爆炸载荷及复合多层防护结构响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着反舰导弹技术的快速发展,其隐蔽性、命中精度和战斗部装药质量大幅提高,舰艇面临着越来越严酷的爆炸环境和威胁。由战斗部爆炸瞬间产生的冲击波和高速破片群对舰艇的船体结构、舰载设备和人员造成不同程度的损伤,从而使舰艇丧失正常执行任务的能力甚至破损沉没。
     从各种反舰武器的攻击特点来分析,半穿甲内爆式反舰导弹是大型水面舰船的主要威胁。其攻击过程和特点是:(a)掠海飞行接近攻击目标,以避开舰船雷达搜索;(b)末端以接近水平姿态撞击舰船舷侧,依靠自身动能穿透舷侧外板,同时触发延时引信;(c)进入舰体内部爆炸,产生强烈的冲击波和高速破片群对舰体内部结构造成破坏。
     针对半穿甲内爆式反舰导弹的攻击特点,大型水面舰船可以利用其内部空间较大的优势,通过设置多层防爆舱室采用“逐层防护”的思想将反舰导弹的能量吸收。虽然国外在大型水面舰船舷侧防护结构方面已经有了较成熟的设计思想,但如果仅仅生搬硬套,则无法因地制宜的根据目前的反舰武器战斗部载荷特点和作战要求设计有针对性的防护舱室,不可能准确可靠的设计舱室细部尺寸,因而也就无法保证所设计舰船防护结构的整体效能。掌握爆炸载荷下防护结构响应的准确计算和分析方法是研究防护机理、评估防护效能和优化设计防护结构的关键所在。
     透过现象看本质,战斗部爆炸载荷下复合多层防护结构响应的过程包含三个基础科学问题,即战斗部载荷、冲击载荷下材料的动态特性以及结构在战斗部爆炸载荷下的响应。本文围绕这三个基础问题并以复合多层防护结构为对象,开展了相关的理论推导、数值计算和模型实验方面的研究工作。
     在舱室内爆炸载荷的数值计算中,关键的问题是对冲击波阵面上的强间断的处理。本文通过基于通量修正的高精度数值算法LCPFCT在强间断处加入非线性的反耗散来解决这一问题。采用现有的通用程序Autodyn中的Euler-FCT求解器对有舱壁开孔的舱内爆炸冲击波传播过程进行了计算分析,并通过实验验证了所采用的数值计算方法在评估有泄出情况下(模拟舱壁破损)的舱室内冲击波载荷特性方面的准确性,总结得到了可靠的数值计算方法。
     能合理描述材料在动态载荷下的力学行为的本构关系是结构响应计算的前提和必要条件。本文以研究模型材料动态力学性能实验为基础,获得了合理描述材料动态力学性能的本构模型;并经Taylor杆实验的数值模拟对材料的本构模型进行了确认。
     战斗部爆炸产生的载荷包括冲击波和高速破片群,破片群的空间分布会直接关系到结构的破坏位置和模式。本文采用SPH方法对圆柱形战斗部爆炸时壳体膨胀碎裂至形成自然破片的过程进行了三维数值模拟计算,得到了战斗部的破片特性和等效裸装药量,为结构响应计算提供准确的输入载荷。本文提出了战斗部破片特性(质量分布、空间分布和速度特性)计算的数值方法,弥补了现有的理论公式和计算模型不能准确描述破片群详细特征的不足。
     采用双层舱室结构模型进行了不同装药量的舱内爆炸实验,研究了舱内爆炸载荷特性及三种不同的角隅过渡连接结构型式对冲击波在角隅汇聚情况的影响,比较了不同角隅处的爆炸冲击波压力的分布情况,分析了舱内爆炸冲击载荷与结构的相互作用过程。通过能量分析并结合镜像法(MOI)的思想,得到了舱内爆炸的等效能量,建立了舱内压力流出的计算模型,提出了考虑舱壁开孔与爆源相对位置的舱内爆炸压力的简化计算方法,并进行了实验验证。
     通过实验的方法研究了复合多层防护结构在战斗部爆炸产生的冲击波和破片群耦合作用下的破坏模式,以及舱壁开孔对结构破坏的影响和结构冲击响应的传递特征,对比分析了空舱和液舱在战斗部爆炸载荷作用下的变形和破坏,得到了液舱对破片和冲击的防护机理。在实验现象和结果分析的基础上,对复合多层防护结构的抗爆设计提出了建议。
     采用流固耦合方法和多求解器分项处理的方式,对复合多层防护结构战斗部内爆炸的实验过程进行了数值计算。采用本文中第四章的数值方法得到了战斗部爆炸产生的自然破片的质量分布、空间分布和速度特性,并通过SPH与Shell耦合的方式直接为复合多层防护结构提供了自然破片的打击载荷。同时采用Euler与Shell耦合的方式实现了战斗部等效裸装药产生的冲击波与复合多层防护结构数值模型的相互作用。实现在战斗部内爆炸载荷下复合多层防护结构响应过程的数值计算,并将数值计算结果与实验结果进行了对比。本文提出了破片和冲击波耦合作用下结构响应的数值计算方法。
     针对反舰武器战斗部爆炸产生的高速破片对液舱的穿透过程,综合考虑了破片的穿甲效应,舱内液体对破片的阻碍作用以及破片在液体中运动时产生的压力对液舱内板抗穿甲效应的影响,在一定假设条件的基础上建立了理论分析模型,结合Wen-Jones模型提出了液舱对爆炸破片防御的判据。采用数值计算方法对单发破片和双发破片穿过液舱的过程进行了研究,揭示了双发破片穿透液舱过程中冲击波的叠加效应和液舱内板受到的载荷分布规律。此外,从本文的实验现象和研究结论为出发点,对提高液舱防护能力的措施进行了探讨和研究。
The impulsive load inside a naval vessel is due to an explosion, which is clearly a major hazard that can result in severe structural damage and even sinking. The explosion source is assumed to be an anti-ship missile, striking the hull just above the water line. Internal blast occurs when the hull is breached before detonation. Anti-ship missiles designed to explode inside the vessel have armor piercing or semi-armor piercing capability with delayed action detonation to maximize the caused damage. These anti-ship missiles often have out-standing ability in See Invisibility and hit precision. Under such situations the combined effect of blast pressure and fragment impact on the structure is possibly more severe than the effects of blast or fragments alone, particularly for the close-range internal explosions.
     Considering the serious damage effects caused by the anti-ship missile, multi-layer protective structures have been applied to the large surface ships. The main function of the multi-layer protective structure of a ship is to prevent the inner cabins from being destroyed by the weapons. Although concept of the multi-layer protective structures has been advanced in the world for several decades, its defense objects are some traditional anti-ship arm, i.e. torpedo, mine and anti-ship missile. Moreover, an appropriate design of multi-layer protective structures, which is severed as 'guard' structure under the threat of modern weapons, should be based on a reasonable study of its mechanism. A method that can precisely calculate and analyze the response of protective structure under the explosion loadings is the key to investigate the mechanism of anti-explosion structure, estimate the effect of protection and get reasonable structure.
     Generally speaking, there are three basic scientific problems lie in the response of multi-layer protective structure under explosion loadings, namely the loadings from the warhead of anti-ship missile, the dynamic characteristic of materials under impact and the reasonable calculation method of structure response. In this paper, these problems are mainly considered theoretically, experimentally and numerically.
     Good resolution of steep gradients is important in numerical calculation of shock wave propagation. The high resolution LCPFCT algorithm is employed to solve the problem of steep gradients. Additionally, the Euler-FCT solver in Autodyn code is adopted to calculate the propagation process of shock wave inner a cabin with an venting hole in the cabin wall. An experiment was conducted to validate the accuracy of the numerical method in investigating the blast load in the cabin with an venting hole, which is used to simulate the rupture of the cabin wall.
     A reasonable constitutive model is of great important in calcaulation of the strcutre response, by which the mechanics behavior of material under dynamic load can be presented appropriately. In this paper, a constitutive model in the form J-C model is acquired based on the experiemtal investigation of material's dynamic mechanical properties. The parameters of the constitutive model are validate by comparing the numerical results with the Taylor cylinder test.
     Explosively driven fragmentation of ductile metals is a very complex phenomenon in which the fragmenting material is plastically deformed by the intense shock followed by high-rate plastic deformation that ultimately leads to fracture. The damage effect of explosive filling metal casing mainly includes the fragments and shock wave. In the conditions of near field explosion, the spatial distribution of fragments with powerful penetrability has considerable influence on the failure pattern of the target. Many circumstances arise where a much more sophisticated treatment is necessary to predict the fragmentation features accurately over the entire length of a cylinder including the ends. Such calculation may be required to investigate the differences in initiation sites of the high explosive, properties of casing materials, and irregular shapes of casing. However, there are no corresponding theoretical analysis models. In this paper, the Smoothed Particle Hydrodynamics (SPH) method is used to investigate numerically the fragmentation process of a cylindrical metal casing with ends. After applying the numerical method to predict the propagation of detonation wave, the expansion and rupture process, the expansion velocity of metal casing, the leakage of detonation products and the fragment distribution, the fragment mass distribution is validated by comparing the numerical results with experimental data in the literature. Additionally, an experiment was conducted with the same explosive fragmentation geometry as modeled. Thus, the equivalent bare charge and fragment loading can be determined in the calculation of response of multi-layer structure.
     The double cabin model is manufactured to conduct the explosion experiment with different shape and mass of explosive charge, and the influence of three connection patterns of the corner structure on the converge of shock wave is studied. The explanation of shock wave convergence is given by the method of images. The interaction process between the blast loading and the structure is analyzed. Based on energy analysis and combination of MOI method, the equivalence energy of the charge is determined. Besides, the analytical model of calculation the outflow of blast pressure is proposed. The calculation method of blast pressure in cabin, which is relate to the relative position between charge site and the venting on the wall of cabin, is presented eventually.
     In order to investigate the synergistic effect of blast wave and fragment impact loadings on the multi-layer protective structure. An experiment is conducted in which the metal casing filled with TNT charge (MCTC), which is used to simulate the warhead of anti-ship weapon, explodes inside an empty cabin of the first layer of the multi-layer protective structure. A protective structure model with four layers and the MCTC model are designed and manufactured. According to the distribution of fragments and the equivalent bare charge of the MCTC determined by a numerical method, the MCTC model is placed appropriately in the experimental structure. From the experimental results, the failure pattern of the multi-later protective structure under the synergistic effect of blast wave and fragment impact loadings, the releasing effect of the venting hole in the transverse bulkhead, the function of the liquid cabins in the multi-layer protective structure and the shock responses of the cabins are investigated. The synergistic effect of blast wave and fragment impact loadings for the stiffened plates is also presented in the experiment by comparing the deformation and the rupture of the air-backed and water-backed plate. Finally, some conclusions are drawn and some suggestions for the design of multi-layer protective structure are put forward.
     The experiment of a multi-layer protective structure under the synergistic effect of blast and fragment loadings is numerically simulated by using of fluid-structure coupling and the method of multi solvers processing. The fargemt loading is obtained by the numerical mentod described in Chapter4and apply to the structure by combining the SPH and Shell slover. Besides, the balst load from equivalent bare charge is imposed to the structure by Euler-Shell coupling. A numerical method that can simulate the response and rupture of a multi-layer protective structure under the synergitci effects of blast and fragment impct loadings is presented.
     In this paper, based on the velocity loss analysis and Wen-Jones model, taking the influence of pressure produced by the moving fragment on the anti-perforation ability of inner-plate into account, a criterion is given to determine whether the guarding fluid cabin is effective. Besides, numerical simulations were conducted to investigate the process of single and double fragments penetrate the water cabin. The results indicate that there is an apparent additive effect of shock wave in water cabin caused by the impact of double fragments, and the position with high pressure of shock wave occurs is related to the distance between fragments. The double fragments impacting overpressure of shock wave and the pressure endured by inner plate are two times more than that of single fragment case. The present research laid the groundwork for the future study of the response of fluid cabins under fragments impact.
引文
1. Taylor G. The Formation of a Blast Wave by a Very Intense Explosion. Ⅰ. Theoretical Discussion, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1950, Royal Society, p.159-174.
    2. Taylor G. The Formation of a Blast Wave by a Very Intense Explosion. Ⅱ. The Atomic Explosion of 1945, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1950, Royal Society, p.175-186.
    3. Bach GG, Lee JHS. An analytical solution for blast waves[J]. AIAA J,1970,8(2): 271-275.
    4. Jones DL. Intermediate Strength Blast Wave[J]. Phys Fluids,1968,11(8):1664-1667.
    5. Theilheimer F. The determination of the time constant of a blast wave from the pressure-distance relation[R].U. S. Naval ordnance Lab.NAVORD Report 1734,1950.
    6. Baker WE. Explosions in Air[M]. Austin and London:University of Texas Press, 1973:150-167.
    7. 孔祥韶.大型水面舰船复合多层防护结构内爆的数值模拟研究[D].武汉理工大学,2009.
    8. Diaz Alonso F, Gonzalez Ferradas E, Francisco Sanchez Perez J, et al. Characteristic overpressure-impulse-distance curves for the detonation of explosives, pyrotechnics or unstable substances [J]. J Loss Prev Process Indust,2006,19(6):724-728.
    9. Hartree DR. Some practical methods of using method of characteristics in the calculation of nonsteady compressible flows[R].Los Alamos Report LAHU-1 1952.
    10. Chou PC, Karpp RR. Solution of the blast wave by the method of characteristics[R].DIT Rept,No.125-7,1965.
    11. Chou PC, Huang SL, Karpp RR. Numerical calculation of blast waves by the method of characteristics[J]. AIAA J,1967,5(4):618-623.
    12. Fairweather M, Vasey MW. A mathematical model for the prediction of overpressures generated in totally confined and vented explosions[J]. Symposium (International) on Combustion,1982,19(1):645-653.
    13. Chan PC, Klein HH. A Study of Blast Effects Inside an Enclosure[J]. J Fluids Eng,1994, 116(3):450-455.
    14. Feldgun VR, Karinski YS, Yankelevsky DZ. A simplified model with lumped parameters for explosion venting simulation[J]. Int J Impact Eng,2011,38(12):964-975.
    15. VonNeumann J, Richtmyer RD. A method for the numerical calculation of hydrodynamic shocks[J]. J Appl Phys,1950,21(3):232-237.
    16. Brode HL. Blast wave from a spherical charge[J]. Phys Fluids,1959,2(2):217-229.
    17. Brode HL. Numerical solutions of spherical blast waves[J]. Jour Appl Phys,1955,26(6): 766-775.
    18. Zyskowski A, Sochet I, Mavrot G, et al. Study of the explosion process in a small scale experiment—structural loading[J]. J Loss Prev Process Indust,2004,17(4):291-299.
    19. Huld T, Peter G, Stadtke H. Numerical simulation of explosion phenomena in industrial environments[J]. J Hazard Mater,1996,46(2-3):185-195.
    20. Benselama AM, William-Louis MJP, Monnoyer F, et al. A numerical study of the evolution of the blast wave shape in tunnels[J]. J Hazard Mater,2010,181(1-3):609-616.
    21. Benselama AM, William-Louis MJP, Monnoyer F. A 1D-3D mixed method for the numerical simulation of blast waves in confined geometries[J]. JCoPh,2009,228(18): 6796-6810.
    22. Waymel F, Monnoyer F, William-Louis MJP. Numerical simulation of the unsteady three-dimensional flow in confined domains crossed by moving bodies[J]. Computers & Fluids,2006,35(5):525-543.
    23. Karnesky J, Chatterjee P, Tamanini F, et al. An application of 3D gasdynamic modeling for the prediction of overpressures in vented enclosures[J]. J Loss Prev Process Indust, 2007,20(4-6):447-454.
    24. Ferrara G, Willacy SK, Phylaktou HN, et al. Venting of gas explosion through relief ducts: Interaction between internal and external explosions[J]. J Hazard Mater,2008,155(1-2): 358-368.
    25. Ferrara G, Di Benedetto A, Salzano E, et al. CFD analysis of gas explosions vented through relief pipes[J]. J Hazard Mater,2006,137(2):654-665.
    26. Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in stramberk experimental mine and AutoReaGas simulation[J]. J Loss Prev Process Indust,2006, 19(2-3):280-287.
    27. Wu C, Lukaszewicz M, Schebella K, et al. Experimental and numerical investigation of confined explosion in a blast chamber[J]. J Loss Prev Process Indust,0).
    28. Boris JP, Book DL. Solution of the continuity equation by the method of flux-corrected transport[J]. MComP,1976,16(85-129.
    29. Boris JP, Landsberg AM, Oran ES, et al. LCPFCT-A flux-corrected transport algorithm for solving generalized continuity equations[R].Naval Research Lab., Washington, DC.AD-A265011/7 1993.
    30. DU Zhi-peng LX-b, XIA Li-juan, JIN Xian-ding High-Resolution hydrocode simulation of explosion air blast using a flux-corrected transport (FCT) algorithm[J]. Journal of Ship Mechanics,10(3):142-148.
    31. Al-Hassani STS, Hopkins HG, Johnson W. A note on the fragmentation of tubular bombs[J]. IJMS,1969,11(6):545-549.
    32. Hoggatt CR, Recht RF. Fracture behaviour of tubular bombs[J]. J Appl Phys,1968,39(3): 1856-1862.
    33. Al-Hassani STS, Johnson W. Dynamic deformation and fragmentation of strain-hardening, strain-rate sensitive shells containing high explosives[J]. Int Mech Sci,1972,13(15): 345-355.
    34. Grady DE, Hightower MM. Natural fragmentation of exploding cylinders[M]. 1990:Medium:X; Size:Pages:(13 p).
    35. 隋树元,王勋,马晓青,周兰庭.内爆炸载荷下弹钢的动态变形与断裂准则研究[J].兵工学报,1996,17(1):88-92.
    36. Gurney GW. The initial velocities of fragments from bombs, shells and grenades[R]. Ballistics Research Laboratories Report 405,1943.
    37. Mott NF, Linfoot EH. A theory of fragmentation[R].British Ministry of Supply Report, AC 3348,1943,1943.
    38. Elek P, Jaramaz S. Fragment mass distribution of naturally fragmenting warheads[J]. FME Transactions,2009,37(129-135.
    39. 尹峰张,方秦.常规武器爆炸产生的破片及其破坏效应[J].解放军理工大学学报(自然科学版),2005,6(1):50-53.
    40. Arnold W, Rottenkolber E. Fragment mass distribution of metal cased explosive charges[J]. Int J Impact Eng,2008,35(12):1393-1398.
    41. 魏继锋,焦清介,吴成.预制破片战斗部试验与数值模拟研究[J].弹箭与制导学报,2004,24(3):39-45.
    42. 张志春,强洪夫,孙新利.杀伤战斗部破片飞散特性的数值模拟[J].解放军理工大学学报(自然科学版),2008,9(6):671-675.
    43. 王新征,张松林,邹广平.内部短药柱爆炸作用下钢筒破裂特征的数值分析[J].高压物理学报,2010,24(1):61-66.
    44. Glanville JP, Fairlie G, Hayhurst C, et al. Numerical simulation of fragmentation using AUTODYN-2D & 3D in explosive ordnance safety assessment[C].6th PARARI International Explosive Ordnance Symposium.2003. Canberra, Australia.
    45. Guilkey JE, Harman TB, Banerjee B. An Eulerian-Lagrangian approach for simulating explosions of energetic devices[J]. Computers & Structures,2007,85(11-14): 660-674.
    46. Dunnett J, Flynn D, Wharton J. Blast algorithm development:definition of modified blast algorithms for PBX based explosives, in Insensitive munitions and energetic materials technical symposium IMEMTS.2006:Bristol, UK. p.1-10.
    47. Hutchinson MD. The escape of blast from fragmenting munitions casings [J]. Int J Impact Eng,2009,36(2):185-192.
    48. 张奇,苗常青,白春华,闫华.壳体对爆炸空气冲击波强度的影响[J].应用力学学报,2003,20(3):145-147.
    49. Zhang Q, Miao C-Q, Lin D-C, et al. Relation of fragment with air shock wave intensity for explosion in a shell[J]. Int J Impact Eng,2003,28(10):1129-1141.
    50. Hudson GE. A theory of the dynamic plastic deformation of a thein diaphragm[J]. J Appl Phys,1951,22(1):1-11.
    51. Hopkins HG, Prager W. On the dynamics of plastic circular plates[J]. Zeitschrift fur angewandte Mathematik und Physik ZAMP,1954,5(4).
    52. Florence AL. Clamped circular rigid-plastic plates under central blast loading[J]. IJSS, 1966,2(2):319-335.
    53. Wang AJ, Hopkins HG On the plastic deformation of built-in circular plates under impulsive load[J]. Journal of the Mechanics and Physics of Solids,1954,3(1):22-37.
    54. Witmer FA, Balmer HA, Leech JW, et al. Large dynamic deformations of beam, rings, plates and shells[J]. AIAA J,1963,1(8):1848-1857.
    55. Boyd DE. Dynamic deformation of circular membranes[J]. Journal of the Engineering Mechanics Division,1966,92(3):1-16.
    56. Jones N. Impulsive loading of a simply supported circular rigid-plastic plate[J]. Journal of Applied Mechanics 1968,35(1):59-65.
    57. Baker WE. Approximate techniques for plastic deformation of structures under impulsive loading[J]. Shock and Vibration Digest,1975,7(107-117.
    58. Nurick GN, Pearce HT, Martin JB. Predictions of transverse deflections and in-plane strains in impulsively loaded thin plates[J]. IJMS,1987,29(6):435-442.
    59. Menkes SB, Opat HJ. Broken Beams-Tearing and shear failures in explosively loaded clamped beams[J]. ExM,1973,13(11):480-486.
    60. Jones N. Plastic failure of ductile beams loaded dynamically[J]. Journal of Engineering for Industry,1976,98(131-136.
    61. Johnson W. Impact strength of materials[M]. Edward Arnold,1972.
    62. Zhao YP. Suggestion of a new dimensionless number for dynamic plastic response of beams and plates[J]. Archive of Applied Mechanics,1998,68(524-538.
    63. Youngdahl CK. Correlation parameters for eliminating the effect of pulse shape on dynamic plastic deformation[J]. Journal of Applied Mechanics,1970,37(3):744-752.
    64. Olson MD, Nurick GN, Fagnan JR. Deformation and rupture of blast loaded square plates—predictions and experiments[J]. Int J Impact Eng,1993,13(2):279-291.
    65. 刘土光,胡要武,郑际嘉.固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析[J].爆炸与冲击,1994,14(1):55-65.
    66. 吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损[J].中国造船,1995,4(55-61.
    67. 张振华,朱锡.刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J].船舶力学,2004,8(5):113-119.
    68. Landkof B, Goldsmith W. Petalling of thin, metallic plates during penetration by cylindro-conical projectiles[J]. IJSS,1985,21(3):245-266.
    69. Wierzbicki T. Petalling of plates under explosive and impact loading[J]. Int J Impact Eng, 1999,22(9-10):935-954.
    70. Micallef K, Fallah AS, Pope DJ, et al. The dynamic performance of simply-supported rigid-plastic circular steel plates subjected to localised blast loading[J]. IJMS,2012,65(1): 177-191.
    71. DU Z, LI X, XIA L, et al. Numerical simulation of warship broadside protective structure rupture under inner explosion[J]. Journal of Ship Mechanics,2007,11 (3):453-461.
    72. 杜志鹏,李晓彬,夏利娟,金咸定.反舰导弹攻击舰船舷侧防护结构过程数值仿真[J].哈尔滨工程大学学报,2006,27(4):484-487.
    73. Kurki T. Contained explosion inside a naval vessel-evaluation of the structure response[D].Finland:2007.
    74. Anderson J, Charles E, Baker WE, et al. Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures[J]. IJMS,1983,25(6):455-464.
    75. 侯海量,朱锡,梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击,2007,27(2):151-158.
    76. 张婧,施兴华,盖京波,王善.舰船防护结构穿甲后爆炸的数值仿真分析[J].哈尔滨工业大学学报,2009,41(8):202-206.
    77. 张婧,施兴华,王善,杨世全.水下接触爆炸载荷作用下舰船防护结构的仿真和实验研究[J].船舶力学,2008,12(649-656).
    78. 严波,彭兴宁,潘建强.舱室爆炸载荷作用下舷侧防护结构的响应研究[J].船舶力学,2009,13(1):107-114.
    79. Marchand KA, Vargas MM, Nixon JD. The synergistic effects of combined blast and fragment loadings, in Southwest Research Institute Final Report No. ESL-TR-91-18 to Air Force Engineering & Services Center.1992:Florida.
    80. 周丰峻.国际常规武器效应与结构相互作用会议专题报告[R].洛阳水利工程研究所,1997.
    81. Lee B, Peyton S. A comparison of two methods for incorporating fragment damage in first principles airblast and fragment loading of structures[C].9th International Symposium on Interactions of the Effects of Munitions with Structures.1999. Berlin.
    82. Bowles PK. Update of the vehicle bomb mitigation guide (VBMG) safe distances for secondary fragmentation[C].11th International Symposium on Interactions of the Effects of Munitions with Structures.2003. Mannheim.
    83. Hu W, Chen Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM[J]. Int J Impact Eng,2006,32(12): 2066-2096.
    84. Joosef L. Experiments and numerical analyses of blast and fragment impacts on concrete[J]. Int J Impact Eng,2005,31(7):843-860.
    85. Nystrom U, Gylltoft K. Numerical studies of the combined effects of blast and fragment loading[J]. Int J Impact Eng,2009,36(8):995-1005.
    86. 侯海量,朱锡,李伟,梅志远.爆炸冲击波和高速破片联合作用下舱室结构破坏模式试验研究[C].中国钢结构协会海洋钢结构分会2010年学术会议暨第六届理事会第三次会议.2010.
    87. Schleyer GK, Underwood NJ, Do HM, et al. On the simplified analysis of square plates with holes[J]. ASME Conference Proceedings,2011,2011(44342):107-111.
    88. Rakvag KG, Underwood NJ, Schleyer GK, et al. Transient pressure loading of clamped metallic plates with pre-formed holes[J]. Int J Impact Eng,2012.
    89. 杜志鹏,李晓彬,夏利娟,金咸定.舰船防护水舱在接近爆炸载荷作用下响应的理论研究[J].船舶力学,2007,11(1):119-127.
    90. 徐双喜.大型水面舰船复合多层防护结构研究[D].武汉:武汉理工大学,2010.
    91. Varas D, Lopez-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. Int J Impact Eng,2009,36(1):81-91.
    92. Lee M, Longoria RG, Wilson DE. Ballistic waves in high-speed water entry[J]. JFS,1997, 11(7):819-844.
    93. Townsend D, Park N, Devall PM. Failure of fluid filled structures due to high velocity fragment impact[J]. Int J Impact Eng,2003,29(1-10):723-733.
    94. Varas D, Zaera R, Lopez-Puente J. Numerical modelling of the hydrodynamic ram phenomenon[J]. Int J Impact Eng,2009,36(3):363-374.
    95. Varas D, Zaera R, Lopez-Puente J. Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram[J]. Aerospace Science and Technology,2012, 16(1):19-28.
    96. Artero-Guerrero JA, Pernas-Sanchez J, Varas D, et al. Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Compos Struct,2013,96(0): 286-297.
    97. Varas D, Zaera R, Lopez-Puente J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Compos Struct,2011,93(10):2598-2609.
    98. Nishida M, Tanaka K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. Int J Impact Eng,2006,32(12):2000-2016.
    99. Disimile PJ, Davis J, Toy N. Mitigation of shock waves within a liquid filled tank[J]. Int J Impact Eng,2011,38(2-3):61-72.
    100. Borg JP, Cogar JR. Comparison of average radial expansion velocity from impacted liquid filled cylinders[J]. Int J Impact Eng,2007,34(6):1020-1035.
    101. Borg JP, Downs TJ, Lloyd A. High strain rate fragmentation of liquid systems at atmospheric pressure[J]. Int J Impact Eng,2006,33(1-12):119-125.
    102. Borg JP, Grady D, Cogar JR. Instability and fragmentation of expanding liquid systems[J]. Int J Impact Eng,2001,26(1-10):65-76.
    103. Lecysyn N, Bony-Dandrieux A, Aprin L, et al. Experimental study of hydraulic ram effects on a liquid storage tank:Analysis of overpressure and cavitation induced by a high-speed projectile[J]. J Hazard Mater,2010,178(1-3):635-643.
    104. Lecysyn N, Dandrieux A, Heymes F, et al. Ballistic impact on an industrial tank:Study and modeling of consequences[J]. J Hazard Mater,2009,172(2-3):587-594.
    105. Lecysyn N, Dandrieux A, Heymes F, et al. Preliminary study of ballistic impact on an industrial tank:Projectile velocity decay [J]. J Loss Prev Process Indust,2008,21(6): 627-634.
    106. Zhang A-man YS-t, Yao Xiong-liang. Numerical simulation of the penetration of fuel-filled tank by a high-speed projectile[J]. Journal of Ship Mechanics,2010,9(14): 998-1007.
    107. Aman Zhang FM, Xueyan Cao,Wenshan Yang. Protective design of a warship broadside liquid cabin[J]. Journal of Marine Science and Application,2011,10(437-446.
    108. 沈晓乐,朱锡,侯海量,陈长海.高速破片侵彻防护液舱试验研究[J].中国舰船研究2011,6(3):12-15.
    109. Guo Z, Zhang W, Xiao X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. Int J Impact Eng,2012,49(0):43-60.
    110. Henrych J. The Dynamic of Explosion and its Use[M]. Printed in Czechoslovakia,1979.
    111. Landau LD, Livshits EM. Mechanics of Continuous Media[M]. Mockba,1954.
    112. Stanyukovich KP. Non-stationary of a Contimuous Medium[M]. Mockba,1955.
    113. Taylor GI. The Formation of a Blast Wave by a Very Intense Explosion[M]. Proc. Roy. Soc.,1950.
    114. Lin S-C. Cylindrical shock waves produced by an instantaneous energy release[J]. Jour Appl Phys,1954,25(1):145-157.
    115. Sakurai A. On the propagation of structures of the blast wave, part Ⅰ [J]. Jour of Phys Soc Of Japan,1953,8(5):662-669.
    116. Sakurai A. On the propagation of structures of the blast wave, part Ⅱ [J]. Jour of Phys Soc Of Japan,1954,9(2):256-266.
    117. 恽寿榕,涂侯杰,梁德寿,张汉萍.爆炸力学计算方法[M].北京理工大学出版社,1995.
    118. 朱建士,胡晓棉,王裴,陈军,许爱国.爆炸与冲击动力学若干问题研究[J].力学进展,2010,40(4):400-423.
    119. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[C].The 7th International Symposium on Ballistic. 1983. Netherlands:Hague.
    120. 刘旭红,黄西成,陈裕泽,苏先抛,朱建士.强动载荷下金属材料塑性变形本构模型评述[J].力学进展,2007,37(3):361-374.
    121. Steinberg DJ. Constitutive model used in computer simulation of time-resolved, shock-wave data[J]. Int J Impact Eng,1987,5(1-4):603-611.
    122. Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate[J].J Appl Phys,1980,51(3):1498-1504.
    123. Steinberg DJ, Lund CM. A constitutive model for strain rates from 10-4 to 106 s-l[J]. J Appl Phys,1989,65(4):1528-1533.
    124. 李茂生,陈栋泉.高温高压下材料的本构模型[J].高压物理学报,2001,15(1):23-31.
    125. Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J Appl Phys,1987,61(5).
    126. Zerilli FJ, Armstrong RW. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J]. J Appl Phys,1990,68(4):1580-1591.
    127. Zerilli FJ, Armstrong RW. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals[J]. AcM&M,1992,40(8):1803-1808.
    128. Eakins DE, Thadhani NN. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states[J]. J Appl Phys, 2006,100(7):0735031-8.
    129. Danian C, Chunlei F, Shugang X, et al. Study on constitutive relations and spall models for oxygen-free high-conductivity copper under planar shock tests[J]. J Appl Phys,2007, 101(6):063532 1-9.
    130. 姚熊亮,徐小刚,许维军.船用917钢抗冲击性能试验[J].中国造船,2004,45(4):35-41.
    131. 陈志坚,袁建红,赵耀.450MPa级船用钢冲击实验研究及Cowper-Symonds本构模型[J].船舶力学,2007,44(6):933-941.
    132. 姜风春,刘瑞堂,张晓欣.船用945钢的动态力学性能研究[J].兵工学报,2000,21(3):257-260.
    133. 刘瑞堂,姜风春,张晓欣.船用945钢动态断裂行为的温度效应,2001,16(1):113-118.
    134. Scheffler DR, Zukas JA. Practical aspects of numerical simulation of dynamic events: material interfaces[J]. Int J Impact Eng,2000,24(8):821-842.
    135. Zukas JA, Scheffler DR. Practical aspects of numerical simulations of dynamic events: effects of meshing[J]. Int J Impact Eng,2000,24(9):925-945.
    136. GR Johnson WC. A Constitutive Model and Data for Metals Subjected to Large strains,High Strain Rates and High Temperature, in Proceedings of the seventh international symposium on ballistics.1983:Netherland. p.541-547.
    137. GR Johnson WC. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J]. Engineering Fracture Mechanics,1985, 21(31-48.
    138. MAM. Dynamic Behavior of Materials[M]. Johnwiley&Sons, Inc,1994.
    139. Burakovsky L, Preston DL. Shear modulus at all pressures:Generalized Guinan-Steinberg formula[J]. J Phys Chem Solids,2006,67(9-10):1930-1936.
    140. GB/228-2002.金属材料室温拉伸试验方法.2002.
    141. PW B. Studies in large plastic flow and fracture[M]. McGraw-Hill,1952.
    142. S LU. Some experiment s with the split Hopkinson pressure bar[J]. Mech Phys Solid, 1964,12(317.
    143. Chiddister J L MLE. Compression-impact Testing of Aluminum at Elevated Temperatures[J]. Exp Mech,1963,8(1.
    144. 夏开文,程经毅,胡时胜SHPB装置应用于高温动态力学性能的研究[J].实验力学,1998,13(3):7.
    145. 周国才,胡时胜,付峥.用于测量材料高温动态力学性能的SHPB技术[J].实验力学,2010,25(1):7.
    146. Tucker MT, Horstemeyer MF, Whittington WR, et al. The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys[J]. Mechanics of Materials,2010,42(10):895-907.
    147. WANG Li-li ZF-h, SUN Zi-jian, HUANG De-jin. Rate-dependent Damage Evolution and its Influence on Dynamic Behavior of Materials at High Strain Rates[J]. JOURNAL OF NINGBO UNIVERSITY (NSEE),2012,25(1):27.
    148. GB/T4388-2006.金属材料高温拉伸试验方法.2006.
    149. Taylor GI. The use of flat-ended projectiles for determining dynamic yield stress. I.Theoretical considerations[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1948,194(1308):289-299.
    150. Holmquist GRJTJ. Evaluation of cylinder-impact test data for constitutive model constants [J]. J Appl Phys,1988,64(8):3901-3910.
    151. I. Rohr HN, K. Thoma. Material characterization and constitutive modelling of ductile high strength steel for a wide range of strain rates[J]. International Journal of Impact Engineering,2005,31(4):401-433.
    152. 陈小伟,张方举,梁斌,谢若泽,徐艾明.A3钢钝头弹撞击45钢板破坏模式的试验研究[J].爆炸与冲击,2006,26(3):199-207.
    153. 陈刚,陈忠富,陶俊林,牛伟,张青平,黄西成.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456.
    154. Grime G, Sheard H. The experimental study of the blast from bombs and bare charges[C].Proceedings of the Royal Society,.1946. London.
    155. Fisher EM. The effect of the steel case on the air blast from high explosives[R].White Oak, MD, USA:Naval Ordnance Laboratory.Report 2753,1953.
    156. Crowley AB. The effect of munition casings on reducing blast overpressures, in Proceedings of the insensitive munitions and energetic materials technical symposium (IMEMTS 2006).2006:Bristol, UK.
    157. Odintsov VA, Selivanov VV. Behaviour of a rigidly plastic cylindrical shell exposed to internal pressure[J]. JAMTP,1974,16(457-460.
    158. Stronge WJ, Ma X, Zhao L. Fragmentation of explosively expanded steel cylinders[J]. IJMS,1989,31(11-12):811-823.
    159. Balagansky IA, Karanik YA, Agureikin VA, et al. Fracture behavior of explosively loaded spherical molded steel shells[J]. Theor Appl Fract Mech,2001,36(2):165-173.
    160. Zhou F, Molinari JF, Ramesh KT. An elastic-visco-plastic analysis of ductile expanding ring[J]. Int J Impact Eng,2006,33(1-12):880-891.
    161. Goto DM, Becker R, Orzechowski TJ, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders[J]. Int J Impact Eng,2008,35(12): 1547-1556.
    162. Haring I, Schonherr M, Richter C. Quantitative hazard and risk analysis for fragments of high-explosive shells in air[J]. Reliability Engineering & System Safety,2009,94(9): 1461-1470.
    163. Tanapornraweekit. G, Kulsirikasem. W. Effects of material properties of warhead casing on natural fragmentation performance of high explosive (HE) warhead[J]. Word Academy of Science, Engineering and Technology,2011,59(1275-1280.
    164. 蒋建伟,张谋,门建兵,王树有PELE弹侵彻过程壳体膨胀破裂的数值模拟[J].计算力学学报,2009,26(4):568-572.
    165. 徐坤博,龚自正,侯明强,郑建东,杨继运.基于特征长度的非球形弹丸超高速撞击碎片云特征研究[J].高压物理学报,2012,26(1):7-17.
    166. 李伟,朱锡,梅志远,侯海量.战斗部破片毁伤能力的等级划分试验研究[J].振动与冲击,2008,27(3):47-49.
    167. Danel J-F, Kazandjian L. A few remarks about the Gurney energy of condensed explosives[J]. Propellants, Explosives, Pyrotechnics,2004,29(5):314-316.
    168. Lloyd RM. Conventional warhead systems physics and engineering design[M]. Vol.179: Cambridge:American Institute of Aeronautics and Astronautics,1998:137.
    169. Tarver CM. Ignition and growth modeling of LX-17 hockey puck experiments[J]. Propellants, Explos, Pyrotech,2005,30(2):109-117.
    170. 王新征,张松林,邹广平.内部短药柱爆炸作用下钢筒破裂的数值分析[J].高压物理学报,2010,24(1):61-66.
    171. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics-Theory and application to non-spherical stars[J].Mon Not R Astron Soc,1977,181(375-389.
    172. Lucy LB. A numerical approach to the testing of the fission hypothesis[J]. Astron J,1977, 82(12):1013-1024.
    173. Liu MB, Liu GR. Smoothed Particle Hydrodynamics (SPH):an Overview and Recent Developments[J]. Arxiv Comput Methods Engrg,2010,17(1):25-76.
    174. Johnson GR, Stryk RA, Beissel SR. SPH for high velocity impact computations[J]. Comput Method Appl M,1996,139(1-4):347-373.
    175. Randles PW, Libersky LD. Smoothed Particle Hydrodynamics:Some recent improvements and applications[J]. CMAME,1996,139(1-4):375-408.
    176. Liu MB, Liu GR, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers & Fluids,2003,32(3): 305-322.
    177. Liu MB, Liu GR, Lam KY, et al. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[J]. Shock Waves,2003, 12(6):509-520.
    178. Monaghan JJ, Gingold RA. Shock simulation by the particle method SPH[J]. JCoPh, 1983,52(2):374-389.
    179. Swegle JW, Hicks DL, Attaway SW. Smoothed Particle Hydrodynamics Stability Analysis[J]. JCoPh,1995,116(1):123-134.
    180. Mott NF. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1947,189(1018):300-308.
    181. Tanapornraweekit G, Kulsirikasem W. Effects of material properties of warhead casing on natural fragmentation performance of high explosive (HE) warhead[C].World Academy of Science, Engineering and Technology.2011.
    182. Stronge WJ, YU TX. Dynamic models for structural plasticity[M].1993.
    183. Luccioni B, Ambrosini D, Danesi R. Blast load assessment using hydrocodes[J]. Eng Struct,2006,28(12):1736-1744.
    184. Rajendran R, Lee JM. Blast loaded plates[J]. Mar Struct,2009,22(2):99-127.
    185. Chung Kim Yuen S, Nurick GN. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅰ:subjected to uniform blast load[J]. Int J Impact Eng, 2005,31(1):55-83.
    186. Bonorchis D, Nurick GN. The analysis and simulation of welded stiffener plates subjected to localised blast loading[J]. Int J Impact Eng,2010,37(3):260-273.
    187. Lee Y-W, Wierzbicki T. Fracture prediction of thin plates under localized impulsive loading. Part Ⅰ:dishing[J]. Int J Impact Eng,2005,31(10):1253-1276.
    188. Lee Y-W, Wierzbicki T. Fracture prediction of thin plates under localized impulsive loading. Part Ⅱ:discing and petalling[J]. Int J Impact Eng,2005,31(10):1277-1308.
    189. Balden VH, Nurick GN. Numerical simulation of the post-failure motion of steel plates subjected to blast loading[J]. Int J Impact Eng,2005,32(1-4):14-34.
    190. 尹群,陈永念,张健,胡海岩.水下爆炸载荷作用下舰船结构动响应及新型防护结构[J].中国造船,2007,48(4):42-52.
    191. 张婧,施兴华.水下爆炸作用下舰船的剩余强度及可靠性评估[J].中国造船,2010,51(4):127-135.
    192.姚熊亮,郭君,曹宇,冯麟涵.在水下爆炸冲击波作用下的新型冲击因子[J].中国造船,2008,49(2):52-60.
    193. 侯海量,朱锡,李伟,梅志远.舱内爆炸冲击载荷特性实验研究[J].船舶力学,2010,14(8):901-907.
    194. 乔小玲胡,彭金华,陈网桦,张春云,惠君明.岩石型乳化炸药的TNT当量[J].爆破器材,1998,27(6):5-8.
    195. Smith PD, Mays GC, Rose TA, et al. Small scale models of complex geometry for blast overpressure assessment[J]. Int J Impact Eng,1992,12(3):345-360.
    196. Yi Hu, Chengqing Wu, Matthew Lukaszewicz, et al. Characteristics of confined blast loading in unvented structures[J]. International Journal of Protective Structures,2011, 2(1):21-44.
    197. Edri I, Savir Z, Feldgun VR, et al. On blast pressure analysis due to a partially confined explosion:Ⅰ experimental studies[J]. International Journal of Protective Structures,2011, 2(1):1-20.
    198. Baker WE, Oldham GA. Estimates of blowdown of quasi-static pressures in vented chambers[R].Southwest Research Institute.Edgewood Arsenal Contractor Report, AD-A025 502,1975.
    199. Baker AD. AIRCRAFT CARRIERS[M]. Naval Institute Press,1983.
    200. Saunders CS. Jane's Fighting Ship[M].2004-2005.
    201. Morse CR, Stepka FS. Effect of projectile size and material on impact fracture of walls of liquid-filled tanks[R].NASA Technical Note NASA TN D-3627,1966.
    202. Schleyer GK, Hsu SS, White MD, et al. Pulse pressure loading of clamped mild steel plates[J]. Int J Impact Eng,2003,28(2):223-247.
    203. Structures to Resist the Effects of Accidental Explosions[R].Departments of the ARMY, the NAVY, and the AIR FORCE.AD-A243 272,1990.
    204. AUTODYN library, in Century dynamics incorporated. USA:2007.
    205. Belytschko T, Lin JI, Chen-Shyh T. Explicit algorithms for the nonlinear dynamics of shells[J]. CMAME,1984,42(2):225-251.
    206. 虞德水,于川,张远平,龚晏青,王广军.半穿甲战斗部对模拟舰船结构毁伤效应试验研究[C]第四届全国爆炸力学实验技术学术会议.2006.
    207. 梅志远,朱锡,张立军.高速破片穿透船用钢靶剩余特性研究[J].工程力学,2005,22(4):235-240.
    208. 王晓强,朱锡.高速钝头弹体侵彻金属靶板的机理研究[J].工程力学,2010,27(12):213-218.
    209. Meyers MA.材料动力学行为[M].北京:国防工业出版社,2004.
    210. 钱伟长.穿甲力学[M].北京:国防工业出版社,1984.
    211. Wen HM, Jones N. Low-velocity perforation of punch-impact-loaded metal plates[J]. Journal of Pressure Vessel Technology,1996,118(2):181-187.
    212. Szyndel MDE, Collard AD, Eyre JR. A simple relation between the detonation velocity of an explosive and its Gurney energy[J]. Propellants, Explosives, Pyrotechnics,2002,27(6): 365-368.
    213. 王儒策.弹丸终点效应[M].北京:北京理工大学出版社,1993.
    214. Chou PC, Schaller.R., Hoburg.J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles[R].DIT Report 160-9, NASA CR-72169,1967.
    215. 孔祥韶,吴卫国,李晓彬,徐双喜,黄燕玲.破片侵彻钢/陶瓷/钢复合板的特性分析[J].解放军理工大学学报,2012,13(2):197-202.
    216. Ogden RW. Large Deformation Isotropic Elasticity-On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1972,326(1567):565-584.