚[J].东北师范学报自然科学版,1997,(4):37-39.
    [56]王守国,王元鸿,邵允等. H4SWi12O40-La2O3/γ-Al2O3催化甲醇脱水制备二甲醚[J].分子科学学报,2001,17(2):99-104.
    [57]房鼎业,薛从军,林荆等.甲醇在CM-3-1催化剂上脱水生成二甲醚的本征动力学[J].燃料化学学报,1997,25(3):271-276.
    [58] Salehirad F, Anderson M W. Solid-state NMR study of methanol conversion over ZSM-23、SAPO-11 and SAPO-5 molecular sieves[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94: 2857-2866.
    [59]郑净植,毛丽秋,尹笃林等.改性高岭土催化甲醇脱水制二甲醚[J].湖南化工,2000,30(1):9-10.
    [60] Yaripour F, Baghaei F, Schmidt I et al. Catalytic de-hydration of methanol to dimethyl ether (DME)over sol-id-acid catalysts[J]. Catalysis Communications, 2005, 6: 147-152.
    [61]张立平,严军,蒋维钧.甲醇脱水新工艺研究[J].现代化工,1994,10:24-26.
    [62] Sea B, Lee K H. Synthesis of dimethyl ether from meth-anol using alumina-silicamembrane reactor[J]. Desali-nation, 2006, 200: 689-691.
    [63] Xu M T, Goodman D W, Bhattacharyya A. Catalytic dehydration of methanol to dimethyl ether(DME) over Pd/Cab-O-Sil catalysts[J]. Applied Catalysis A, 1997, 149:303-309.
    [64]葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂:制备方法的研究[J].天然气化工,1996,21(5):19-22.
    [65]谭绮生,赵霞等.复合催化剂中H-ZSM-5酸性对合成气制二甲醚的影响分子催化[J]. 1999,13(4):246-252.
    [66]陈建刚,牛玉琴. HZSM-5分子筛与铜基的复合催化剂上合成气制二甲醚[J].天然气化工,1997,22(6):6-9.
    [67]葛庆杰,黄友梅等.合成气直接制二甲醚双功能催化剂助剂的研究[J].分子催化,1998,12(4):308-311.
    [68] Li J L, Zhang X G, Inui T et al. Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/γ-Al2O3 in hybrid catalysts[J]. Applied Catalysis A: General, 1996, 147: 23-33.
    [69]黄大庆.合成气制二甲醚的研究进展[J].煤炭转化,1997,20(2):57-61.
    [70]郭俊旺,牛玉琴,张碧江.浆态床合成二甲醚的宏观动力学研究[J].天然气化工,2000,25(1):4-7.
    [71] Lalik E, Liu X S, Klinowski J. The role of gallium in the catalytic activity of zeolite [ Si , Ga]-ZSM-5 for methanol conversion[J]. Journal of Physical Chemistry, 1992, 96: 805-809.
    [72]张桂凯,陆光达,陈淼等.海绵钯表面CO、O2、CH4的吸附特性[J].稀有金属材料与工程, 2009, 38(3):541-544.
    [73]陈健,王先厚,李仕禄等.钯、铂贵金属催化剂的工业应用[J].化肥设计,2006,44(2):30-32.
    [74] Figoli N S, Argentiere P C L. Zeotite-supported transition metal catalysts by desige[J]. Catalysis Today, 1989, 5:403-407.
    [75] Katsuya W, Nobuyasu O, Takahlto K et a1.Summarization reactions with sulfur-containing pentane over Metal/SO42-/ZrO2 catalysts [J]. Applied Catalysis A: General, 2004, 272(1/2): 281-287.
    [76] Gallezot P, Dakta I, Massardier J et al[C]. Proc 6th Int Congr Catal., London, 1976.
    [77] Kovach S M, Wilson G D. Slective hydrogenation of aromatics and olifins in hygrocarbon fractions[P]. US 3943053,1974.
    [78] Yasuda H, Yoshimura Y. USY-supported Pt-Pd alloy catalysts in aromatic hydrogenation[J]. Catalysis Letters, 1977, 43-46.
    [79] Lin T B, Jan C A, Chang J R. Studies on Pt-Pd/γ-Al2O3 catalysts in CO adsorbed infrared spectral [J]. Industrial & Engineering Chemistry Research, 1995, 34:4284-4291.
    [80] Guillon E, Lynch J, Uzio D et al. Characterization of bimetallic platinum systems: application to the reduction of aromatics in presence of sulfur[J]. Catalysis Today, 2001, 65:201-208.
    [81] Yasuda H, Sato T, Yoshimura Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation[J]. Catalysis Today, 1999, 50:63-71.
    [82]刘会茹,李建荣,赵地顺等. Y沸石酸量对贵金属催化剂加氢活性和抗硫性能的影响[J].催化学报. 2007, 28(3):274-280.
    [83] Ma Y C, Ge Q J, Li W Z et al. Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2009, 90:99-104.
    [84] Poondi D, Vanniee M A. Competitive Hydrogennation of Benzene and Toluene on Palladium and Platinum Catalysts[J]. Journal of Catalysis, 1986,161:742-747.
    [85]吴越.催化化学[M].北京:科学出版社, 2000:51- 62.
    [86]闫宗兰,林瑞,罗孟飞等.浸渍顺序对Ag-Pd/Ce0.8Zr0.2O2催化剂活性及脱附性能的影响[J].催化学报,2004,25(8):615-618.
    [87]丁春黎,尚晓敏,刘喜晶等. Pd/C催化剂制备条件对其比表面积及糠醛脱羰活性的研究[J].化工科技,2006,14(3):19-22.
    [88]杨永辉,林彦军.超声浸渍法制备Pd/Al2O3催化剂及其催化蒽醌加氢性能[J].催化学报, 2006, 27( 4) : 304-308.
    [89]曾永康,曾力辉,潘丽娟等.超声浸渍法制备Pd/Al2O3催化剂及其催化硝基苯加氢性能[J].稀有金属材料与过程,2008,37(增刊):674-676.
    [90] Bougrin K, Loupy A, Soufiaoui M. Microwave-assisted solvent-free heterocyclic synthesis[J]. Journal of Photochemistry and Photobiology, 2005, 6:139-167.
    [91]郑海涛,李永亮,梁剑莹等.甲醇在Pd基电催化剂上的氧化[J].物理化学学报,2007,23(7):993-996.
    [92] Qi S T, Yang B L. Methane aromatization using Mo-based catalysts prepared by microwave heating[J]. Catalysis Today, 2004, (98): 639-645.
    [93] Bond G, Moyes R B, Whan D A. Recent applications of microwave heating in catalysis[J]. Catalist Today, 1993, 17:427-437.
    [94]刘晔,殷元骐.第九届全国催化学术会议论文集[C].北京:海潮出版社,1998:463-464.
    [95]吴世华.金属蒸汽法制备聚合物固载双金催化剂[J].高分子学报,1998,(2):49-531.
    [96]傅锦坤,刘月英.生物化学法制备负载型钯催化剂[J] .厦门大学学报,2000, 39(1): 67-70.
    [97]金松寿.有机催化[ M].上海:科学技术出版社, 1986: 36- 45.
    [98]刘振林,伏义路.制备方法对Pd催化剂上丙烯选择性还原NO反应性能的影响[J].催化学报,2001,22(1):62-66.
    [99]王鸿静,项益智,徐铁勇等,Ba修饰的Pa/Al2O3对苯酚液相原位加氢制环己酮反应的催化性能[J].催化学报,2009,30(9):933-938.
    [100]Yoshimura Y, Toba M, Matsui T et al. Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment[J]. Applied Catalysis A General, 2007, 322:152-158.
    [101]高正中.实用催化[ M] .北京:化学工业出版社, 1996: 285.
    [102]Zhang Z R, Pinnavaia T J. Mesostructured ?-Al2O3 with a Lathlike Framework Morphology[J]. Journal of the American Chemical Society, 2002, 124(41): 12294-12301.
    [103]Xu M, Lunsford J H, Goodman D W et al. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Applied Catalysis A: General, 1997, 149(2):289-301.
    [104]Takeguchi T, Yanagisawa K, Inui T. et al. Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu–Zn–Ga and solid acids[J]. Applied Catalysis A: General, 2000, 192(2):201-209.
    [105]黄伟莉,刘百军,孙发民等.拟薄水铝石脱水产物γ-Al2O3在较低温度下的再水合过程研究[J].工业催化,2004,12(10):44-48.
    [106]冯伟樑.丙烷氧化脱氢制丙烯和直接法制过氧化氢催化剂的制备及表征[D].上海:复旦大学,2007.
    [107]林茜,计扬,谭俊青等. Pd/α-Al2O3催化CO偶联制草酸二甲酯的反应机理[J].催化学报,2008,29(4):325-329.
    [108] Anderson J R, Elmes P S, Howe R F et al. Preparation of some supported metallic catalysts from metallic cluster carbonyls[J]. Journal of Catalysis, 1977, 50(3): 508-518.
    [109]Solymosi F, RaskóJ. An infrared study of CO and NO adsorption on alumina-supported iridium catalyst [J]. Journal of Catalysis, 1980, 62(2): 253-263.
    [110]Wachs I E. Infrared spectroscopy of supported metal oxide catalysts[J]. Colloids and Surfaces A: Physic chemical and Engineering Aspects, 1995, 105(1): 143-149
    [111]方晶晶,许林军,鲁毅钧等.铈改性Al2O3担载Pd催化剂的CO氧化性能研究[J].环境工程学报,2009,3(5):947-950.
    [112]Subramanian S, Kudla R J,Peters C R et al. Composition of Pd-La/α-Al2O3 catalysts[J]. Catalysis Letters, 1992, 16(3):323-334.
    [113]Lecrenay E, Sakanishi K, MochidaI et al. Hydrode sulfurization activity of CoMoand Ni Mo catalysts supported on some acidic binary oxides[J]. Applied Catalysis A: General, 1998, 175(1/2):237-243.
    [114]陈敏,宋萃,汪丽娜等.铈的引入对负载钯阳极氧化膜不锈钢丝网催化剂结构和性能的影响[J].化学学报,2009,67(19):1839-1842.
    [115] Lieske H., Volter J. Pd redispersion by spreading of PdO in O2 treated Pd/Al2O3 [J]. Journal of Physical Chemistry, 1985, 85(10):1841-1842.
    [116]Kili I. K., Normand F. L. Modification of the catalytic properties of palladium by rare earth(La Ge) addition catalytic activity and selectivity in hydrocarbon conversion[J]. Journal of Molecular Catalysis A,1999,140(3):267-285.
    [117] Boorman P M, Kydd R A, Z. Sarbak et al. Surface acidity and cumene conversion : I. A study ofγ-alumina containing fluoride, cobalt, and molybdenum additives[J]. Journal of Catalysis, 1985,96(1):115-121.
    [118]赵琰.氧化铝、改性氧化铝及硅酸铝的酸性特征[J].工业催化,2002,10(2):54-58
    [119]Joo O. S.,Jung K. D.,Han S. H. Bull. Modification of H-ZSM-5 and ?-Alumina with Formaldehyde and Its Application to the Synthesis of Dimethyl Ether from Syn-gas[J]. Korean Chemical Society. 2002, 23(8):1103-1105.
    [120]Kokotailo G T, Lawton S L, Olason D H et al. Steucture of aynthetic zeolite ZSM-5[J]. Nature, 1978, 272:437-438.
    [121]刘明,项寿鹤.不同形貌和晶粒大小ZSM-5分子筛合成的研究[J].石油学报,2006,17(2):24-28.
    [122]葛庆杰,黄友梅,邱凤炎等.合成气直接制二甲醚双功能催化剂助剂的研究[J].分子催化,1998,12(4):308-311.
    [123]葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂(Ⅱ):脱水组分对催化剂性能影响的研究[J].天然气化工,1996,21(6):16-19.
    [124]马广伟,谢在库.硅铝分子筛骨架脱铝模型[J].材料研究学报,2009,23(2):205-210.
    [125] Ma G W, Teng J W, Xie Z K.. Modelling of dealumination of silieon-aluminum molecular sieves[J]. Material Science &Technology, 2009,25(6):432-435.
    [126]Szostak R, Thomas T L. Preparation of ferrisilicate ZSM-5 molecular sieves[J]. Journal of Catalysis, 1986, 100(2):555-557.
    [127]禹剑,施剑林,王连洲等. Pd/PdO在MCM-41介孔材料孔表面的溶液移植[J].化学学报,2000,58(2):157-161.
    [128]马淑杰,李连生,孙富平等.双杂原子Ti-Fe-ZSM-5分子筛的合成与表征[J].高等学校化学学报,1996,4:504-508.
    [129]Perego G, Bollosso G. Synthetic cratalline porouslites with a zeolites structure[C]/Tlkyo Kondasha:Proc 7th Intern Conf on Zeolite, 1986:128-132.
    [130]翟永清,张少阳,刘元红. CeO2纳米晶的制备及其光催化活性的研究[J].稀有金属, 2006,30(6):779-782.
    [131]黄英才,刘毅,劳令耳等.纳米ZnO掺杂对ZrO(8mol%Y2O3稳定)电性能的影响研究[J].材料科学与工程学报,2004,22(1):91-94.
    [132]李慧芝,李红,熊颖辉.异丙醇改性氢氧化钙的研究[J].无机盐工业,2008,40(9):32-34.
    [133]王宝和,景殿策,王增辉等.氧化镁纳米棒的晶格畸变及反常红外特性[J].河南化工,2008,25:25-27.
    [134]Jacobs P A, Martens J A. Introduction to Acid Catalysisi with Zeolites in Hydrocarbon Reactions[J]. Studies in Surface Science and Catalysis, 1991, 58(1):445-496.
    [135]Beck J S, Vartuali J C. A new family of mesoporous molecular sieves prepared with liquid-crystal mechanism [J]. Journal of the American Chemical Society, 1992, 114:10834-10843.
    [136]Kresge C T, Leonowiez M E, Roth W J et al. A new family of mesoporous molecular sieves prepared with liquid-crystal mechanism [J].Nature, 1992, 359:710-712.
    [137]张铭金,姚瑞平,赵惠忠等.杂原子介孔分子筛MCM241的合成与表征[J].武汉科技大学学报,2005,28(2): 154-157.
    [138]李忠燕,涂永善,杨朝合. MCM241介孔分子筛改性研究新进展[J].工业催化,2005,13(2):12-18.
    [139]Zhao D, Feng J, Huo Q et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998, 279:548-552.
    [140]潘晖华,何鸣元,宋家庆等. USY沸石中非骨架铝形态分析及其对沸石酸性的影响[J].石油学报:石油加工,2007,23(2):1-7.
    [141]Remy M J, Stanica D, Poncelet G et al. Dealuminated H-Y Zeolites: Relation between Physicochemical Properties and Catalytic Activity in Heptane and Decane Isomerization [J]. Journal of Physical Chemistry, 1996, 100:12440-12447.
    [142]Sarkadi-Pribóczki, Kumar N, Salmi T et al. A Novel Radioisotope Method for Studying Catalytic Transformations over Alumina, H-ZSM-5 and H-Beta Zeolite Catalysts: Investigation of Conversion of 11C-Labeled Methanol to 11C-Labeled Dimethyl Ether and Hydrocarbons[J]. Catalysis Letters, 2004, 93(1-2):101-107.
    [143]Camblor M A., Constantini M., Corma A. Synthesis and catalytic activity of aluminium-free zeolite Ti-βoxidation catalysts[J]. Chemical Communications , 1996, 1339-1340.
    [144]Poh N E, Nur H, Muhid M N M et al. Sulfated AlMCM-41:Mesoporous Soild Br?onsted Acid Catalysts for Dibenzoylation of Biphenyl[J]. Catalysis Today, 2006, 114:257-262.
    [145]Socrates G. Infrared Characteristic Group Frequencies[M]. New York: Wiley, 1980.
    [146]Bera J, Rout S K. On the formation mechanism of BaTiO3- BaZrO3 solid solution through solid-oxide reaction[J]. Materials Letters, 2005, 59:135-141.
    [147] Ma X I, Kin J H, Song C S. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and in pact of analytical methods on ppm-level sulfur quantification for fuel cell applications[J]. Applied Catalysis, 2005, 56:137-147.
    [148] Platero E E, Mentruit M P. IR characterization of sulfated zirconia derived from zirconium sulfate[J]. Catalysis Letters, 1994, 30(1-4):31-39.
    [149]林德娟,潘海波,沈水发等.纳米固体超强酸SO_4~(2-)/Fe_2O_3的红外光谱研究[J].光谱学与光谱分析,2000,20(5):616-618.
    [150]王宇红,王越,李俊.钒改性对SO_4/ZrO_2-Al_2O_3固体酸催化剂结构与催化性能的影响[J].催化学报,2008,29(8):758-764.
    [151]徐君淡. Pd/C催化剂硫中毒机理及防治措施探讨[J].金山油化纤,1992,(1):5-8.
    [152]胡国兴,戴振国,张永福.在工业使用过程中硫中毒Pd/C催化剂的X射线分析研究[J].金山油化纤,1991,(4):8-11.
    [153] Eika W Q, Otani K, Li L et al. Hydrodesulfurization and hydrogenation reactions on noble metal catalysts: Part II. Effect of partial pressure of hydrogen sulfide on sulfur behavior on alumina-supported platinum and palladium catalysts[J]. Journal of Catalysis, 2004, 221 (2): 294-301.
    [154]Flego C, ParkerJr W. Characterization ofγ-alumina and borated alumina catalysts [J]. Applied Catalysis A: General, 1999, 185(1):137-152.
    [155] Yasuda H, Sato T, Yoshimura Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation[J]. Catalysis Today, 1999, 50:63-69.
    [156]Yoshimura Y, Toba M, Matsui T et al. Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment[J]. Applied Catalysis A: General, 2007, 322: 152-171.
    [157]Ferrizz R M, Gorte R J, Vohs J M. Determining the Ce_2O_2S–CeOx phase boundary for conditions relevant to adsorption and catalysis[J]. Applied Catalysis B: Environmental, 2003 ,43(3): 273 -280.
    [158] Ma Y C, Ge Q J, Li W Z et al. Ethanol synthesis from sulfur-containing syngas over Pd/CeO_2 catalyst[J]. Applied Catalysis B: Environmental, 2009, 90:99–104
    [159]栗同林,胡惠民.合成气制甲醇与二甲醚的研究[J].天然气化工,1990,15(5):12-17.
    [160] Brown D M, Bhatt B L, Hsiung T H et al. Novel technology for synthesis of dimethyl ether from syngas[J]. Catalysis Today, 1991, 8:279-304.
    [161]张海涛,曹发海,刘殿华等. CO、CO_2、H_2直接合成二甲醚与甲醇的化学平衡[J].煤化工, 1999,3:29-32.
    [162]宋维瑞,朱炳辰,房鼎业.甲醇合成系统中二氧化碳的作用[J].华东化工学院学报,1984,(3):267-274.
    [163]栗同林,胡惠民.合成气制甲醇与二甲醚的研究[J].天然气化工,1990,5:12-17.
    [164] Deligianni H, Mieville R L, Peri J B. State of Pd in active methanol synthesis catalysts[J]. Journal of Catalysis, 1985, 95( 2): 465-472.
    [165] Hicks R F, Bell A T. Kinetics of methanol and methane synthesis over Pd/SiO2 and Pd/La2O3[J]. Journal of Catalysis, 1985, 91(1): 104-115.
    [166]肖文德,滕丽华,鲁文质.合成气制备甲醇、二甲醚的反应机理及其动力学研究进展[J].石油化工,2004,33(6):497-507.
    [167]Lu W Z, Teng L H, Xiao W D. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor[J]. Chemical Engineering Science, 2004, 59:5455-5464.