多囊卵巢综合征相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     多囊卵巢综合征(PCOS)是青春期及育龄妇女最常见的高度异质性、内分泌代谢紊乱性疾病,PCOS的临床表现具有多样性和复杂性的特点。大量研究提示,该种疾病可能是多种环境因素及多个基因异常共同作用的结果。先前,我们采用全基因组关联研究(GWAS)验证了p值小于10-6基因位点与PCOS密切相关,然而p值小于10-6的基因位点仍有待进一步验证,其中包括RAD54B、GREB1内的相关位点。
     研究目的
     通过分析比较RAD54B基因rs2930961,GREB1基因rs12470971,rs11686574,rs6740248单核苷酸基因多态位点的等位基因频率及基因型频率在PCOS组和对照组中分布的差异,探讨RAD54B、GREB1基因变异与PCOS发病的相关性;同时比较上述基因多态位点不同基因型患者内分泌、代谢特征表型的差别,从而研究RAD54B基因rs2930961,GREB1基因rs11686574、rs12470971、rs6740248不同基因型与PCOS临床表型的相关性,探讨RAD54B、GREB1基因在PCOS疾病发生、发展及其病理生理过程中的作用。
     研究方法
     依据2003年鹿特丹标准选择PCOS患者1124例,并选择同期就诊的1067名健康妇女作为对照;提取研究对象全血基因组DNA,测定相应激素水平,包括卵泡刺激素(FSH)、黄体生成素(LH)、雄激素(T)和胰岛素(INS);所有PCOS患者行OGTT试验,稳态模型评估法(HOMA-IR)估计胰岛素抵抗情况;根据所研究基因的序列设计相应引物,应用TaqMan-MGB实时定量PCR检测体系进行基因型分析。
     结果
     4个SNP位点的等位基因频率和基因型频率在PCOS患者和对照组之间无显著差异;然而,rs2930961的基因频率在高雄激素血症PCOS患者中有显著不同,meta分析亦发现此倾向,但无法在本研究中证实(P=0.052)。
     结论
     RAD54B和GREB1基因多态性可能与中国汉族人口PCOS无相关性,但RAD54B可能与PCOS的高雄激素血症有关。
     研究背景
     先前的GWAS研究表明,9q33.3(rs2479106),2p16.3(rs13405728)和2p21(rs13429458)单核苷酸基因多态(SNP)与PCOS有高度相关性,它们与PCOS的远期并发症一子宫内膜癌是否相关,尚无文献报道。
     研究目的
     探讨PCOS关联SNP rs2479106(基因DENNDIA),rs13405728(基因LHCGR)和rs13429458(基因THADA)与子宫内膜癌的关系。
     研究方法
     选取病理学诊断为子宫内膜癌的96位中国汉族妇女和192例健康对照人群进行病例对照研究;采用聚合酶链反应(PCR)对SNP rs2479106,rs13405728和rs13429458进行基因分型并直接测序,以二元逻辑回归模型校正体重指数(BMI)和年龄等混杂因素对试验结果的影响。
     结果
     SNP rs2479106和rs13405728等位基因频率在子宫内膜癌组和对照组之间存在显著性差异(P<0.05),与子宫内膜样腺癌组比较,差别尤为明显(P<0.01);其中,rs2479106中G等位基因,rs13405728中的A等位基因增加了子宫内膜腺癌的患病风险。
     结论
     DENNDIA基因SNP rs2479106、LHCGR基因SNP rs13405728与子宫内膜样腺癌相关。
Background
     Polycystic ovary syndrome (PCOS) is the most common highly heterogeneous endocrine and metabolic disorders puberty and women of childbearing age. Many researches showed the disease was related with multiple genetic abnormalities and a variety of environmental factors. Previous genome-wide association study (GWAS) verified these p values less than10E-6and found some meaningful loci of strong associations with PCOS. The present study was performed to investigate loci with p values less than10E-5in gene RAD54B and GREB1.
     Objective
     The purpose of this study was to determine the relationship between SNPs rs2930961(RAD54B), rs12470971, rs11686574, rs6740248(GREB1) and the pathogenesis of PCOS. Moreover, whether the two genes play a role in endocrine and clinical traits in PCOS patients may provide evidence for a better understanding on the development of PCOS.
     Methods
     Four single nucleotide polymorphisms (SNP) rs2930961(RAD54B) rs12470971, rs11686574, rs6740248(GREB1) were genotyped in1124PCOS patients diagnosed by the Rotterdam PCOS consensus criteria and1067healthy controls from Han Chinese population. DNAs were extracted from the peripheral blood and serum hormone levels were detected including Follicle stimulating hormone(FSH), luteinizing hormone(LH), testosterone(T) and insulin (INS). All PCOS patients underwent a75g oral glucose tolerance test (OGTT). Insulin resistance was estimated by the homeostasis model assessment method(HOMA-IR). The single real--time quantitative PCR was applied for genotyping by TaqMan-MGB probe assay.
     Results
     Allele and genotype frequencies of these four SNPs were not significantly different in the replication cohort. However, minor allele frequency of rs2930961was significantly different in hyperandrogenism PCOS and there was a tendency for rs2930961(RAD54B) after meta-analysis by combining the results of these two studies (Pmeta=0.052).
     Conclusion
     RAD54B and GREB1genes polymorphisms may not be associated with PCOS in Han Chinese population. Nevertheless, RAD54B maybe contribute to hyperandrogenism PCOS patients.
     Background
     Research shows that SNP9p33.3(rs2479106),2p16.3(rs13405728) and2p21(rsl3429458) may have a high degree correlation with the occurrence of PCOS respectively. Whether they are associated with the long-term complication of PCOS, endometrial carcinoma is unknown. Here, we conducted a case-control study comprising96histologically diagnosed incident endometrial cancer cases and192matched non-cancer controls.
     Objective
     To explore the PCOS related SNP rs2479106(in gene DENND1A), rs13405728(in gene LHCGR) and rsl3429458(in gene THADA) in women with endometrial carcinoma.
     Methods
     Information on current body weight, height and age, and past marital and fertile history was obtained from a self-administered questionnaire. The effects of BMI change were evaluated using an unconditional logistic regression model adjusted for potential confounders. Polymerase chain reaction (PCR) was used to evaluate SNP rs2479106, rs13405728and rs13429458.
     Results
     The allele frequencies of SNP rs2479106and rs13405728were significantly different (P<0.05) between endometrial carcinoma group and control group, and the difference was especially significant in the subgroup of endometrioid adenocarcinoma. Genotyping analysis showed that allele G in rs2479106and allele A in rs13405728could confer risk to endomtrioid adenocarcinoma.
     Conclusion
     Our results suggest that SNP rs13405728and rs2479106may be associated with endometroid carcinoma.
引文
1.Apridonifdze T, Essah PA, Iuorno MJ, Nestler JE.Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endorinol Metab.2005,90:1129-1235.
    2、李美芝.多囊卵巢综合征的诊断与治疗.中华妇产科杂志,2002,37(7):444-446.
    3、毛文伟,李美芝,赵一鸣等.多囊卵巢综合征患者父母亲遗传表型的探讨.中华妇产科杂志.2000,35(10):583-585.
    4. Maeda K, Okubo K, Shimomomura I, et al. cDNA cloning and expression of a novel adipose specific collagen2 like factor, apMl adiopose most abundant gene transcript. Biochem Biophy Res Commun.1996,221:286-289.
    5. Joachim F, Tsu-Shuen T, Salldrine J, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation inmuscle and causes weight loss in mice. Proc Natl Acad Sci USA.2001,98(4): 2005-2010.
    6. Nei M. Molecular Evolutionary Genetics [M]. New York:Columbia University Press.1987:28.
    7. Pusallkar M, Meherji P, Gokral J, et al.CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in-.porycystic ovary syndrome. Pertil Steril.2009,92 (2):653-659
    8. Deligeoroglou E, Kouskouti C, Christopoulos P. The role of genes in the polycystic ovary syndrome:predisposition and mechanisms. Gynecol Endocrinol.2009,25(9):603-609
    9. Mukherjee S, Maitra A, et al. Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome.Indian J Med Res.2010, 131:743-760
    10. Uhtanek M, Legro RS, Driseoll DA, er al. Thitry-sevenena didate genes of polycystic ovary syndorme:Stronge stevideneer of linkage 15 with of llistatin. Proe NatlA ead Sci USA.1999,96 (15):8573-8578.
    11. Petry C J, Ong KK, Michelmore KF, et al. Associat ion of aromatase (CYP19) gene variation with features of hyperandrogenism in two population s of young women. Hum Rep Rod.2005,20 (7):1837-1843.
    12. Soderlund D, Canto P, Carranza LS, et al. No evidence of mutation s in the p450 aromatase gene in patients with polycystic ovary syndrome. Hum Rep Rod.2005,20(4):965-969.
    13. Soedirund D, Canto PC, Tranza-Liar S, et al. No evidence of mutaions in the P450 raomoa atse gene in Patiens with polycystic overy syndrome. Hum Repord.2005,20(4):965-969.
    14.Tseng L, Mazella J, Mann WJ, et al. Estrogen synthesis in normal and malignant human endometrium. J Clin Endocrinol Metab.1982,55:1029-1031.
    15. Garey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolisn gene CYP17. Hum Mol Genet.1994.3(10):1873.
    16. Franks S. The 17 alpha-hydroxylase/17,20 lyase gene (CYP17) and polycystic ovary syndrome. Clin Endocrinol.1997,46(2):135.
    17. Nelson VL, Legro RS, Strauss JF, et al. Augmented Androgen Production is a Stable Steroidogenic Phenotype of Propagated Theca Cells from Polycystic Ovaries. Mol Endocrinol.1999,13 (6):946-957.
    18. Nelson VL, Qin K, Rosenfield RL, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab.2001,86 (12):5925-5933.
    19. Franks S, White D, Gilling-Smith C, et al. Hypersecretion of androgens by poly cystic ovaries:the role of genetic factors on the regulation of cytochrome P450c17 alpha. Baillieres Clin Endocrinol Metab.1996,10(2):193
    20.Diamanti-Kandarakis E, Bartzis M I, Zapanti ED, et al. Polymorphism T →(-34 bp)of gene CYP17 promoter in Greek patients with polycystic ovary svndrome. Fertil Steril.1999,71(3):431.
    21.曹云霞,庄广伦.多囊卵巢综合征与CYP 17基因多态性的关联性研究.现代妇产科进展.1999,8(4):305.
    22. Gharani N, Waterworth DM, William son R, et al.5' polymorism of the CYP17 gene is not associates with serumtes to sterone levels in women with polycystic ovaries. J Clin Endocrinol Metab.1996,81(11):4174.
    23. Marszalek B, Lacinski M, Babych N, et al. Investigation on the genetic po lymo rph ism in the reg ion of CYP17 gene encoding 5'-UTR in patients with polycysstic ovarian syndrome.Gynecol Endocrinol.2001,15(2):123.
    24. Hector FEM, Manuel LR, Jose LSM. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome[J]. Endocrine Reviews. 2005,26(2):251-282.
    25. Breifling R, Krazeisen A, Moller G, Adamski J.17beta-hydroxysteroid dehydrogenase type7-an ancient 3-ketosteriod reductase of cholesterogenesis. Mol Cell Endocrinol.2001,171(1-2):199-204.
    26.Castagnetta LA, Carruba G, Trajna A, et al.Expression of diffdrent 1713-hydroxysteroid dehydrogenase types and their activities in human prostate cancer cells. Endocrinology.4876-4882.
    27. Tartans SE, Pack S.Pak E, et al. Stratakis CA. Human CYP11B2 (aldosterone synthase) maps to chromosome 8q24.3. J Clin Endocrinol Metab.1998,83(3): 1033-1036.
    28. Mornet E, Dupont J, Vitek A, et al. Characterization of two genes encoding human steroid 11 beta-hydroxylase(P-450 (11) beta). J Biol Chem.1989,264(35): 20961-20967.
    29. Curnow KM, Tusie-Luna MT, Pascoe L, et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol.1991,5(10):1513-1522.
    30. Wehling M, Neylon CB, Fullerton M, et al. Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells. Circulmion research. 1995,76(6):973-979.
    31. Christ M, Douwes K, Eisen C, et al. Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells. Hypertension.1995,25(1) 117-123.
    32. White PC, Slutsker L. Haplotype analysis of CYPIIB2. Endocr Res.1995, 21(1-2):437-442.
    33. Witchel SF, Kahsar MM, Aston CE, et al. Prevalence of CYP21 mutations and IRSl variant among women with polycystic ovary syndrome and adrenal and rogen excess. Fertil Steril.2005,83.
    34. Ferro P, Catalano MG, Dell'Eva R, et al. The androgen receptor CAG repeat.-a modifier of carcinogenesis? Mol Cell Endocrinol.2002,193:109-120.
    35. Chamberlain NL, Drive ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nuleic Acids Res.1994,22:3181-3186.
    36.Kazemi Esfarjani P,Trif iro MA,Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor:possible pathogenetic relevance for the(CAG)n-expanded neuronopathies. Hum Mol Genet.1995,4:523-527.
    37. Lin HY, Xu Q, Yeh S, et al. Insulin and Leptin Resistance with Hyperleptinemia in Mice Lacking Androgen Receptor. Diabetes.2005,54:1717-1725.
    38. Hawkins MB, Thornton JW, Crews D, et al. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc Nat Acad Sci USA.2000,97:10751-10756.
    39. Heryrk MH, Fuqua SA, Estrogen receptor mutations in human disease. Endocr Rev.2004,25:869-898.
    40. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology.1997,138:863-870.
    41. Enmark E, Pelto-Huikko M, Grandien K, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab.1997,82:4258-4265.
    42. Heery DM, Kalkhoven F, Hoare S, et al. A signature motif in transcfipfional coactivators mediates binding to nuclear receptors. Nature.1997,387: 733-736.
    43. Catalano MG, Frairia R, Boccuzzi G, et al. Sex hormone-binding globulin antagonizes the anti-apoptotic effect of estradiol in breast cancer cells. Mol Cell Endocrinol.2005,230:31-37.
    44. Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes:a systematic review and meta-analysis. Jama. 2006,295:1288-1299.
    45. Cousin P, Calemard ML, Lejeune H, et al. Influence of SHBG gene pen tanucleotide TAAAA repeat and D327N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J Clin Endocrinol Metab.2004,89:917-924.
    46. Ferk P, Teran N, Gerska K. The (TAAAA) crosatellite Poly moprhism in the SHBG gene influenees seurm SHBG levels in women with Polyeystie ovary syndrome. Hum Re Pord.2007,22(4):1031-1036.
    47. Goodarzi MO, Shah NA, Antoine HJ, et al. Variants in the 5alph a-reductase type 1 and type 2 genes are associated with polycystic ovary syndrome and the severity of hirsutism in affected women.J Clin Endocrinol Metab.2006, 91(10):4085-4091.
    48. Layman LC. Mutations in human gonadotropin genes and their physiologic significance in puberty and reproduction[J].Fertil Steril.1999,71(2) 201-218.
    49. Suganuma N, Furui K, Furuhashi M, et al. Screening of the mutations in luteinizing hormone B-Subunit in patients with menstrual disorders. Fertil Steril.1995 63(5):989-995.
    50.谭丽,郑英,朱桂金等.LH-β基因突变与多囊卵巢综合征关系的研究.中国实用妇科与产科杂志.2005,21:358-360.
    51. Jones MR, Wilson SG, Muliln BH, et al. Polymophrism of the llistatin gene in Polyeystic ovary syndrome. Mol Hum Reprod.2007,13(4):237-241.
    52. KurabayashiT, Yahata T, Quna J, et al. A ssoeitaion of polymoprhisms in the beta2 and beta3 adrenoceptor gene with Polyeystie ovary syndrome. J Reprod Med.2006,51(5):389-93.
    53. Spiegelman BM. PPAR-gamma:adipogenic regular and thizalidinedione receptor. Dibaetes.1998,47(4):507-514.
    54. Oiro S, Matarese G, Di Biase S, Palomba S, Labella D, Sanna V, Savastano S, et al. Exon 6 and 2 peroxisome proliferator-activated receptor-gamma polycystic ovary syndrome. J Clin Endcoinrol Metab.2003,88(12):5887-5892.
    55. Das K, Lin Y, Widen E, et al. Chromosomal localization, expression pattern, and promoter analysis of the mouse gene encoding adipocyte specific secretory protein Acrp30. Biochem Biophys Res Commun.2001,280(4):1120-1129.
    56. Xita N, Georgiou L, Chatzikyriakidou A, Vounatsou M, Papassotiriou GP, Papassotiriou I, et al. Effect of daiponectin gene polymorphisms on circulating adiponectin and insulin resistance indexes in women with Polycystic ovary syndrome. Clin Chem.2005,51 (2):416-423.
    57. Azziz R, Kashra-Miller MD. Family histoy as a risk factor of the Polycystic ovary syndrome. J Pediatr Endocrinol Metab.2000,13(Suppl 5):1303-1306.
    58. Huxtable SJ, Saker PJ, Haddad L, Frayling TM, Levy JC, Hitman GA, et al. Analysis of Parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class Ⅲ variable number tandem repeat alleles.Diabetes.2000,49(1):126-130.
    59.Meigs JB, Dupuis J, Herbert AG, Liu C, Wilson PW, Cupples LA. The insulin gene variable number tandem repeat and risk of type 2 diabetes in a population-based sample of families and unrelated men and woman. J Clin Endocrinol Metab.2005,90 (2):1137-1143.
    60. Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandenly repeating sequences. Nature.1982,295(5844):31-35.
    61.徐玉萍,曹云霞,易龙,等.胰岛素基因多态性与多囊卵巢综合征的相关性研究.生殖与避孕.2008,28(9):525-529.
    62. Haller K, Laisk T, Peetrs M, et al. VNTR/lgenotype of insulin gene 15 associated with the increase of folliele number independent from Polyeysitc ovary syndrome. Aeatobstet Gynaeeol Sean.2007,86(6):726-32.
    63. Yang-Feng TL, Franeke U, Ullrich A. Gene for human insulin receptor: localization to site on chromosome 19 involved in pre-B-cell leukemia. Science.1985,228(4700):728-731.
    64. Tucci S, Futewreit W, ConeePcion ES, et al. Evidence of association of Polycystic ovary syndrome in eaueasa in women with a marker at the insuliner receptor gene locus. J Clin Endocrinol Metab.2001,86 (1):446-449.
    65. Kulkarni RN, Winnay JN, Daniels M, et al. Altered function of insulin Receptor substrate-1-deficient mouse islets and cultured B-cell lines. J Clin Invest.1999,104:69-75.
    66. Xu GG, Gao Z, Berge PD, et al. Insulin receptor substrate 1-induced in hibition of endoplasmic reticulum Ca2+ uptake in beta-cells. Autocrine Regulation of intracellular Ca2+ homeostasis and insulin secretion. J Biol Chem.1999,18:18067-18074
    67. Porzio 0, Federici M, Hribal ML, et al. The Gly972 Arg amino acid polymorphism in IRS-1impairs insulin secretion in pancreatic β-cells. J CIin Invest.1999,104:357-364.
    68. Kalidas K, Wasson J, Glaser B, et al. Mapping of the human insulin receptor substrate-2 gene, identification of a linked polymorphic marker and linkage analysis in families with Type Ⅱ diabetes:no evidence for a major susceptibility role. Diabetologia.1998,41:1389-1391
    69. Sun XJ, Rothenberg P, Kahn, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature (London).1991,352:73-77.
    70. Giovannone B, Scaldaferri ML, Federici M, et al. Insulin receptor substrate (IRS) transduction system:distinct and overlapping signaling potential. Diabetes Metab Res Rev.2000,16:434-441.
    71. Villuendas G. Botella-Carretero JI, Roldan B, et al. Polymorphisms in the insulin receptor substrate-1(IRS-1)gene and the insulin receptor substrate-2(IRS-2) gene influence glucose homeostasis and body mass index in women with polycystic ovary syndrome and non-hyperandrogenic controls. Hum Reprod.2005.
    72.Giorgio Sesti, Massimo Federici, Marta L, Hribal, et al. Defects of the insulin receptor substrate(IRS) system FASEB J.2001(15):2099-2111.
    73. Arribas M, Valverde AM, Burks D, et al. Essential role of protein kinase C zeta in the impairment of insulin-induced glucose transport in IRS-2-deficient brown adipocytes. FEBS Lett.2003,536:161-166.
    74. Eaeobar-Morreale HF, RM Celvo, Jose Sancho, et al. TNF-alpha and hyperandrngenism:a clinical, biochemical and molecular genetic study. JClin Endocrinol Metab.2001,86(8):3761-3767.
    75.马元涛,梁秀利.慢性丙肝患者血清瘦素、肿瘤坏死因子a含量与体内胰岛素水平的关系.中国医师杂志.2006,8:553-554.
    76. Philip A, Subramanian R, Chunling L, et al. Adipose tissue tumor necrosis factor and interleukin-6, expression in obesity and insulin resistance. Am J Physiol Endocrinol Metab.2001,280(5):745.
    77. Nicklin MJ, Weith A, Duff GW. A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes. Genomics.1994,19:382-384.
    78.杨艳,胡卫红,乔杰,等ILlra、TNFct、US-CRP与多囊卵巢综合征发病的相关性研究.中国优生与遗传杂志.2007,15:44-46.
    79.杨艳,乔杰,李美芝.白细胞介素18、白细胞介素1β与多囊卵巢综合征发病的相关性研究.中国实用妇科与产科杂志.2008,24:38-40.
    80. Pellicer A, Albert C, Mercader A, et al. The pathogenesis of ovarian hyperstimulation syndrome:in vivo studies investigating the role of interleukin-1 beta, interleukin-6, and vascular endothelial growth factor. Fertil Steril.1999,71:482-489.
    81.胡振兴,乔杰,李美芝,等.多囊卵巢综合征相关基因的差异表达研究.北京大学学报(医学版).2004,36:600-604.
    82.连利娟.林巧稚妇科肿癌系[M].4版.北京:人民卫生出版社.2006,452-478.
    83.世界癌症登记处.1985.
    84.Morrow, CPetal:Obstet Gynecol.1973,42:399.
    85. Henderson BE.Feigelson HS.Hormonal carcinogene sis.Careinogenesis.2000, 21:427-433.
    86. Parkin DM, Bray F, Ferhay J, et al. Global cancer statistics,2002. CA Cancer J Clin.2005,55(2):74-108.
    87. Jonos WE.Am J Obstet Gynecol.1972,113:549.
    88. Kistnor RW.Obstet Gynecol.27:115.
    89. Lueas WE. Obstet Gynecol Survey,1974,29:507.
    90.铃木忠雄.日本癌治疗学会志.1973,8:73.
    91. Shapiro S, Kelly JP, Rosenberg L, et al. Risk of localized and widespread endometrial cancer in relation to recent and discontinued use of conjugated estrogens. N Engl J Med.1985,313(16):969.
    92.张惜阴主编.临床妇科肿瘤学.上海:上海医科大学出版社,1993,406.
    93. Cramer E.Acta Cytologica.1980,24:478.
    94. Judd HL, et al. Am J Obstet Gynecol,1980,136:859.
    95. Kim J. Protective effects of Asian dietary iems on cancers-soy and ginseng. Asian Pac J cancer prev.2008,9(4):543-548.
    96. Xu WH, Dai O, Ruan ZX, et al. Epidemiologic study on the association of family history of cancer with the risk of endometrial cancer. Tumor.2000, 21(5):339-342.
    97. Parazzini F, La Vecchina C, Moroni S, et al. Family history and the risk of endometrial cancer[J]. Int J Cancer.1994,59(4):460-462.
    98.曹泽毅.中华妇产科学(下册)[M].北京:人民卫生出版社.1999,1499.
    99.李小平,商宇红,魏丽惠等.子宫内膜癌肿瘤家族聚集性研究.中国妇产科临床,2000,1(1):15-17.
    100.曹泽毅,李振英,张秀辉等.年轻妇女子宫内膜癌.中华妇产科杂志,1990,25(2):73-76.
    101. MaeMahon, B.Gynecol Oncol.1974,2:122.
    102. Zi-Jiang Chen, Han Zhao, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3,2p21
    103. Luque-Ramirez M, San Millan JL, Escobar-Morreale HF. Genomic variants in polycystic ovary syndrome. Clin Chim Acta,2006,366(1-2):14-26.
    104. Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome(PCOS) in first-degree relatives of patients with PCOS. Fertil Steril.2001, Jan:75:53-58.
    105. Azziz R, Kashar-MiHer MD. Family history as a risk factor for the polycystic ovary syndrome. J Pediatr Endocrinol Metab.2000,13 Suppl5: 1303-1306.
    106. Chen ZJ, Han Zhao, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3,2p21 and 9q33.3. Nat genet.201143(1):55-59.
    107. Li T, Zhao H, Zhao X, Zhang B, Cui L, Shi Y, Li G, Wang P, Chen ZJ. Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J Med Genet.2012,49(4):254-257.
    108. Hiramoto T, Nakanishi T, Sumiyoshi T, et al. Mutation of a novel human RAD54 homologue, RAD54B, sin primary cancer. Oncogene.1999,18:3422-3426.
    109. Tanaka K, Hiramoto T, Fukuda T, et al. A novel human rad54 homologue, Rad54B, associates with Rad51. J Biol Chem.2000,275(34):26316-2621.
    110. Miyagawa K, et al. A role for RAD54B in homologous recombination in human cells. EMBO J.2002,21:175-180.
    111. Wesoly J, et al. Different ial contributions of mammalian Rad54 paralogs to recombination, DNA damage repair and meiosis. Mol Cell Biol.2006, 26:976-989.
    112. Hiramoto T, Nakanishi T, Sumiyoshi T, et al. Mutations of a novel human RAD54 homologue, RAD54B in primary cancer. Oncogene.1999,18:3422-3426.
    113. Matsuda M, Miyagawa K, Takahashi M, et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene.1999,18:3427-3430.
    114.Pabst T, Schwaller J, Bellomo MJ, et al. Frequent clonal loss of heterozygosity but scarcity of microsatellite instability at chromosomal breakpoint cluster regions in adult leukemias. Blood.1996,88(3):1026-1034.
    115. Becker SA, Zhou YZ, Slagle BL. Frequent loss of chromosome 8p in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Re.1996, 56(21):5092-5097.
    116. Hiramoto T, Nakanishi T, Sumiyoshi T, et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogen.1999,18(22):3422-3426.
    117. Rae JM, Johnson MD, Scheys JO, et al. GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat.2005, 92:141-149.
    118. Ghosh MG, Thompson DA, Weigel RJPDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res.2000,60: 6367-6375.
    119. Sun J, Nawaz Z, Slingerland JM. Long-range activation of GREB1 by estrogen receptor via three distal consensus estrogen-responsive elements in breast cancer cells. Mol Endocrinol.2007,21:2651-2662.
    120. Deschenes J, Bourdeau V, White JH, Mader S. Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J Biol Chem.2007,282: 17335-17339.
    121. Rae JM, Johnson MD, Scheys JO, et al. GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat.2005, 92:141-149.
    122. Peterfy M, Phan J, Oswell GM, et al. Genetic physical and transcript map of the fld region on mouse chromosome 12. Genomics.1999,62:436-444.
    123.Rae JM, Johnson MD, Cordero KE, et al. GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate.2006,66(8):886-894.
    124. McArthur JW, Ingersoll FM, Worcester J. The urinary eceretion of interstitial-cell and follicle-stimulating hormone activity by women with diseases of the reproductive system. J Clin Endocrinol Metab.1958,18:1202-1215.
    125. Burger CW, Worsen T, Van Kessel H, et al. Pulsatile luteinizing hormone patterns in the follicular phase of the menstrual cycle,polycystic ovarian disease(PCOD) and non-PCOD secondary amenorrhea. J Clin Endocrinol Metab.1985,61:1126-1132.
    126.Havelock JC,Rainey WE, Carr BR. Ovarian granulose cell lines.Mol Cell Endocrinol.2004,228:67-78.
    127. Kongsuwan K, Knox MR, Allingham PG, Pearson R, Dalrymple BP. The effect of combination treatment with trenbolone acetate and estradiol-17β on skeletal muscle expression and plasma concentrations of oxytocin in sheep. Domest Anim Endocrinol.2012,43(1):67-73.
    128. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome.Hum Reprod.2004,19(1):41-47.
    129. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril.20004,81(1):19-25.
    130. Azziz R, Carmina E, Dewailly D, et al. Positions statement:Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome:an Androgen Excess Society guideline. J Clin Endocrinol Metab.2006, 91(11):4237-4245.
    131. Franks S, Gharani N, Waterworth D, Batty S, White D, et al. The genetic basis of polycystic ovary syndrome. Hum Reprod.1997,12(12):2641-2648.
    132. Legro RS. The genetics of polycystic ovary syndrome. Am J Med.1995, 98 (1A):9-16.
    133. Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T. Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol.2000,150(2),283-291.
    134. Lee SH, Chung DJ, Lee HS, et al. Mitochondrial DNA copy number in peripheral blood in polycystic ovary syndrome. Metabolism.2011,60(12): 1677-1682.
    135. Nersesyan A, Chobanyan N. Micronuclei and other nuclear anomalies levels in exfoliated buccal cells and DNA damage in leukocytes of patients with polycystic ovary syndrome..J Buon.2010,15(2):337-339.
    136.O'Malley BW, Tsai MJ. Molecular pathways of steroid receptor action. Biol Reprod.1992,46 (2):163-167.
    137. Whitfield GK, Jurutka PW, Haussler CA, Haussler MR. Steroid hormone receptors:evolution, ligands, and molecular basis of biologic function. J Cell Biochem.1999, Suppl 32-33:110-122.
    138. Ghosh MG, Thompson DA, Weiqel RJ. PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res.2000,60 (22): 6367-6375.
    139. Rae JM, Johnson MD, Scheys JO, et al. GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat.2005, 92(2):141-149.
    140. Dunbier AK, Anderson H, Ghazoui Z, et al. Relationship between plasma estradiol levels and estrogen-responsive gene expression in estrogen receptor-positive breast cancer in postmenopausal women. J Clin Oncol.2010, 28(7):1161-1167.
    141. Chambon M, Cavalie-Barthez G, Veith F, Vignon F, Hallowes R, Rochefort H. Effect of estradiol on nonmalignant human mammary cells in primary culture. Cancer Res.1984,44(12 pt):5733-5743.
    142. Hafner F, Holler E, Von Angerer E. Effect of growth factors on estrogen receptor mediated gene expression. J Steroid Biochem Mol Biol.1996,58(4): 385-393.
    143. Peterfy M, Phan J, Oswell GM, Xu P, Reue K. Genetic, physical and transcript map of the fld region on mouse chromosome 12. Genomics.1999, 62 (3):436-444.
    144. Franks, S., Mason, H., White, D. Etiology of anovulation in polycystic ovary syndrome. Steroids.1998,63(5-6):306-307.
    145. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin.2005,55 (2):74-108.
    146. Niwa K, Imai A, Hashimoto M, et al. A case-control study of uterine endometrial cancer of pre- and post- menopausal women. Oncol Rep.2000, 7(1):89-93.
    147. Cheung AP. Ultrasound and menstrual history in predicting endometrial hyperplasia in polycystic ovary syndrome. Obstet Gynecol.2001,98(2): 325-331.
    148. Gambaccian] M, Monteleone P, Sacco A, Genazzani AR. Hormone replacement therapy and endometrial, ovarian and colorectal cancer. Best Pract Res Clin Endocrinol Metab,2003,17(1):139-147.
    149. Hardiman P, Pillay OC, Atiomo W. Polycystic ovary syndrome and endometrial carcinoma. Lancet,2003,361(9371):1810-1812.
    150. Edina Harsay, Randy Schekman. a Member of a Novel Protein Superfamily, Functions in the Late Secretory Pathway. Mol Biol Cell.2007,18:1203-1219.
    151. Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene encoding a novel member of the myotubularin family in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet.2003,12:349-356.
    152. Blondeau F, Laporte J, Bodin S, et al. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway Hum Mol Genet.2000,9:2223-2229.
    153. Atger M, Misrahi M, Sar S, et al. Structure of the human luteinizing Hormone-chori ogonadotropin receptor gene:unusual promoter and 5'non-coding regions. Mol Cell Endocrinol.1995,111(2):113-123.
    154. Patsoula E, Loutradis D, Drakakis P, et al. Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos. Fertil Steril.2003, 79(5):1187-1193.
    155. Ling C, Groop L Epigenetics:fl molecular link between environmental factors and type 2 diabetes. Diabetes.2009,58:2718-2725.
    156. Rippe V,Drieschner N, Me i boom M, et al. Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene.2003,22:6111-6114.
    157. Staiger H, Machicao F, Kantartzis K, et al. Novel meta-analysis-derived type 2 diabetes risk loci do not determine prediabetic phenotypes. PLoS One.2008,3(8):3019.
    158. Simonis-Bik AM, Nijpels G, Heatten Tw, et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D。THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes.2010,59: 293-301.
    159. Parikh H, Lyssenko V, Groop LC. Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type2 diabetes mellitus. BMC Med Genomics.2009,2: 72.
    160.Speert H. Carcinoma of the endometrium in young women. Surg Gynecol Obstet,1949,88(3):332-336.
    161. Chen ZJ, Han Zhao, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3,2p21 and 9q33.3. Nat genet,2010,43(1):55-59.
    162. Azzedine H, Bolino A, Taieb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbfl in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet.2003,72:1141-1153.
    163.Del Villar K, Miller CA. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons. Proc Natl Acad Sci U S A.2004,101:4210-4215.
    164. Lichy JH, Modi WS, Seuanez HN, Howley PM. Identification of a human chromosome 11 gene which is differentially regulated in tumorigenic and nontumorigenic somatic cell hybrids of HeLa cells. Cell Growth Differ.1992, 3:541-548.
    165. Senderek J, Bergmann C, Weber S. et al. Mutation of the SBF2 gene encoding a novel member of the myotubularin family in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet.2003,12:349-356.
    166. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements:the revolution continues. Nat Rev Neurosci.2005,6:626-640.
    167. Allaire PD, Ritter B, Thomas S, et al. Connecdenn a novel DENN domain-containing protein of neuronal clathrin- coated vesicles functioning in synaptic vesicle endocytosis. J Neurosci,2006-26 (51):13202-13212.
    168. Allaire PD, Marat AL, Dall' armi C, Di Paolo G, McPherson PS, Ritter B. Mol Cell.2010,37 (3):370-382.
    169.Ascoli M, Fanelli F, Segaloff DL.The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev.2002,232:141-174.
    170. Guan R, Feng X, Wu X, Zhang M, Zhang X, et al. Bioluminescence resonance energy transfer studies reveal constitutive dimerization of the human lutropin receptor and a lack of correlation between receptor activation and the propensity for dimerization. J Biol Chem.2009,28412:7483-7494.
    171. Khan-Sabir N, Beshay VE, Carr BR. The normal menstrual cycle and the control of ovulation. In:Endotext, Chapter 3.2008. Avaiable:http://www. endotext.org/female/female3/femaleframe3.htm.
    172. Birken S, Maydelman Y, Gawinowicz MA, Pound A, Liu Y, et al. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology.1374:1402-1411.
    173. Norman RJ, Buchholz MM, Somogyi AA. Amato FhCG beta core fragment is a metabolite of hCG:evidence from infusion of recombinant hCG. J Endocrinol. 2000,1643:299-305.
    174. Ludwig M, Westergaard LG, Diedrich K, Andersen CY Developments in drugs for ovarian stimulation. Best Pract Res Clin Obstet Gynaecol.2003, 172:231-247.
    175.Chambers AE, Banerjee S. Natural antisense LHCGR could make sense of hypogonadism, male-limited precocious puberty and pre-eclampsia. Mol Cell Endocrinol.2005,241 (1-2):1-9.
    176. Rahman NA, Rao CV. Recent progress in luteinizing hormone/human chorionic gonadotrophin hormone research. Mol Hum Reprod.2009,15(11):703-711.
    177. Lin J, Lei ZM, Lojun S, et al. Increased expression of luteinizing hormone /human chorionic gonadotropin receptor gene in human endometrial carcinomas. J Clin Endocrinol Metab.1994,79(5):1483-1491.
    178. Dabizzi S, Noci I, Borri P, et al. Luteinizing Hormone Increases Human Endometrial Cancer Cells Invasiveness through Activation of Protein Kinase A. Cancer Res.2003,63(14):4281-4286.
    179. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet.2008,40:638-645.
    180. Schleinitz D, Tonjes A, Bottcher Y, et al. Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA and TSPAN8/LGR5 on diabetes and quantitative metabolic traits. Horm Metab Res.2009,42:14-22.
    181. Stuebe AM, Lyon H, Herring AH, et al. Obesity and diabetes genetic variants associated with gestational weight gain. Am J Obstet Gynecol.2010,203:283. 11-17.
    182. Klimentidis YC, Divers J, Casazza K, et al. Ancestry-informative markers on chromosomes 2,8 and 15 are associated with insulin-related traits in a racially diverse sample of children. Hum Genomics.2011,5:79-89.