富氧燃烧过程中的NOx控制及其系统效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的一次能源结构以煤为主。煤及其它化石燃料燃烧利用过程中的C02排放是造成全球温室变暖的主要原因,燃烧过程释放的NOx是目前我国环境污染的最重要的污染物之一。富氧燃烧作为最重要的二氧化碳捕获技术之一,在NOx排放控制上具有很大潜力,研究化石燃料的富氧燃烧过程及其NOx的排放过程具有重要意义。
     本文按照富氧无穷分级均相反应机理→煤粉在小型间歇式O2/C02气氛下释放NOx的机理试验→小型连续式沉降炉富氧分级燃烧NOx控制机理试验→中试型富氧分级燃烧热态试验→富氧燃烧大型应用数值仿真的研究路线对富氧燃烧过程中的NO、生成与控制进行了研究,并探索了降低富氧燃烧过程及其他CCS系统的碳捕获成本的方法。
     建立了一维有限元模型研究无穷分级燃烧的NO控制以及富氧燃烧气氛的影响。使无穷分级燃烧发挥最大的NO、控制作用有赖于合理的配风参数和温度、停留时间等环境参数的选择。提出了富氧燃烧时依赖CO2的不分支链反应机理,解释了CO2在无穷分级时一次风中氧气相对不足时抑制NOx生成、氧气相对充分时促进NOx生成的现象。富氧燃烧气氛下由于没有N2,在高温时不生成热力型NOx。
     在水平管式炉研究煤粉富氧燃烧过程中的NOx释放机理。氧气浓度的提高造成了反应时间的缩短和NO的浓度提高。NO、在氧气浓度达到70%以上后趋于稳定。02/C02混合物中氧气比例的提高以及C02浓度的下降使得温度对NOx的影响被减弱。煤阶越高的煤样在O2/C02气氛中燃料N向NOx的转化率可能更高。
     在沉降炉上研究煤粉富氧分级燃烧对NOx的控制,并建立了一维的两相反应模型进行分析。在未分级条件下,由于氧气浓度提高造成的停留时间变长,煤粉在30%氧气浓度的O2/C02富氧燃烧气氛下的NOx排放量是相同条件的空气下燃烧时的77%-80%。分级富氧燃烧条件下,延长一次风在还原区的停留时间可使NOx降低25%-29%。富氧燃烧条件下的气化反应有助于NO在焦炭表面的还原,抑制焦炭NOx的生成,并且在还原性气氛下更加显著。
     整体氧气浓度为74%的高浓度富氧燃烧中试试验中测得的NOx生成规律受分级配风的影响趋势与沉降炉试验和数值模型获得的趋势一致。在保证稳定着火的前提下,减少一次氧量、提高三次氧量可降低高氧气浓度富氧燃烧时的NOx排放。一次风中采用空气送粉的富氧燃烧可能在高温条件下生成大量热力型NOx。
     通过热力计算和三维CFD模型从热力性能角度验证了大型锅炉富氧燃烧改造的可行性。提出了绝热火焰温度与改造前一致的改造原则,作为富氧燃烧改造时氧气浓度选择的依据,可操作性强。
     利用三维CFD模型对富氧燃烧改造后NOx控制策略进行了研究。富氧燃烧改造后,不考虑烟气再循环的再燃作用时NOx生成量可降低至改造前的47.3%。OFA风率从0提高到20%时,NOx的生成量降低了近1/3。提高OFA风率会使主燃区的还原性气氛加强,并减少主燃区烟气量、延长含N元素的物质在还原区的停留时间,造成NOx生成量下降。富氧燃烧改造后,由大量烟气再循环形成的NO再燃使富氧燃烧的NOx净生成量降低72%。
     单位发电量的污染物排放与减排与发电效率密切相关。通过流程仿真的手段对比主流的碳捕获技术并对富氧燃烧流程的效率提升进行了探索。富氧燃烧技术、IGCC-CCS系统、基于氨法吸收的燃烧后Post-CCS技术在当前技术条件下都造成系统效率下降,碳捕获代价均在电耗1.30MJ/kgCO2左右。加压富氧燃烧可使富氧燃烧的碳捕获电耗降低25.6%。所提出的液氧自增压流程可使其系统净效率提高2.5%。
Carbon dioxide (CO2) released from combustion of fossil fuels is the most important reason for global warming. The main primary energy of China is coal. Nitrogen oxides (NOx) formed during utilization of coal is one of the most important environmental pollutants. As an important carbon capture technology, oxy-fuel combustion performs great potential in reducing NOx emission. Thus it is necessary to understand the NOx mechanisms during oxy-fuel combustion and control its formation.
     NOx formation and control during oxy-fuel combustion were investigated through a series of studies including:homogeneous reaction mechanism of oxy-fuel infinite-stage combustion, NOx formation from coal combustion in O2/CO2atmosphere in bench-scale batch test, control of NOx via staged oxy-fuel combustion in a drop tube furnace, pilot test of staged oxy-fuel combustion and combustion/process simulation of industrial boiler retrofitting to oxy-fuel combustion. Ways to reduce energy penalty induced from carbon capture in oxy-fuel combustion and other CCS systems were explored.
     A one-dimensional finite element model was setup to study the theory of NOx control by infinite-stage combustion and the influence of oxy-fuel atmosphere on it. Distribution of oxidant and environmental parameters such as temperature and residence time are key factors that yield best performance of NOx control. Compared to combustion in air, NOx formation in infinite oxy-fuel combustion was inhibited when oxygen was not sufficient in the primary stream; while it was facilitated when oxygen level was relatively higher in the primary stream. An unbranched-chain-reaction mechanism induced by CO2was proposed to explain this phenomenon. No thermal NOx was formed in O2/CO2atmosphere at high temperatures due to the absence of nitrogen.
     Formation of NOx during coal oxy-fuel combustion was studied in a horizontal batch-test oven. Increasing of oxygen concentration reduced duration of reactions, increased NO concentration until level off when the bulk oxygen volume fraction was greater than70%, and reduced the impact of temperature on NOx formation. Coal with higher rank may yield higher conversion ratio of fuel nitrogen to NOX. NOx control through staged coal oxy-fuel combustion was studied in a drop tube furnace and analyzed via a heterogeneous one-dimensional model. Under non-stage conditions, NOx formation in30%O2/CO2was77%-80%of that in air. It was attributed to longer duration of flue gas in the furnace in30%O2/CO2. Under staged conditions, longer residence time of primary stream in the reductive zone led to25%-29%lower NOx production. Gasification of coal char by CO2during oxy-fuel combustion facilitates reduction of NO on char surface and inhibits NOx formation, and it was more efficient in fuel rich atmosphere.
     The tendency of NOx control yielded in the pilot scale test with oxygen concentration of74%matched with the results from drop-tube furnace the one-dimensional heterogeneous model. Total NOx production rate was decreased by reducing primary oxygen and increasing tertiary oxygen. Large amount of thermal NOx may form in the high temperature condition with fuel conveying by air. The feasibility of retrofitting boiler in thermal power plant was verified through3-D CFD model and thermodynamic calculation. The more operable criteria of "accordance of adiabatic flame temperature" was proposed for determining the total oxygen level for oxy-fuel retrofitting.
     Method of NOx control after oxy-fuel retrofitting was studied numerically. NOx formation can be47.3%lower. NOx production was reduced by1/3by prompt the rate of over fire air (OFA) from0to20%. It was attributed to more reductive atmosphere, smaller flow rate of flue gas and longer residence time in primary zone. The net production of NOx was reduced by72%by reburn of NO in recycled flue gas.
     Process simulations were carried out for oxy-fuel combustion and other main CCS technologies. The electric energy penalties of oxy-fuel, IGCC-CCS and post amine absorption systems were around1.30MJ/kgCO2. Pressurized oxy-fuel technology can reduce this penalty by25.6%. The liquid oxygen self-pressurized process proposed in this paper can increase the net efficiency of pressurized oxy-fuel combustion power system by2.5%.
引文
[1]Li H, Yan J. Preliminary study on CO2 processing in CO2 capture from oxy-fuel combustion[J]. ASME Conference Proceedings,2007,2007(47926):353-361.
    [2]Tan Y, Douglas M A, Thambimuthu K V. CO2 capture using oxygen enhanced combustion strategies for natural gas power plants[J]. Fuel,2002,81(8):1007-1016.
    [3]Simpson A P, Simon A. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation[J]. Energy Conversion and Management, 2007,48(11):3034-3045.
    [4]Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology-the u.s. department of energy's carbon sequestration program[J]. International Journal of Greenhouse Gas Control,2008,2(1):9-20.
    [5]毛玉如,苏亚欣,马晓峰.流化床O2/CO2燃烧技术和化学链燃烧技术[J].电力环境保护,2005,21(03):28-30.
    [6]李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展[J].热能动力工程,2007,22(03):231-236.
    [7]薛宪阔,刘彦丰.O2/CO2燃烧技术研究进展[J].洁净煤技术,2008,14(01):57-60.
    [8]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析[J].热力发电,2004,33(06):14-18.
    [9]游卓,王智化,周志军,等.O2/CO2气氛下无烟煤及烟煤燃烧NO释放特性对比试验研究[J].中国电机工程学报,2011,31(35):53-58.
    [10]刘彦,韦宏敏,徐江荣,等.O2/CO2与空气对燃煤汞形态分布的影响[J].中国电机工程学报,2008,28(11):48-53.
    [11]Li G, Zhou H, Cen K f. Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor[J]. Journal of Zhejiang University-Science A, 2008,9:1582-1589.
    [12]孟德润,赵翔,周俊虎,等.煤在O2/CO2中燃烧的NOx释放规律[J].化工学 报,2005,56(12):2410-2414.
    [13]毛玉如,方梦祥,王勤辉,等.02/C02气氛下循环流化床媒燃烧污染物排放的试验研究[J].动力工程,2004,24(3):41 1-415.
    [14]毛玉如,方梦祥,骆仲泱.02/C02气氛下煤焦热重试验研究[J].电站系统工程,2004,20(05):17-18.
    [15]毛玉如,方梦祥,骆仲泱,等.循环流化床富氧燃烧技术的试验研究[J].锅炉技术,2004,35(06):27-31.
    [16]毛玉如,方梦祥,骆仲泱,等.富氧气氛下循环流化床煤燃烧试验研究[J].燃烧科学与技术,2005,11(02):188-191.
    [17]郭风,赵虹.卧式炉的富氧燃烧试验及数值模拟[J].热力发电,2009,38(06):10-14.
    [18]毛玉如,方梦祥,骆仲泱.02/C02气氛下石灰石煅烧分解的动力学和热力学研究[J].电力环境保护,2004,20(04):43-45.
    [19]刘彦,韦宏敏,齐学义,等.在02/C02-空气两种不同气氛下石灰石硫化特性的比较[J].动力工程,2006,26(02):267-272.
    [20]刘彦,周俊虎,赵晓辉,等Na2CO3对O2/C02气氛下CaCO3固硫特性的影响研究[J].高校化学工程学报,2005,19(02):263-267.
    [21]赵然,刘豪,胡翰,等.O2/C02气氛下NOx前驱物的转化机理[J].华中科技大学学报(自然科学版),2010,38(5):124-128.
    [22]吴辉,邱建荣,曾汉才,等.02/C02燃烧方式下燃煤Hg排放试验研究[J].热能动力工程,2010,25(4):427-431.
    [23]丘纪华,邹春,刘敬樟,等.旋流型02/C02煤粉燃烧器的流动及燃烧试验研究[J].中国电机工程学报,2010,30(17):01-05.
    [24]Fei H, Hu S, Xiang J, et al. Study on coal chars combustion under O2/CO2 atmosphere with fractal random pore model[J]. Fuel,2010,90(2):441-448.
    [25]陈娟,罗光前,徐明厚,等.O2/N2与02/C02下吸附剂控制燃煤Prm1排放[J].华中科技大学学报(自然科学版),2010,38(02):0125-0128.
    [26]赵然,刘豪,胡翰,等.02/C02气氛下甲烷火焰中NO均相反应机理研究[J].中国机电工程学报,2009,29(20):52-59.
    [27]王小华,刘豪,邱建荣,等.氧燃烧方式下煤粉锅炉辐射传热特性分析[J].热能动力工程,2009,24(01):85-88.
    [28]黄志军,邹春,初琨,等.02/CO2循环燃烧中NOx的中试实验研究[J].工程热物理学报,2009,30(12):2141-2144.
    [29]陈娟,罗光前,张平安,等.02/CO2气氛下高岭土和石灰石控制燃煤Pm1排放的试验研究[J].动力工程,2009,29(12):1148-1154.
    [30]刘豪,邱建荣,徐志英,等.高浓度CO2气氛下燃煤氮、硫污染物的释放特性[J].工程热物理学报,2008,29:354-356.
    [31]舒朝晖,田季林,赵永椿,等.煤及其低温灰的热重实验研究[J].中国电机工程学报,2007,27(14):0046-0050.
    [32]赵永椿,张军营,刘洪涛,等.02/C02循环燃烧方式下矿物元素蒸发特性的热力学研究(英文)[J].燃料化学学报,2006,34(06):641-649.
    [33]郑瑛,池保华,王保文,等.燃煤CO2减排技术[J].中国电力,2006,39(10):91-94.
    [34]Zou C, Huang Z, Xiong J, et al. A pilot scale study on co-capture of SO2 and NOx in O2/CO2 recycled coal combustion and techno-economic evaluation[J]. Science China(Technological Sciences),2010,53(01):155-159.
    [35]安丽娜,刘彦丰.02/C02燃烧方式下锅炉机组总体布置研究[J].华东电力,2009,37(04):676-679.
    [36]Wu Y, Wang C, Tan Y, et al. Characterization of ashes from a 100 kwth pilot-scale circulating fluidized bed with oxy-fuel combustion[J]. Applied Energy,2011, 88(9):2940-2948.
    [37]胡满银,刘忠,李媛,等.富氧燃烧方式下NOx生成的化学动力学模拟[J].动力工程学报,2010,30(7):536-541.
    [38]安丽娜,刘彦丰.02/CO2燃烧气氛下锅炉炉膛的热力计算分析[J].电力科学与工程,2010,26(4):49-52.
    [39]周慧.循环流化床富氧燃烧下NOx生成的模拟[D].硕士学位论文.华北电力大学,2009.
    [40]阎维平,米翠丽,梁秀俊,等.采用02/CO2燃烧方式的锅炉热效率计算与分 析[J].热力发电,2009,38(06):20-23.
    [41]米翠丽,阎维平,李皓宇,等.O2/C02燃烧方式下锅炉对流传热系数的修正算法和数值研究[J].动力工程,2009,29(05):417-421.
    [42]刘彦丰,王建强,梁秀俊,等.300mw燃煤锅炉02/C02、烟气再循环燃烧的数值模拟[J].热能动力工程,2009,24(02):177-‘181.
    [43]梁秀俊,阎维平.O2/C02气氛下煤焦燃烧反应动力学特性试验研究[J].华东电力,2009,37(12):2104-2108.
    [44]董静兰,阎维平,李皓宇,等.基于实际气体的增压富氧燃煤烟气焓值的计算[J].动力工程学报,2010,30(9):0673-0677.
    [45]阎维平,董静兰,李皓宇,等.增压富氧煤燃烧烟气凝结换热的计算[J].动力工程学报,2011,31(1):37-41.
    [46]阎维平,董静兰.增压富氧煤燃烧烟气焓值计算方法的研究[J].华北电力大学学报(自然科学版),2010,37(1):1-4.
    [47]米翠丽,阎维平.增压富氧燃烧烟气辐射特性宽带关联k模型[J].中国电机工程学报,2010,30(29):62-68.
    [48]Duan L, Zhao C, Ren Q, et al. NOx precursors evolution during coal heating process in CO2 atmosphere[J]. Fuel,2011,90(4):1668-1673.
    [49]张永春,张军,盛昌栋,等O2/n_2,O2/CO2和O2/CO2/no气氛下煤粉燃烧NOx排放特性[J].化工学报,2010,61(01):159-165.
    [50]屈成锐,赵长遂,段伦博,等.02/C02气氛煤粉粒径对Pm2.5形成的影响[J].东南大学学报(自然科学版),2009,39(05):983-987.
    [51]卢骏营,陈晓平,段伦博,等.02/C02气氛下痕量元素迁移特性试验研究[J].热能动力工程,2009,24(05):648-651.
    [52]卢骏营,陈晓平,段伦博,等.02/C02气氛下痕量元素的赋存和迁移特性[J].中国电机工程学报,2009,29(23):40-44.
    [53]李庆钊,赵长遂,武卫芳,等.02/C02气氛快速升温煤焦低温氮吸附等温线形态分析[J].热能动力工程,2009,24(01):89-94.
    [54]李庆钊,赵长遂,武卫芳,等.02/C02气氛下燃煤NO排放特性的实验研究[J].中国电机工程学报,2009,29(23):33-39.
    [55]段伦博,赵长遂,李英杰,等.不同热解气氛煤焦结构及燃烧反应性[J].东南大学学报(自然科学版),2009,39(05):988-991.
    [56]段伦博,赵长遂,李庆钊,等.02/C02气氛下煤焦燃烧实验研究[J].燃料化学学报,2009,37(06):654-658.
    [57]段伦博,赵长遂,卢骏营,等.O2/C02气氛下煤燃烧SO2/NO析出特性[J].化工学报,2009,60(05):1268-1274.
    [58]李庆钊,赵长遂,武卫芳,等.O2/C02气氛下燃煤S02排放特性的实验研究[J].中国电机工程学报,2009,29(20):41-46.
    [59]段伦博,周骛,卢骏营,等.C02浓度对煤焦燃烧及污染物排放特性影响的试验研究[J].动力工程,2009,29(06):571-575.
    [60]刘忠,宋蔷,姚强,等.O2/C02燃烧技术及其污染物生成与控制[J].华北电力大学学报,2007,34(01):82-88.
    [61]Li Z Q, Wei F, Jin Y, Numerical simulation of pulverized coal combustion and no formation[J]. Chemical Engineering Science,2003,58(23-24):5161-5171.
    [62]张利琴,宋蔷,吴宁,等.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报,2009,29(29):35-40.
    [63]Niu S 1, Han K h, Lu C m. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process[J]. Energy Conversion and Management,2011,52(1):532-537.
    [64]李刚,高山,袁雪怡,等.煤在O2/CO2及02/N2气氛下燃烧NO析出规律的实验研究[J].山东电力技术,2010,(3):37-41.
    [65]Niu S, Lu C, Han K, et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. Journal of Thermal Analysis and Calorimetry,2009,98(l):267-274.
    [66]牛胜利,路春美,赵建立,等.02/C02气氛下煤粉的燃烧规律与动力学特性[J].动力工程,2008,28(05):769-773.
    [67]黄庠永,刘加勋,姜秀民.O2/CO2气氛中超细煤粉着火特性[J].中国电机工程学报,2010,30(11):50-55.
    [68]Molina A, Shaddix C R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion[J]. Proceedings of the Combustion Institute,2007,31(2):1905-1912.
    [69]Murphy J J, Shaddix C R. Combustion kinetics of coal chars in oxygen-enriched environments[J]. Combustion and Flame,2006,144(4):710-729.
    [70]Shaddix C R, Molina A. Particle imaging of ignition and devolatia lization of pulverized coal during oxy-fuel combustion[J]. Proceedings of the Combustion Institute,2009,32(2):2091-2098.
    [71]Hecht E S, Shaddix C R, Molina A, et al. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char[J]. Proceedings of the Combustion Institute, 2011,33(2):1699-1706.
    [72]Mendiara T, Glarborg P. Reburn chemistry in oxy-fuel combustion of methane[J]. Energy & Fuels,2009,23(7):3565-3572.
    [73]Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane[J]. Combustion and Flame,2009,156(10):1937-1949.
    [74]Glarborg P, Bentzen L L B. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane[J]. Energy & Fuels,2008,22(1):291-296.
    [75]Andersson K, Johnsson F. Flame and radiation characteristics of gas-fired O2/CO2 combustion[J]. Fuel,2007,86(5-6):656-668.
    [76]Andersson K, Normann F, Johnsson F, et al. No emission during oxy-fuel combustion of lignite[J]. Industrial and Engineering Chemistry Research,2008, 47(6):1835-1845.
    [77]Andersson K, Johansson R, Hjatstam S, et al. Radiation intensity of lignite-fired oxy-fuel flames[J]. Experimental Thermal and Fluid Science,2008,33(1):67-76.
    [78]Andersson K, Normann F, Johnsson F. Experiments and modeling on oxy-fuel combustion chemistry during lignite-firing[J]. The Proceedings of the 32nd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, USA,2007.
    [79]Hjartstam S, Andersson K, Johnsson F, et al. Combustion characteristics of lignite-fired oxy-fuel flames[J]. Fuel,2009,88(11):2216-2224.
    [80]Normann F, Andersson K, Johnsson F, et al. Reburning in oxy-fuel combustion:A parametric study of the combustion chemistry[J]. Industrial and Engineering Chemistry Research,2010,49(19):9088-9094.
    [81]Normann F, Andersson K, Leckner B, et al. Utilization of reburn reactions for NOx control in oxy-fuel combustion[C]//.Nashville, TN:2009.
    [82]Normann F, Andersson K, Leckner B, et al. High-temperature reduction of nitrogen oxides in oxy-fuel combustion[J]. Fuel,2008,87(17-18):3579-3585.
    [83]Normann F, Andersson K, Leckner B, et al. Emission control of nitrogen oxides in the oxy-fuel process[J]. Progress in Energy and Combustion Science,2009, 35(5):385-397.
    [84]Mazas A N, Lacoste D A, Schuller T. Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H2O[C]// Proceedings of ASME Turbo Expo 2010:Power for Land, Sea and Air. Glasgow, UK: ASME,2010.
    [85]Brix J, Jensen P A, Jensen A D. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres[J]. Fuel,2010, 89(11):3373-3380.
    [86]Pohlmann J G, Osorio E, Vilela A C, et al. Reactivity to CO2 of chars prepared in O2/N2 and O2/CO2 mixtures for pulverized coal injection (pci) in blast furnace in relation to char petrographic characteristics[J]. International Journal of Coal Geology, 2010,84(3-4):293-300.
    [87]Borrego A, Garavaglia L, Kalkreuth W. Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres[J]. International Journal of Coal Geology,2009,77(3-4):409-415.
    [88]Borrego AG, Alvarez D. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres[J]. Energy & Fuels,2007, 21(6):3171-3179.
    [89]Nozaki T, Takano S i, Kiga T, et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture[J]. Energy,1997,22(2-3):199-205.
    [90]Borrego A, Osorio E, Casal M, et al. Coal char combustion under a CO2-rich atmosphere:Implications for pulverized coal injection in a blast furnace[J]. Fuel Processing Technology,2008,89(11):1017-1024.
    [91]Arias B, Pevida C, Rubiera F, et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion[J]. Fuel,2008,87(12):2753-2759.
    [92]Kiga T, Takano S, Kimura N, et al. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion[J]. Energy Conversion And Management,1997,38:S129-S134.
    [93]RYUNOSUKE T, TOSHIHIKO Y, SHINJI W, et al. Combustion characteristics of oxy-fuel combustion on pulverized-coal fired power plant with CO2 recovery[J]. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu,2006,2006(vol.3):49-50.
    [94]Yamada T, Tamura M, Ffjimori T, et al. Test results of oxy-fuel combustion and outline of demonstration project in australia[G]//Cen K, Chi Y, Wang F. Challenges of Power Engineering and Environment. Springer Berlin Heidelberg,2007:756-761.
    [95]KIGA T, YAMADA T. Recent trends of carbon capture technology 3) current action of oxy-fuel combustion system[J]. Energy and Resources,2005,26(6):396-399.
    [96]Okawa M, Kimura N, Kiga T, et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2[J]. Energy Conversion And Management,1997, 38:S123-S127.
    [97]TOSHIHIKO Y, TOSHIRO F, TAKASHIK, et al. Effective CO2 recover from the existing pulverized-coal fired power plant-outline of oxy-fuel combustion technology and current action[J]. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu,2005, 2005(vol.3):293-294.
    [98]Boushaki T, Guessasma S, Sautet J. Predictive analysis of combined burner parameter effects on oxy-fuel flames[J]. Applied Thermal Engineering, 2011,31(2-3):202-212.
    [99]Boushaki T, Sautet J C, Labegorre B. Control of flames by tangential jet actuators in oxy-fuel burners[J]. Combustion and Flame,2009,156(11):2043-2055.
    [100]Boushaki T, Sautet J C. Characteristics of flow from an oxy-fuel burner with separated jets:influence of jet injection angle[J]. Experiments in Fluids,2009,1-14.
    [101]Boushaki T, Mergheni M, Sautet J, et al. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner[J]. Experimental Thermal and Fluid Science,2008,32(7):1363-1370.
    [102]Boushaki T, Sautet J, Salentey L, et al. The behaviour of lifted oxy-fuel flames in burners with separated jets[J]. International Communications in Heat and Mass Transfer,2007,34(1):8-18.
    [103]Sautet J C, Boushaki T, Salentey L, et al. Oxy-combustion properties of interacting separated jets[J]. Combustion Science and Technology,2006, 178(12):2075-2096.
    [104]Lacas F, Leroux B, Darabiha N. Experimental study of air dilution in oxy-liquid fuel flames[J]. Proceedings of the Combustion Institute,2005,30(2):2037-2045.
    [105]Sautet J, Salentey L, DiTaranto M. Large-scale turbulent structures in non-premixed, oxygen enriched flames[J]. International Communications in Heat and Mass Transfer,2001,28(2):277-287.
    [106]Sautet J, Salentey L, Ditaranto M, et al. Length of natural gas-oxygen non-premixed flames[J]. Combustion Science and Technology,2001,166(1):131-150.
    [107]Ditaranto M, Sautet J, Samaniego J. Structural aspects of coaxial oxy-fuel flames[J]. Experiments in Fluids,2001,30(3):253-261.
    [108]Sautet J, Ditaranto M, Samaniego J, et al. Properties of turbulence in natural gas-oxygen diffusion flames[J]. International Communications in Heat and Mass Transfer,1999,26(5):647-656.
    [109]Samaniego J M, Labegorre B, Egolfopoulos F, et al. Mechanism of nitric oxide formation in oxygen-natural gas combustion[J]. Symposium (International) on Combustion,1998,1:1385-1392.
    [110]Ditaranto M, Hals J. Combustion instabilities in sudden expansion oxy-fuel flames[J]. Combustion and Flame,2006,146(3):493-512.
    [111]Hammer T, Keyser J, Bolland O. Natural gas oxy-fuel cycles-part 2:Heat transfer analysis of a gas turbine[J]. Energy Procedia,2009,1(1):557-564.
    [112]McCauley K, Farzan H, Alexander K, et al. Commercialization of oxy-coal combustion:Applying results of a large 30MWth pilot project[J]. Energy Procedia, 2009, 1(1):439-446.
    [113]Shaddix C R, Molina A. Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal[J]. Proceedings of the Combustion Institute, 2011,33(2):1723-1730.
    [114]Czakiert T, Bis Z, Muskala W, et al. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology,2006, 87(6):531-538.
    [115]Okazaki K, Ando T. NOx reduction mechanism in coal combustion with recycled CO2[J]. Energy,1997,22(2-3):207-215.
    [116]Hosoda H, Hirama T, Azuma N, et al. NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:Macroscopic characteristics of their formation and reduction[J]. Energy & Fuels,1998,12(1):102-108.
    [117]Mackrory A J, Tree D R. Measurements and modeling of nitrogen evolution in staged oxy-fuel combustion[C]//AICHE The 2007 Annual Meeting.2007.
    [118]Croiset E, Thambimuthu K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion[J]. Fuel,2001,80(14):2117-2121.
    [119]Liu H, Okazaki K. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation[J]. Fuel,2003, 82(11):1427-1436.
    [120]Watanabe H, ichiro Yamamoto J, Okazaki K. NOx formation and reduction mechanisms in staged O2/CO2 combustion[J]. Combustion and Flame,2011, 158(7):1255-1263.
    [121]Mackrory A J. A Mechanistic Investigation of Nitrogen Evolution in Pulverized Coal Oxy-fuel Combustion[D]. PhD thesis. Brigham Young University, 2008.
    [122]Gimenez-L6pez J, Millera A, Bilbao R, et al. Hcn oxidation in an O2/CO2 atmosphere:An experimental and kinetic modeling study[J]. Combustion and Flame, 2010,157(2):267-276.
    [123]Sanchez A, Mondragon F, Eddings E G. Fuel-nitrogen evolution during fluidized bed oxy-coal combustion[C]//Yue G, Zhang H, Zhao C, et al. Proceedings ofthe 20th International Conference on Fluidized Bed Combustion. Nanjing: Tshinghua University Press Springer,2009:1136-1140.
    [124]Arenillas A, Arias B, Rubiera F, et al. Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces:A theoretical analysis[J]. Theoretical Chemistry Accounts,2010,127(1):95-108.
    [125]Czakiert T, Sztekler K, Karski S, et al. Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig[J]. Fuel Processing Technology,2010, 91:1617-1623.
    [126]Zhang J, Eddings E G, Wendt. J O. Studies on coal jet ignition under oxy-fuel combustion conditions[C]//AICHE The 2007 Annual Meeting.2007.
    [127]Dhungel B, Maier J, Schefflcnecht G. Emission behaviour during oxy-coal combustion[C]//AICHE The 2007 Annual Meeting.2007.
    [128]Hu Y Q, Kobayashi N, Hasatani M. Effects of coal properties on recycled-NO,, reduction in coal combustion with O2/recycled flue gas[J]. Energy Conversion and Management,2003,44(14):2331-2340.
    [129]Jia L, Tan Y, Anthony E J. Emissions of SO2 and NOx during oxy-fuel cfb combustion tests in a mini-circulating fluidized bed combustion reactor[J]. Energy & Fuels,2010,24(2):910-915.
    [130]Jia L, Tan Y, Wang C, et al. Experimental study of oxy-fuel combustion and sulfur capture in mini-cfbc[J]. Energy and Fuels,2007,21(6):3160-3164.
    [131]Taniguchi M, Kamikawa Y, Okazaki T, et al. A role of hydrocarbon reaction for NOx formation and reduction in fuel-rich pulverized coal combustion[J]. Combustion and Flame,2010,157(8):1456-1466.
    [132]Tan Y, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85(4):507-512.
    [133]Helge K, Tappe S, Krautz H J. The combustion of dry lignite under oxy-fuel process conditions in a 0.5 MWth test plant[J]. Energy Procedia,2009, 1(1):423-430.
    [134]Fleig D, Normann F, Andersson, et al. The fate of sulphur during oxy-fuel combustion of lignite[C]//. vol 1. Washington DC:2009:383-390.
    [135]Wang C, Jia L, Tan Y, et al. Carbonation of fly ash in oxy-fuel cfb combustion[J]. Fuel,2008,87(7):1108-1114.
    [136]李英杰,赵长遂,段伦博.02/C02气氛下煤燃烧产物的热力学分析[J].热能动力工程,2007,22(3):332-336.
    [137]段伦博,赵长遂,李英杰,等.O2/CO2气氛下烟煤燃烧过程中s的析出特性[J].中国电机工程学报,2008,28(35):9-13.
    [138]Sturgeon D, Cameron E, Fitzgerald F. Demonstration of an oxyfuel combustion system[J]. Energy Procedia,2009,1(1):471-478.
    [139]胡满银,杨勇.02/C02燃烧对电除尘器运行的影响[J].电力科学与工程,2007,23(03):41-44.
    [140]Pipitone G, Bolland O. Modeling of oxy-combustion flue gas desulfurization by seawater absorption[J]. Environmental Progress & Sustainable Energy,2009, 28(1):20-29.
    [141]陈传敏,赵长遂,赵毅,等.利用热重分析-x射线衍射分析法研究氧/二氧化碳气氛下石灰石硫化特性[J].中国电机工程学报,2006,26(13):0108-0122.
    [142]刘现卓,赵长遂,陈传敏,等.02/C02气氛下石灰石煅烧及烧结特性研究[J].工程热物理学报,2006,27(05):891-893.
    [143]陈传敏,赵长遂,赵毅.Xrd研究02/C02气氛下石灰石煅烧产物烧结特性[J].东南大学学报(自然科学版),2008,38(01):097-100.
    [144]Kumfer B, Skeen S, Axelbaum R. Soot inception limits in laminar diffusion flames with application to oxy-fuel combustion[J]. Combustion and Flame,2008, 154(3):546-556.
    [145]Morris W J, Yu D, Wendt J O. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames[J]. Proceedings of the Combustion Institute, 2011,33(2):3415-3421.
    [146]Suriyawong A, Skeen S, Roisman A, et al. Characterization of aerosol, mercury and trace elements under enriched oxygen coal combustion[C]//AICHE The 2007 Annual Meeting.2007.
    [147]Suriyawong A, Gamble M, Lee M H, et al. Submicrometer particle formation and mercury speciation under O2-CO2 coal combustion[J]. Energy & Fuels,2006, 20(6):2357-2363.
    [148]Robinson A L, Rhodes J S, Keith D W. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the united states[J]. Environ. Sci. Technol.,2003,37(22):5081-5089.
    [149]Dean C, Blarney J, Florin N, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design,2011,89(6):836-855.
    [150]Sass B M, Farzan H, Prabhakar R, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration[J]. Energy Procedia, 2009, 1(1):535-542.
    [151]Jeandel E, Battani A, Sarda P. Lessons learned from natural and industrial analogues for storage of carbon dioxide[J]. International Journal of Greenhouse Gas Control,2010,4(6):890-909.
    [152]Reijerkerk S R, Jordana R, Nijmeijer K, et al. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas[J]. International Journal of Greenhouse Gas Control,2011,5(1):26-36.
    [153]Liu H, Gallagher K S. Catalyzing strategic transformation to a low-carbon economy:A CCS roadmap for china[J]. Energy Policy,2010,38(1):59-74.
    [154]郑楚光,朝晖,张军营,等.中国大陆CCS的发展现状及我们的工作进展[C]//2011海峡两岸气候变遷舆能源永续发展论坛.2011.
    [155]Tondeur D. Carbon capture technologies (CCS ii). Internet 2012.
    [156]Stanmore B, Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration[J]. Fuel Processing Technology,2005, 86(16):1707-1743.
    [157]Olajire A A. CO2 capture and separation technologies for end-of-pipe applications-a review[J]. Energy,2010,35(6):2610-2628.
    [158]Berger A H, Bhown A S. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption[J]. Energy Procedia,2011,4(0):562-567.
    [159]Balat M, Balat H, Oz C. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2009,31(16):1473-1486.
    [160]Singh B, Str(?)mman A H, Hertwich E G. Comparative life cycle environmental assessment of CCS technologies[J]. International Journal of Greenhouse Gas Control,2011,5(4):911-921.
    [161]Kwon S, Fan M, DaCosta H F, et al. Coal Gasification and Its Applications[M]. Elsevier Inc.,2011.
    [162]Higginbotham P, White V, Fogash K, et al. Oxygen supply for oxyfuel CO2 capture[J]. International Journal of Greenhouse Gas Control,2011,5(S1):S194-S203.
    [163]晁承龙,陈允梅,王洪玲.变压吸附法脱除变换气中CO2技术总结[J].化肥工业,2010,37(5):49-52.
    [164]Takami K M, Mahmoudi J, Time R W. A simulated H2O/CO2 condenser design for oxy-fuel CO2 capture process[J]. Energy Procedia,2009,1(1):1443-1450.
    [165]Lu D Y, Hughes R W, Anthony E J. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds[J]. Fuel Processing Technology,2008, 89(12):1386-1395.
    [166]Zanganeh K E, Shafeen A. A novel process integration, optimization and design approach for large-scale implementation of oxy-fired coal power plants with CO2 capture[J]. International Journal of Greenhouse Gas Control,2007,1(1):47-54.
    [167]Colombo K E, Bolland O. Dynamic simulation of an oxygen mixed conducting membrane-based gas turbine power cycle for CO2 capture[J]. Energy Procedia,2009, 1(1):431-438.
    [168]Li H, Yan J, Yan J, et al. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system[J]. Applied Energy,2009, 86(2):202-213.
    [169]林俊佑.用燮(?)吸附程序浓缩氣化合成氣之氢氣及捕获二氧化碳之模凝[D].硕士学位论文.国立中央大学,1998.
    [170]孙登科.新型近零排放煤气化燃烧综合利用系统分析与优化[D].硕士学位论文.浙江大学,2007.
    [171]李英杰,赵长遂.碳酸钙循环煅烧-碳酸化吸收CO2的热力学分析[J].热能动力工程,2008,23(3):306-310.
    [172]栾健,陈德珍.二氧化碳减排技术及趋势[J].能源研究与信息,2009,25(2):88-93.
    [173]Hong J, Field R, Gazzino M, et al. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy,2010,35(12):5391-5399.
    [174]Hong J, Chaudhry G, Brisson J, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy,2009,34(9):1332-1340.
    [175]Hong J. Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO2 capture[D]. Master's thesis. Massachusetts Institute of Technology,2009.
    [176]Haryanto A, Hong K S. Modeling and simulation of an oxy-fuel combustion boiler system with flue gas recirculation[J]. Computers & Chemical Engineering, 2010,35(1):25-40.
    [177]Yu J, Lucas JA, Wall T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:Areview[J]. Progress in Energy and Combustion Science,2007,33(2):135-170.
    [178]Seepana S, Jayanti S. Flame structure and no generation in oxy-fuel combustion at high pressures[J]. Energy Conversion and Management,2009, 50(4):1116-1123.
    [179]Roberts D G, Harris D J. Char gasification with O2, CO2, and H2O:Effects of pressure on intrinsic reaction kinetics[J]. Energy & Fuels,2000,14(2):483-489.
    [180]Zanganeh K E, Shafeen A, Gupta M, et al. Gas turbine integrated high-efficiency oxy-fuel combustion process with co[sub 2] capture[J]. ASME Conference Proceedings,2008,2008(43130):1115-1120.
    [181]Darde A, Prabhakar R, Tranier J P, et al. Air separation and flue gas compression and purification units for oxy-coal combustion systems[J]. Energy Procedia,2009, 1(1):527-534.
    [182]Bolland O, Kvamsdal H M, Boden J C. A comparison of the efficiencies of the oxy-fuel power cycles water-cycle, graz-cycle and matiant-cycle[G]//Carbon Dioxide Capture for Storage in Deep Geologic Formations. Amsterdam:Elsevier Science,2005:499-511.
    [183]Colombo K.E, Bolland O, Kharton V V, et al. Simulation of an oxygen membrane-based combined cycle power plant:part-load operation with operational and material constraints[J]. Energy & Environmental Science,2009,2(12):1310-1324.
    [184]Kvamsdal H M, Jordal K, Bolland O. A quantitative comparison of gas turbine cycles with CO2 capture[J]. Energy,2007,32(1):10-24.
    [185]Kvamsdal H M, Maurstad O, Jordal K, et al. Benchmarking of gas-turbine cycles with CO2 capture[G]//Rubin E, Keith D, Gilboy C, et al. Greenhouse Gas Control Technologies 7. Oxford:Elsevier Science Ltd,2005:233-241.
    [186]Pipitone G, Bolland O. Power generation with CO2 capture:Technology for CO2 purification[J]. International Journal of Greenhouse Gas Control,2009, 3(5):528-534.
    [187]Snarheim D. Control issues in oxy-fuel combustion[D]. PhD thesis. The Norwegian University of Sicence and Technology,2009.
    [188]Cieutat D, Sanchez-Molinero I, Tsiava R, et al. The oxy-combustion burner development for the CO2 pilot at lacq[J]. Energy Procedia,2009,1(1):519-526.
    [189]Rezvani S, Bolland O, Franco F, et al. Natural gas oxy-fuel cycles-part 3: Economic evaluation[J]. Energy Procedia,2009, 1(1):565-572.
    [190]Andersson K, Johnsson F. Process evaluation of an 865 mwe lignite fired O2/CO2 power plant[J]. Energy Conversion and Management,2006,47(18-19):3487-3498.
    [191]Normann F, Thunman H, Johnsson F. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas[J]. Energy Conversion and Management,2009,50(2):279-286.
    [192]Andersson K, Birkestad H, Maksinen P, et al. An 865 mw lignite fired CO2 free power plant-a technical feasibility study[G]//Gale J, Kaya Y. Greenhouse Gas Control Technologies-6th International Conference. Oxford:Pergamon,2003:1051-1056.
    [193]Andersson K, Nelsen B, Johnsson F, et al. The CO2 avoidance cost of a large scale O2/CO2 power plant[G]//Rubin E, Keith D, Gilboy C, et al. Greenhouse Gas Control Technologies 7. Oxford:Elsevier Science Ltd,2005:1787-1790.
    [194]Ekstrom C, Schwendig F, Biede O, et al. Techno-economic evaluations and benchmarking of pre-combustion CO2 capture and oxy-fuel processes developed in the european encap project[J]. Energy Procedia,2009, 1(1):4233-4240.
    [195]岑可法,姚强,骆仲泱,等.高等燃烧学[M].1版.浙江大学出版社,2002.
    [196]Glarborg P, Jensen A D, Johnsson J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science,2003,29(2):89-113.
    [197]Wall T F. Combustion processes for carbon capture[J]. Proceedings of the Combustion Institute,2007,31(1):31-47.
    [198]Wall T, Liu Y, Spero C, et al. An overview on oxyfuel coal combustion-state of the art research and technology development[J]. Chemical Engineering Research and Design,2009,87(8):1003-1016.
    [199]Jordal K, Anheden M, Yan J, et al. Oxyfuel combustion for coal-fired power generation with CO2 capture-opportunities and challenges[G]//Rubin E, Keith D, Gilboy C, et al. Greenhouse Gas Control Technologies 7. Oxford:Elsevier Science Ltd,2005:201-209.
    [200]Stanger R, Wall T. Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage[J]. Progress in Energy and Combustion Science,,37(1):69-88.
    [201]Toftegaard M B, Brix J, Jensen P A, et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy and Combustion Science,2009,36(5):581-625.
    [202]Chen L, Yong S Z, Ghoniem A F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and cfd modeling[J]. Progress in Energy and Combustion Science,2012,38(2):156-214.
    [203]Liu F, Guo H, Smallwood G J, et al. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame:implications for soot and NOx formation[J]. Combustion and Flame,2001,125(1-2):778-787.
    [204]Liu F, Guo H, Smallwood G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J]. Combustion and Flame,2003,133(4):495-497.
    [205]Molina A, Eddings E G, Pershing D W, et al. Nitric oxide destruction during coal and char oxidation under pulverized-coal combustion conditions[J]. Combustion and Flame,2004,136(3):303-312.
    [206]倪维斗,李政.基于煤气化的多联产能源系统[M].1版.北京:清华大学出版社,2011.
    [207]于岩,阎维平,刘彦丰,等.空气分离/烟气再循环技术中NOx排放特性及机理分析[J].热力发电,2003,32(10):47-49.
    [208]Hurt R H, Calo J M. Semi-global intrinsic kinetics for char combustion modeling[J]. Combustion and Flame,2001,125(3):1138-1149.
    [209]Roberts D G, Harris D J. A kinetic analysis of coal char gasification reactions at high pressures[J]. Energy & Fuels,2006,20(6):2314-2320.
    [210]YUE G X, PEREIRA F J, SAROFIM A F, et al. Char nitrogen conversion to NO, in a fluidized-bed[J]. Combustion Science and Technology,1992,83(4-6):245-256.
    [211]Aarna I, Suuberg E M. The role of carbon moNOx ide in the no-carbon reaction[J]. Energy & Fuels,1999,13(6):1145-1153.
    [212]Levy J, Chan L, Sarofim A, et al. No/char reactions at pulverized coal flame conditions[J]. Symposium (International) on Combustion,1981,18(1):111-120.
    [213]Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science,2011,334(6062):1518-1524.
    [214]Spliethoff H, Greul U, R u diger, H, et al. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility[J]. Fuel,1996,75(5):560-564.
    [215]FLETCHER T H, KERSTEIN A R, PUGMIRE R J, et al. A chemical percolation model for devolatilization.2. temperature and heating rate effects[J]. Abstracts of Papers of the American Chemical Society,1989,198:1-66.
    [216]Neoh K G, Gannon R E. Coal volatile yield and element partition in rapid pyrolysis[J]. Fuel,1984,63(10):1347-1352.
    [217]胡昕.煤炭分级利用与富氧燃烧技术机理及应用研究[D].博士学位论文.浙江大学,2013.
    [218]陈瑶姬.W型火焰锅炉燃用无烟煤低NOx燃烧技术机理和模化试验研究[D].博士学位论文.浙江大学,2011.
    [219]石金明,向军,赵清森,等.原煤与煤焦热解气化过程氮转化特性研究[J].工程热物理学报,2009,30(12):2129-2132.
    [220]刘银河,张晓燕,刘艳华,等.程序升温气化过程中氮的释放规律研究[J].工程热物理学报,2009,30(12):2125-2128.
    [221]Al-Abbas A H, Naser J, Dodds D. Cfd modelling of air-fired and oxy-fuel combustion of lignite in a 100 kw furnace[J]. Fuel,2011,90(5):1778-1795.
    [222]Al-Abbas A H, Naser J. Effect of chemical reaction mechanisms and NOA modeling on air-fired and oxy-fuel combustion of lignite in a 100-kw furnace[J]. Energy Fuels,2012,26(6):3329-3348.
    [223]Chui E H, Douglas M A, Tan Y. Modeling of oxy-fuel combustion for a western canadian sub-bituminous coal[J]. Fuel,2003,82(10):1201-1210.
    [224]Yin C. Nongray-gas effects in modeling of large-scale oxy-fuel combustion processes[J]. Energy Fuels,2012,26(6):3349-3356.
    [225]Al-Abbas A H, Naser J, Dodds D. Cfd modelling of air-fired and oxy-fuel combustion in a large-scale furnace at loy yang a brown coal power station[J]. Fuel, 2012,102(0):646-665.
    [226]NIST. Nist chemistry webbook,http://webbook.nist.gov/chemistry/.
    [227]杨卫娟.电站锅炉变负荷引起的水冷壁渣层热应力和吹灰在线模糊优化运行的基础理论研究[D].博士学位论文.浙江大学,2003.
    [228]Buhre B, Elliott L, Sheng C, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science,2005, 31(4):283-307.
    [229]Law C K. Combustion Physics[M]. Cambridge University Press,2006.
    [230]Chiesa P, Lozza G, Mazzocchi L. Using hydrogen as gas turbine fuel[J]. J. Eng. Gas Turbines Power,2005,127(1):73-80.
    [231]Barsi S, Kassemi M. Investigation of tank pressure control in normal gravity[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, FL, United states:American Institute of Aeronautics and Astronautics Inc.,2009.
    [232]Barsi S, Kassemi M, Panzarella C H, et al. A tank self-pressurization experiment using a model fluid in normal gravity[C]//Aerospace Sciences Meeting. 2005.
    [233]Dai J, Sokhansanj S, Grace J R, et al. Overview and some issues related to co-firing biomass and coal[J]. Can. J. Chem. Eng.,2008,86(3):367-386.
    [234]Hansson J, Berndes G, Johnsson F, et al. Co-firing biomass with coal for electricity generation-an assessment of the potential in eu27[J]. Energy Policy,2009, 37(4):1444-1455.
    [235]陈丹之(译).燃烧的热力理论[B].电力工业出版社,1957.
    [236]http://www.me.berkeley.edu/gri_mech/version30/files30/grimech30.dat