猎蝽科昆虫条形码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA条形码技术因其快速、客观、易操作等优点自产生经过这短短不到十年的时间,已经受到越来越多学者的重视,它已经成为分类鉴定的一种常规手段。昆虫线粒体基因组基因组成稳定,易扩增,普遍为母系遗传,极少发生重组,基因进化速率较核基因快,被广泛用于系统发育、种群遗传结构和谱系地理学等方面的研究。
     本研究测得812条猎蝽科昆虫COI条形码序列,代表形态鉴定得出的9亚科,75属,150种,对其进行DNA条形码分析,探讨COI条形码在猎蝽科的鉴定效力。针对条形码结果与形态学鉴定相悖的盗猎蝽属三个近缘种污黑盗猎蝽Peirates turpis Walker、茶褐盗猎蝽Peirates fulvescens Lindberg和黄纹盗猎蝽Peirates atromaculatus (Stal),我们又引入了ITS2基因和线粒体基因组方面的数据,一方面为了解决此分类问题,另一方面对于线粒体基因组被用做分子分类的可行性进行研究。结论如下:
     (1)在本研究中,大部分的物种能够明显的区分开,将近70%的种内差异没有超过之前普遍应用的界限2%,证明COI基因作为条形码区分猎蝽科物种的可行性。这些序列差异在某种程度上可以作为一个参考,不同的情况还是需要我们结合形态学、生态学方面的数据来分析。
     (2)基于COI基因的DNA条形码研究有助于猎蝽科物种鉴定,有助于发现可能存在的分类问题,比如物种的同物异名现象和隐存种
     (3)ITS2数据帮助我们进一步确定COI的鉴定结果,在本研究中,COI和ITS2对于猎蝽科种级分类鉴定显示出非常有效且一致的鉴定效力。ITS2在种内具有高度保守性,其长度具有物种特异性,可作为猎蝽科条形码备选基因与COI结合使用。
     (4)盗猎蝽属昆虫线粒体基因组大小范围为15,702bp-16,314bp,线粒体基因组大小的差异主要源于非编码区的数量和长度特别是控制区的长度。所有线粒体基因组中,37个基因按与果蝇D. yakuba相同的方式排列。碱基组成都具有明显的AT偏向性。rRNA基因在序列和二级结构上均非常保守。除tRNASer(AGN)的DHU臂由7个不配对的核苷酸组成而无法形成典型的茎环结构外,所有的22个tRNA基因都可以折叠为典型的三叶草结构。
     (5)基于COI条形码序列、ITS2序列以及比较线粒体基因组学数据,本研究认为长久以来根据前翅色斑型区分的近缘种污黑盗猎蝽、茶褐盗猎蝽和黄纹盗猎蝽应被视为一个种。
     (6)本研究证实了线粒体基因组可被用作较低阶元种级阶元的分类研究,鉴于高通量测序技术使得高效且成本有效地测定大量样本的线粒体全基因组用于研究种级分类成为可能,线粒体基因组序列未来有可能成为每个种用于分类的标准序列,就像现在COI条形码这样。
DNA barcoding has gained more and more attention of scholars because of its rapid, objective and easy-to-operate advantages and became a routine method of classification and identification. Insect mitochondrial genome has been widely applied in the study|of phylogenetic, population structure and phylogeographic studies due to its stable gene content, uniparental inheritance, lack of extensive recombination and high evolve rate.
     In order to evaluate the effectiveness of barcodes in the identification of assassin bugs, we recovered812barcode records from specimens representing150species belonging to75genera in9subfamilies. Furthermore, we introduced the ITS2gene and mitochondrial genomics data to understand the species'status of three closely related species Peirates turpis Walker, Peirates fulvescens Lindberg and Peirates atromaculatus (Stal), due to the fact that DNA barcoding results opposed the current taxonomic status of these three species. On the other hand, we tested the utility of mitogenomic data in species identification. Conclusions were drawn as follows:
     (1)In this study, most species can be distinguished obviously, analysis of the COI gene revealed less than2%intra-specific divergence in nearly70%of the taxa examined, these results verified the utility of COI gene as DNA barcode in the discrimination of Reduviidae. These sequence divergences can be used as a reference to some extent, although we need to combine morphological and ecological data in different situations.
     (2) Our results indicated that DNA barcodes will aid the identification of Reduviidae, the discovery of taxonomic problems such as synonym and cryptic species that may exist.
     (3) ITS2data showed similar results with DNA barcoding analysis. The identification of Reduviidae based on COI and ITS2data showed effective and consistent performance. ITS2sequences were highly conserved within species, its lengths was species-specific. These advantages made ITS2a candidate barcode of Reduviidae.
     (4) Peirates mitochondrial genomes ranged in size from15702bp to16314bp, with length variations mainly in non-coding regions especially in control regions. The mitogenomes all harboured a typical set of37genes and an identical gene order to the mitogenome of D. yakuba. The nucleotide compositions were biased toward adenine and thymine. In addition, comparative studies of ribosomal RNAs showed high conservation at both primary sequence level and secondary structures level among these six mitogenomes. Among all tRNA genes, only trnSl did not exhibit the classic clover-leaf secondary structure, due to the deficiency of the dihydrouridine (DHU) arm.
     (5) P. atromaculatus, P. fulvescens and P. turpis should be treated as members of a single species inferred from COI, ITS2and mitochondrial genome data.
     (6) The utility of mitogenomic data in species identification has been testifie in this study, Furthermore, the generation of next-generation sequencing (NGS) technologies makes it possible to efficiently and cost-effectively obtain entire mt genome from large number of samples for resolving relationships at the level of species. Therefore, mitogenome sequences in future may be obtained for each species and become the standard for taxonomic sequencing, much like the COI barcodes today.
引文
1.黄家兴,吴杰.河北省8种熊蜂ntDNA COI基因序列分析及其系统发育.中国养蜂学会蜜蜂产品、蜜蜂保护、蜜源与授粉专业委员会第七次学术研讨会论文集,2006:102-106
    2.姜帆,刘佳琪,李志红,等.基于DNA条形码的广西苦瓜中实蝇幼虫分子鉴定研究.植物保护,2011,37(4):150-153
    3.梁亮,江威,余慧,等.中国果实蝇属种类的DNA条形码鉴定(双翅目,实蝇科).动物分类学报,2011,36(4):925-932
    4.宁淑萍,颜海飞,郝刚,等.植物DNA条形码研究进展.生物多样性,2008,16(5):417-425
    5.潘程莹,胡婧,张霞,等.斑腿蝗科Catantopidae七种蝗虫线粒体COI基因的DNA条形码研究.昆虫分类学报,2006,28(2):103-110
    6.宋南,刘杰,彩万志,等.DNA条形码在昆虫分类中的应用.四川动物,2013,32(3):470-474
    7.王剑峰,乔格侠.DNA条形编码在蚜虫类昆虫中的应用.动物分类学报,2007,32(1):153159
    8.王剑峰,申熙熙,冯典兴,等.应用DNA条形码技术对蚤蝇科性二型鉴别.应用昆虫学报,2013,50(1):86-92
    9.王哲,景若芸,乔格侠.基于DNA条形码对桃属植物上蚜虫的快速鉴定.应用昆虫学报,2013,50(1):41-49
    10.魏书军,马吉德,石宝才,等.我国新入侵外来害虫美洲棘蓟马的外部形态和分子鉴定.昆虫学报,2010,53(6):715-720
    11.张明,张东.基于线粒体COI基因片段的麻蝇属(双翅目:麻蝇科)部分种类DNA分类研究.应用昆虫学报,2013,50(1):71-85
    12.张桂芬,孟祥钦,万方浩.西花蓟马检测鉴定技术研究进展.生物安全学报,2011,20(1):8188
    13.周青松,张同心,于芳,等.DNA条形码在膜翅目昆虫中的应用分析.应用昆虫学报,2013,50(1):19-28
    14.赵萍.中国真猎蝽亚科分类研究(异翅亚目:猎蝽科).[博士学位论文].北京:中国农业大学,2008.
    15. Abdo Z, Golding G B. A step toward barcoding life:a model-based, decision-theoretic method to assign genes to preexisting species groups. Systematic Biology,2007,56:44-56
    16. Acs Z, Challis R, Bihari P, et al. Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera:Cynipidae) of the Western Palaearctic. Molecular Phylogenetics and Evolution, 2010,55:210-225
    17. Alcaide M, Rico C, Ruiz S, et al. Disentangling vector-borne transmission networks:a universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE,2009, 4:e7092
    18. Armstrong K F, Ball S L. DNA barcodes for biosecurity:invasive species identification. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360:1813-1823
    19. Austerlitz F, David O, Schaeffer B, et al. DNA barcode analysis:a comparison of phylogenetic and statistical classification methods. BMC Bioinformatics,2009,10(Suppl 14):S10
    20. Ball S L, Hebert P D N. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society,2005,24(3):508-524
    21. Behura SK, Severson DW.2013.Overlapping genes of Aedes aegypti:evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects. BMC Evolutionaty Biology 13:124.
    22. Bertin S, Picciau L, Acs Z, et al. Molecular identification of the Hyalesthes species (Hemiptera: Cixiidae) occurring in vineyard agroecosystems. Annals of Applied Biology,2010,157:435-445
    23. Boore JL, Brown WM. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics and Development,1998,8(6):668-674
    24. Bourke B P, Oliveira T P, Suesdek L, et al. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera:Culicidae). Parasites & Vectors,2013,6:111
    25. Brown J, Miller S, Horak M. Studies on New Guinea moths.2. description of a new species of Xenothictis Meyrick (Lepidoptera:Tortricidae:Archipini). Proceedings of Entomological Society of Washington,2003,105(4):1043-1050
    26. Carayon J, Usinger R L, Wygodzinsky P. Notes on the higher classification of the Reduviidae, with the description of a new tribe of the Phymatinae. Revue de Zoologie et de Botanique Africaines, 1958,57:256-281
    27. Castalanelli M A, Severtson D L, Brumley C J, et al. A rapid non-destructive DNA extraction method for insects and other arthropods. Journal of Asia-Pacific Entomology,2010,13:243-248
    28. Caterino M S, Tishechkin A K. DNA identification and morphological description of the first confirmed larvae of Hetaeriinae (Coleoptera:Histeridae). Systematic Entomology,2006,31:405-418
    29. Chen R, Jiang L Y, Qiao G X. The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding:a case in Lachininae. PLoS ONE,2012,7(10):e46190
    30. China W E, Miller N C E. Check-list and keys to the Families and Subfamilies of the Hemiptera-Heteroptera. Bulletin of the British Museum (Natural History):Entomolog,1959,8:1-45
    31. Cho S, Mitchell A, Mitter C, et al. Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae:Heliothinae), with comments on the evolution of host range and pest status. Systematic Entomology,2008,33:581-594
    32. Clare E L, Fraser E E, Braid H E, et al. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis):using a molecular approach to detect arthropod prey. Molecular Ecology, 2009,18:2532-2542
    33. Clayton R A. A phylogenetic analysis of the Reduviidae (Hemiptera:Heteroptera) with redescription of the subfamilies and tribes. PhD thesis, The George Washington University, Washington, DC,1990
    34. Davis N T. Contribution to the morphology and phylogeny of the Reduvioidea (Hemiptera: Heteroptera). Part Ⅱ. Wing venation. Annals of the Entomological Society of America,1961,59: 911-924
    35. deWaard J R, Hebert P D N, Humble L M. A comprehensive DNA barcode library for the looper moths (Lepidoptera:Geometridae) of British Columbia, Canada. PLoS ONE,2011,6(3):e18290
    36. deWaard J R, Mitchell A, Keena M A, et al. Towards a global barcode library for Lymantria (Lepidoptera:Lymantriinae) tussock moths of biosecurity concern. PLoS ONE,2010,5(12): e14280
    37. Dinca V, Zakharov E V, Hebert P D N, et al. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proceedings of the Royal Society B-Biological Sciences,2010,278:347-355
    38. Dotson E M, Beard C B. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Molecular Biology,2001,10:205-15
    39. Ekrem T, Willassen E, Stur E. A comprehensive DNA sequence library is essential for identification with DNA barcodes. Molecular Phylogenetics and Evolution,2007,43:530-542
    40. Elias M, Hill R I, Willmott K R, et al. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B-Biological Sciences,2007, 274:2881-2889
    41. Fernandez-Triana J, Smith M A, Boudreault C, et al. A poorly known high-latitude parasitoid wasp community:unexpected diversity and dramatic changes through time. PLoS One,2011,6:1-8
    42. Floyd R M, Wilson J J, Hebert P D N. DNA barcodes and insect biodiversity.//Foottit R G, Adler P H. Insect biodiversity:science and society. Oxford:Wiley-Blackwell,2009:417-432
    43. Frezal L, Leblois R. Four years of DNA barcoding:Current advances and prospects. Infection, Genetics and Evolution,2008,8:727-736
    44. Glover R H, Collins D W, Walsh K, et al. Assessment of loci for DNA barcoding in the genus Thrips (Thysanoptera:Thripidae). Molecular Ecology Resources,2009,10:51-59
    45. Greenstone M H, Vandenberg N J, Hu J H. Barcode haplotype variation in north American agroecosystem lady beetles (Coleoptera:Coccinellidae). Molecular Ecology Resources,2011,11: 629-637
    46. Hajibabaei M, Janzen D H, Burns J M, et al. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 2006a,103:968-971
    47. Hajibabaei M, Smith M A, Janzen D H, et al. A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes,2006b,6:959-964
    48. Hall T A. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series,1999,41:95-98
    49. Hausmann A, Sommerer M, Rougerie R, et al. Hypobapta tachyhalotaria spec. nov. from Tasmania-an example of a new species revealed by DNA barcoding. Spixiana,2009,32:161-166
    50. Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B- Biological Sciences,2003a,270:313-321
    51. Hebert P D N, Penton E H, Burns J M, et al. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America,2004,101:14812-14817
    52. Hebert P D N, Ratnasingham S, de Waard J R. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences (Suppl.),2003b,270:S96-S99
    53. Hogg I D, Hebert P D N. Biological identification of springtails (Hexapoda:Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology,2004,82:749-754
    54. Hogg I D, Smith B J, Banks J C, et al. Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera). New Zealand Journal of Marine and Freshwater Research,2009,43:1137-1146
    55. Hrcek J, Miller S E, Quicke D L J, et al. Molecular detection of trophic links in a complex insect host-parasitoid food web. Molecular Ecology Resources,2011,11:786-794
    56. Huang X Q, Madan A. CAP3:A DNA sequence assembly program. Genome Research,1999,9: 868
    57. Jamieson BGM. The ultrastructure and phylogeny of Insecta spermatozoa. Cambridge:Cambridge University Press,1987.
    58. Hulcr J, Miller S E, Setliff G P, et al. DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera:Tortricidae). Molecular Ecology Notes,2007,7:549-557
    59. Hunter S J, Goodall T I, Walsh K A, et al. Nondestructive DNA extraction from blackflies (Diptera: Simuliidae):retaining voucher specimens for DNA barcoding projects. Molecular Ecology Resources,2008,8:56-61
    60. Hurst G D D, Jiggins F M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies:the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences,2005,272:1525-1534
    61. Janzen D H, Hajibabaei M, Burns J M, et al. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360:1835-1845
    62. Jinbo U, Kato T, Ito M. Current progress in DNA barcoding and future implications for entomology. Entomological Science,2011,14:107-124
    63. Jin Q, Han H L, Hu X M, et al. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan Plateau. PLoS ONE,2013,8(5):e64428
    64. Jurado-Rivera J A, Vogler A P, Reid C A M, et al. DNA barcoding insect-host plant associations. Proceedings of the Royal Society B-Biological Sciences,2009,276:639-648
    65. Kaartinen R, Stone G N, Hearn J, et al. Revealing secret liaisons:DNA barcoding changes our understanding of food webs. Ecological Entomology,2010,35:623-638
    66. Keller A, Schleicher T, Schultz J, et al.5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene,2009,430:50-57
    67. Koski L B, Golding G B. The closest blast hit is often not the nearest neighbor. Journal of Molecular Evolution,2001,52:540-542
    68. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution,1980,16:11-120
    69. Li H, Liu HY, Cao LM, et al. The complete mitochondrial genome of the damsel bug Alloeorhynchus bakeri (Hemiptera:Nabidae). International Journal of Biological Sciences,2012a, 8:93-107
    70. Li H, Liu H, Song F, Shi A, Zhou X, et al. Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta:Hemiptera). PLoS ONE,2012b,7:e45925
    71. Li Y W, Zhou X, Feng G, et al. COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources,2010,10:31-40
    72. Lou M, Golding G B. Assigning sequences to species in the absence of large interspecific differences. Molecular Phylogenetics and Evolution,2010,56:187-194
    73. Lowenstein J H, Amato G, Kolokotronis S. The real maccoyii:identifying tuna sushi with DNA barcodes-contrasting characteristic attributes and genetic distances. PLoS ONE,2009,4:e7866
    74. Lowe T M, Eddy S R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research,1997,25:955-964
    75. Ma C, Yang P C, Jiang F, et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology,2012,21:4344-4358.
    76. Maldonado-Capriles-Capriles J. Systematic catalogue of the Reduviidae of the world (Insecta: Heteroptera). A special edition of Caribbean Journal of Science, Puerto Rico,1990,694 pp
    77. Marcilla A, Bargues M D, Ramsey J, et al.. The ITS-2 of the nuclear rDNA as a molecular marker for populations, species and phylogenetic relationships in Triatominae (Hemiptera:Reduviidae), vectors of Chagas disease. Molecular Phylogenetics and Evolution,2001,18:136-142
    78. Magnacca K N, Brown M J F. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera:Colletidae). BMC Evolutionary Biology,2010,10: 174
    79. Matheson C D, Muller G C, Junnila A, et al. A PCR method for detection of plant meals from the guts of insects. Organisms Diversity and Evolution,2007,7:294-303
    80. Matz M V, Nielsen R. A likelihood ratio test for species membership based on DNA sequence data. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360:1969-1974
    81. May R M, Beverton R J H. How many species? [and Discussion]. Philosophical Transaction of the Royal Society of London Series B-Biological Science,1990,330:293-304
    82. Meier R, Shiyang K, Vaidya G, et al. DNA barcoding and taxonomy in Diptera:a tale of high intraspecific variability and low identification success. Systematic Biology,2006,55:715-728
    83. Menke S B, Booth W, Dunn R R, et al. Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS ONE,2010,5(2):e9194
    84. Meyer C P, Paulay G. DNA barcoding:error rates based on comprehensive sampling. PLoS Biology,2005,3:e422
    85. Meusnier I, Singer G A C, Landry J F, et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics,2008,9:214
    86. Miller N C E. The Biology of the Heteroptera. Leonard Hill Books, London,1956a,162pp
    87. Monaghan M T, Balkel M, Gregory T R, et al. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society B Biological Sciences,2005,360(1462):1925-1933
    88. Morin PA, Archer FI, Foote AD et al. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Research,2010,20:908-916
    89. Munch K, Boomsma W, Huelsenbeck J P, et al. Statistical assignment of DNA sequences using Bayesian phylogenetics. Systematic Biology,2008a,57:750-757
    90. Munch K, Boomsma W, Willerslev E, et al. Fast phylogenetic DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences,2008b,363:3997-4002
    91. Nass MMK, Nass S. Intramitochondrial fibers with DNA characteristics. Journal of Cell Biology, 1963,19(3):593-611
    92. Negrisolo E, Babbucci M, Patarnello T. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genomics,2011,12:221
    93. Park D S, Foottit R, Maw E, et al. Barcoding bugs:DNA-based identification of the true bugs (Insecta:Hemiptera:Heteroptera). PLoS ONE,2011,6(4):e18749
    94. Pauls S U, Blahnik R J, Zhou X, et al. DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera:Hydropsychidae). Journal of the North American Benthological Society,2010,29:1058-1074
    95. Perna N T, Kocher T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution,1995,41:353-358
    96. Porco D, Decaens T, Deharveng L, et al. Biological invasions in soil:DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and collembolans in North America. Biological Invasions,2013,15:899-910
    97. Porco D, Rougerie R, Deharveng L, et al. Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context:the example of Collembola. Molecular Ecology Resources,2010,10:942-945
    98. Pradeep Kumar N, Krishnamoorthy N, Sahu S S, et al. DNA Barcodes indicate members of the Anopheles fluviatilis (Diptera:Culicidae) species complex to be conspecific in India. Molecular Ecology Resources,2013,13:354-361
    99. Pramual P, Wongpakam K, Adler P H. Cryptic biodiversity and phylogenetic relationships revealed by DNA barcoding of Oriental black flies in the subgenus Gomphostilbia (Diptera:Simuliidae). Genome,2011,54:1-9
    100. Putshkov V G, Putshkov P V. A catalogue of assassin-bugs genera of the world (Heteroptera, Reduviidae). VTNITI, Moskva,1985,138 pp
    101. Rach J, DeSalle R, Sarkar I N, et al. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B-Biological Sciences,2008,275:237-247
    102. Ratnasingham S, Hebert P D N. BOLD:the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes,2007,7:355-364
    103. Raupach M J, Astrin J J, Hannig K, et al. Molecular species identification of Central European ground beetles (Coleoptera:Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology,2010,7:26
    104. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 2004,21:1081-1084
    105. Rougerie R, Smith M A, Fernandez-Triana J, et al. Molecular analysis of parasitoid linkages (MAPL):gut contents of adult parasitoid wasps reveal larval host. Molecular Ecology,2010,20: 179-186
    106. Saitou N, Nei N. The neighbour-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425
    107. Savolainen V, Cowan R S, Vogler A P, et al. Towards writing the encyclopaedia of life:an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360:1805-1811
    108. Shufran K A, Puterka G J. DNA Barcoding to identify all life stages of Holocyclic Cereal Aphids (Hemiptera:Aphididae) on wheat and other Poaceae. Annals of the Entomological Society of America,2011,104(1):39-42
    109. Stahls G, Savolainen E. MtDNA COI barcodes reveal cryptic diversity in the Baetis vernus group (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution,2008,46:82-87
    110. Schilthuizen M, Scholte C, Van Wijk R E J, et al. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology. Forensic Science International,2011, 210:91-95
    111. Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America,1994,87(6):651-701
    112. Simon C, Buckley TR, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics,2006,37(1):545-579
    113. Smith M A, Eveleigh E S, McCann K S, et al. Barcoding a quantified food web:Crypsis, Concepts, Ecology and Hypotheses. PLoS ONE,2011,6:e14424
    114. Smith M A, Fernandez-Triana J L, Eveleigh E et al. DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae):impacts after 8 years and nearly 20 000 sequences. Molecular Ecology Resources,2013,13:168-176
    115. Smith M A, Woodley N E, Janzen D H, et al. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera:Tachinidae). Proceedings of the National Academy of Sciences of the United States of America,2006,103:3657-3662
    116. Smith M A, Wood D M, Janzen D H, et al. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America,2007,104:4967-4972
    117. Song H, Buhay J E, Whiting M F, et al. Many species in one:DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America,2008,105:13486-13491
    118. Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011,28:2731-2739
    119. Tautz D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy, Nature,2002, 418(6897):479-479
    120. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997,25:4876-4882
    121. Usinger R L. A revised classification of the Reduvioidea with a new subfamily from South America. Annals of the Entomological Society of America.1943,36:602-618
    122. Van Houdt J K J, Breman F C, Virgilio M, et al. Recovering full DNA barcodes from natural history collectionsof Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources,2010,10:459-465
    123. Wang J F, Qiao G X. DNA barcoding of genus Toxoptera Koch (Hemiptera:Aphididae): Identification and molecular phylogeny inferred from mitochondrial COI sequences. Insect Science, 2009,16(6):475-484
    124. Wei S J, Tang P, Zheng L H, et al. The complete mitochondrial genome of Evania appendigaster (Hymenoptera:Evaniidae) has low A+T content and a long intergenic spacer between atp8 and atp6. Molecular Biology Reports,2010,37:1931-42
    125. Weirauch C. Cladistic analysis of Reduviidae (Heteroptera:Cimicomorpha) based on morphological characters. Systematic Entomology,2008,33(2):229-274
    126.Weirauch C, Munro J B. Molecular phylogeny of the assassin bugs (Hemiptera:Reduviidae), based on mitochondrial and nuclear ribosomal genes. Molecular Phylogenetics and Evolution,2009,53: 287-299
    127. Whitworth T L, Dawson R D, Magalon H, et al. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera:Calliphoridae). Proceedings of the Royal Society B-Biological Sciences,2007,274:1731-1739
    128. Wiemers M, Fiedler K. Does the DNA barcoding gap exist?-a case study in blue butterflies (Lepidoptera:Lycaenidae). Frontiers in Zoology,2007,4:8
    129. Will K W, Mishler B D, Wheeler Q D. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology,2005,54(5):844-851
    130. Woodcock T S, Boyle E E, Roughley R E, et al. The diversity and biogeography of the Coleoptera of Churchill:insights from DNA barcoding. BMC ecology,2013,13(1):40
    131. Yang F, Shi Z Y, Bai S L, et al. Comparative studies on species identification of Noctuoidea moths in two nature reserve conservation zones (Beijing, China) using DNA barcodes and thin-film biosensor chips. Molecular Ecology Resources.2014,14,50-59
    132. Yassin A, Amedegnato C, Cruaud C, et al. Molecular taxonomy and species delimitation in Andean Schistocerca (Orthoptera:Acrididae). Molecular Phylogenetics and Evolution,2009,53: 404-411
    133. Yoshitake H, Kato T, Jinbo U, et al. A new Wagnerinus (Coleoptera:Curculionidae) from northern Japan:description including a DNA barcode. Zootaxa,2008,1740:15-27
    134. Zhang A B, Sikes D S, Muster C, et al. Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology,2008,57:202-215
    135. Zhang A B, Muster C, Liang H B, et al. A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Molecular Ecology,2012,21:1848-1863
    136. Zhang D X, Hewitt G M. Insect mitochondrial control region:A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology,1997,25:99-120
    137. Zhang K J, Zhu W C, Rong X, et al. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus:conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. BMC Genomics,2013,14:417
    138. Zhou M J, Xiao J H, Bian SH N, et al. Molecular approaches identify known species, reveal crypticspecies and verify host specificity of Chinese Philotrypesis (Hymenoptera:Pteromalidae). Molecular Ecology Resources,2012,12:598-606
    139. Zhou X, Kjer K M, Morse J C. Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta:Trichoptera) using DNA sequences. Journal of the North American Benthological Society,2007,26:719-742
    140. Zhou X, Adamowicz S J, Jacobus L M, et al. Towards a comprehensive barcode library for arctic life-Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Frontiers in Zoology,2009,6:30