主动磁悬浮轴承系统中新型保护轴承的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在磁悬浮轴承系统中,需要一套保护轴承作为磁悬浮轴承失效后转子的临时支撑,保护设备不受损坏。传统保护轴承往往无法支撑超高速转子旋转,且难以承受转子跌落后所带来的振动和冲击。针对传统保护轴承的不足,本文提出了将双层滚珠轴承作为保护轴承来使用,并进行了一系列相关研究。
     在双层滚珠轴承作为保护轴承使用之前,首先对其力学特性进行了分析。基于拟静力学原理,在考虑轴承所承受的径向载荷、轴向载荷、滚珠自身离心力以及陀螺力矩联合载荷作用下,建立了双层滚珠轴承的力学模型,基于MATLAB平台,编制了单、双层滚珠轴承力学特性分析的计算程序,并研究了相关参数对轴承力学特性的影响,最后搭建了转子—轴承系统试验平台,对仿真结果进行了试验验证。研究结果表明:内外层轴承节径比直接影响到双层滚珠轴承的转速分配;在相同的工作状态下,相对于单层滚珠轴承,双层滚珠轴承具有较小的径向和轴向支撑刚度;外载荷和工作转速影响着单、双层角接触球轴承的滚珠接触角的变化,滚珠的离心力使得滚珠与相应的内、外滚道间的接触角不再相等;外载荷、工作转速、滚珠材料、沟曲率半径和滚珠初始接触角对单、双层角接触球轴承轴向和径向变形均有一定的影响;径向游隙、工作转速和径向载荷对单、双层深沟球轴承的径向变形存在一定的影响。
     在对双层滚珠轴承力学特性研究的基础上,对转子跌落到弹性阻尼器支撑下的双层滚珠轴承上的动力学响应进行了详细的研究。分别建立了磁悬浮轴承失效前后转子的动力学模型、磁悬浮轴承支撑模型、转子—内圈碰撞模型、滚珠的受力模型以及双层轴承的实时支撑弹性力模型,根据所建立的模型,对在不同参数下,磁悬浮轴承失效后各部分的动力学响应进行仿真计算,并在一个五自由度磁悬浮轴承试验台上进行相关的跌落试验研究。研究结果表明:与传统保护轴承相比,双层滚珠轴承作为保护轴承的使用能有效地降低转子跌落后转子与内圈之间的碰撞力、内层滚珠的最大接触应力和发热量;在实际使用中,可以通过改变内、外层轴承的组合来调节双层轴承受转子跌落冲击后的内、外层滚珠的最大接触应力;为了保证转子跌落后,保护轴承滚珠在许用应力范围内,转子的工作转速及偏心距不能超出其安全区域范围;从降低转子跌落后的碰撞力出发,应该尽量减小转子与保护轴承内圈之间的摩擦系数、选择合适的保护间隙和保护轴承的支撑阻尼;当使用内层为面对面安装的角接触球轴承的双层滚珠轴承作为保护轴承使用时,内层轴承应具有较大滚珠初始接触角和较小轴向预紧力;当选用深沟球轴承组成的双层滚珠轴承作为保护轴承使用时,应尽量选取较大的轴承游隙等级;与铝材相比,选用密度较大的45钢作为双层轴承的中圈转接环材料具有更好的缓冲性能;在保证转子跌落后保护轴承的滚珠最大接触应力不超出最大许用应力范围的前提下,应尽量选择轻薄系列的滚动轴承来组合双层轴承;当将公差环安装在保护轴承系统中时,可以通过改变公差环的材料厚度、突起个数等参数来调整支撑特性,以提高其工作性能;金属橡胶环的加入能有效地缓冲了转子跌落后的对保护轴承的冲击;公差环和金属橡胶环的减振效果均得到了证明,但从经济性和装配的难易性出发,应优先选择公差环作为保护轴承系统中的弹性阻尼器来使用;保护轴承的破坏性试验证明合适弹性阻尼器支撑下的双层轴承具有更长的寿命,且破坏性试验过程中轴承的损坏形式均为保持架碎裂。
In active magnetic bearing system (AMBs), the catcher bearings (CBs) are indispensable totemporarily support the rotor from directly impact the stators. They prevent damages during themaintenance and destruction of the AMBs. In most cases, traditional catcher bearings cannot bear theultra high speed and the following vibration and impacts after rotor drop. Aiming at the defects oftraditional catcher bearings, double-decker ball bearings (DDBB) are proposed to use as catcherbearings in AMBs, and a series of relevant researches are carried out.
     The mechanical characteristics of DDBB are analyzed before using them as CBs. The mechanicalmodel of DDBB is established based on the quasi-static method by considering the radial load, axialload, centrifugal force as well as the gyroscopic moment acted on the bearing simultaneously. Thecalculation program is compiled in MATLAB to analyze the influences of various load and structureparameters on the mechanical characteristics of DDBB and single-decker ball bearing (SDBB). A testplatform of rotor-bearing system is established, and the relevant experiments are carried out to verifythe theoretical results. The results show that the relationship between the inner and outer pitchdiameters determines the rotate speed distribution of DDBB. In the same work condition, comparedwith SDBB, DDBB has relatively smaller radial and axial support stiffness. The external loads andworking speed affect the ball contact angles of SDBB and DDBB, and the ball centrifugal force makesthe contact angles between the ball and the corresponding inner and external groove no longer equal.External loads, working speed, ball materials, groove curvature radius and ball initial contact angle allhave certain influence on the axial and radial deformations of both SDBB and DDBB. Radialclearance, working speed and radial load have certain influences on the radial deformation ofsingle-decker and double-decker deep groove ball bearings.Based on the analysis of DDBB, the dynamic responses of rotor drops onto DDBB under the supportof elastic dampers are detailed analyzed. The rotor dynamical modes before and after AMBs failure,support model of active magnetic bearings, impact model between rotor and inner race, ball forcemodel as well as the real-time support force model of DDBB are respectively established. Based onthe established models, the dynamical responses of each part after rotor drop for different parametersare theoretically simulated. And the relevant rotor drop experiments are carried out on a five-degree offreedom (DOF) AMBs test platform. The results indicate that compared with traditional catcherbearing, using DDBB as CB helps to reduce the following collision forces,inner ball contact stress aswell as heat energy. In the actual applications, the inner and outer ball maximum contact stresses canbe regulated by adjusting inner and outer bearing combinations. Rotor work speed and unbalanceshould be in the safe zone to make sure the ball maximum contact stresses do not exceed the allowable stress range after rotor drop. Friction coefficient between rotor and inner ring, suitable protectionclearance and support damping of CBs are beneficial to reducing the collision force after rotor drop. Itis advisable to choose larger ball initial contact angle and smaller pre-tightening force when useface-to-face mounted angular contact bearings as the inner bearing of DDBB used as CB. Largerradial clearance is advisable when the selected DDBB used as CB are composed of deep groove ballbearings. Compared with aluminum, choosing45steel which has larger density as adapter ring of theintermediate ring has better cushion performances. In the guarantee of the maximum ball contactstress in the permission stress range, it is better to choose light and thin series of ball bearings tocombine DDCB. The work performance of tolerance ring in the CB system can be improved bymodulating its thickness, number of waves and some other design parameters. The added metal rubberring can effectively cushion the vibrations after rotor drop. The vibration reduction effects of bothtolerance ring and metal rubber ring are confirmed, but proceed from economy and degree ofassembly difficulties, it is suggested to use tolerance ring. The destructive tests show that DDBBunder the support of suitable elastic damper has longer service life, and all the bearing damage formsduring the destructive tests are cage fragmentation.
引文
[1]刘贤兴,孙宇新,朱熀秋,等.无轴承永磁同步电机的发展、应用和前景.中国机械工程,2004,17(15):1594-1597.
    [2]徐龙祥,朱晓春.片状无轴承磁电机的研究.中国电机工程学报,2006,26(6):141-145.
    [3]刘晓军,刘小英,胡业发,等.人工心脏泵磁悬浮转子非线性特性及控制方法研究.中国机械工程,2006,20(17):2091-2094.
    [4]王晓光,胡业发,江征风.磁悬浮硬盘驱动器及其静电防护设计.机械设计与制造,2005,(3):43-45.
    [5]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型.中国电机工程学报,2005,25(9):139-146.
    [6]林基恕.航空发动机主轴滚动轴承的技术进展.燃气涡轮试验与研究,2003,16(4):52-56.
    [7] Cole M O T,Keogh P S,Burrows C R.The Dynamic Behavior of a Rolling Element AuxiliaryBearing Following Rotor Impact.Journal of Tribology, Transactions of the ASME.2002,24:406-413.
    [8]杨国军,时振刚,覃庆权,等.HTR-10GT辅助轴承结构特性研究.原子能科学技术,2008,42(S):685-688.
    [9]祝长生.主动电磁轴承失效后转子坠落在备用轴承上的动力学.浙江大学学报,2005,39(11):1773-1778.
    [10] Ishii T,Kirk R G.Transient response technique applied to active magnetic bearing machineryduring rotor drop.ASME Journal of Vibration and Acoustics,1996,118(2):154-163.
    [11]刘占生,鲁建,吕伟剑,等.转子-电磁轴承系统动静件碰摩动力特性研究.航空动力学报,2004,19(1):38-45.
    [12] Sun Guanyoung,Palazzoloa A B,Provenzab A,et al.Detailed ball bearing model for magneticsuspension auxiliary service.Journal of Sound and Vibration.2004,269:933-963.
    [13] Sun Guanyoung. Auxiliary Bearing Life Prediction Using Hertzian Contact BearingModel.Journal of Vibration and Acoustics,2006,128:203-209.
    [14] Sheng Zeng. Motion of AMB Rotor in Backup Bearings. Journal of Vibration andAcoustics.Transactions of the ASME,2002,124:460-464.
    [15]祝长生.主动电磁轴承失效后转子跌落在备用轴承中的非线性动力学.机械工程学报,2006,42(7):196-202.
    [16] Patrick S, Keogh. Rotor/Auxiliary Bearing Contact Issues in Magnetic BearingSystems.Proceedings of the9th International Symposium on Magnetic Bearings,Lexington,Kentucky,USA,2004:111-116.
    [17] Antti K rkk inen,Aki Mikkola.Transient Simulation of AMB Supported Electric Motor duringRotor Drop on Retainer Bearings.Proceedings of the10th International Symposium on MagneticBearings,Martigny,Switzerland,2006:3-18.
    [18] Foiles W C,Allaire P E.Nonlinear Transient modeling of active magnetic bearing rotors duringrotor drop on auxiliary bearings.Proceedings of MAG’97Industrial Conference and Exhibitionon Magnetic Bearing,1997:154-163.
    [19] Gelin A,Pugnet J M,Hagopian J L.Dynamic Behavior of Flexible Rotors with Active MagnetBearings on Safety Auxiliary Bearings.Proceedings of3rdInternational Conference on Rotordynamics,Lyon,France,1990:503-508.
    [20]方之楚.磁轴承失灵后坠落转子瞬态振动灾变机理研究.应用数学和力学,2002,23(11):1177-1182.
    [21]季进臣,虞烈.电磁轴承转子系统中高速不平衡转子跌落过程的非线性动力学.机械工程学报,1999,35(5):62-66.
    [22] Helfert M.Rotorabstüze in W lzlager-Experimentelle Untersuchungen des Rotor-Fanglager–Kontakts.PhD thesis,TU Darmstadt,Fachgebiet Mechatronik im Maschinenbau,2008.
    [23] Sun G.Rotor Drop and Following Thermal Growth Simulation Using Detailed auxiliary Bearingand Damper Models.Journal of Sound and Vibration,2006,289:334-359.
    [24] Tedric A,Harris,Michael N,Kotzalas.Advanced Concepts of Bearing Technology.Boca Raton,FL,USA,CRC Press,2002.
    [25] Carslaw H S,Jaeger J C.Conduction of Heat in Solids.Oxford University Press,1960.
    [26] Patrick S,Keogh,Woon Yik Yong.Thermal Assessment of Dynamic Rotor/Auxiliary BearingContact Events.Journal of Tribology,Transactions of ASME,2007,129:143-152.
    [27] Maelene Helfert,Martin Emst,Rainer Nordmann.High Speed Video Analysis of Rotor-RetainerBearing-Contacts Due to Failure of Active Magnetic Bearings.Proceedings of the10thInternational Symposium on Magnetic Bearings,Martigny, Switzerland,2006:11-13
    [28] Todd W, Reitsma. Development of Long-life auxiliary bearings for critical serviceturbo-machinery and high-speed motors,Proceedings of the8th International Symposium onMagnetic Bearings,Mito,Japan,2002:507-514.
    [29] Yukio Ohura,et al.Performance of touchdown bearings for turbo-machinery pumps.Proceedingsof the8th International Symposium on Magnetic Bearings,Mito,Japan,2002:515-520.
    [30]祝长生.主动电磁轴承失效后柔性转子坠落在备用轴承上的瞬态响应实验研究.航空学报,2009,8(30):1537-1543.
    [31] Qin Q Q,Yang G J,Shi Z G,et al.Preliminary research of auxiliary bearing in HTR-10GTproject.Proceedings of the16th International Conference on Nuclear Engineering,USA,2008.
    [32]祝长生.备用轴承碰撞副对电磁轴承失效后转子坠落瞬态响应的影响.振动工程学报,2010,23(5):475-479.
    [33]万金贵,汪希平,夏翠艳,等.电磁轴承系统中的辅助轴承与振动影响.哈尔滨轴承,2006,27(3):6-9.
    [34] Chen H M,et al.Test of a Zero Clearance Auxiliary Bearing.Proceedings of the Mag’97Industrial Conference and Exhibition on Magnetic Bearings,1997:111-119.
    [35] Mohshen Salehi,Hooshang Heshmat.On the Dynamic and Thermal Performance of a ZeroClearance Auxiliary Bearing for a Magnetic Bearing System.Tribology Transactions,2000,43:435-440.
    [36]刘廷武,吴宝勤,黄凯.一种新型辅助轴承的设计与试验.燃气涡轮试验与研究,2010,23(4):1-4.
    [37]伍良生,陈浩,史铁林,等.一种新型的电磁轴承系统辅助轴承的设计.机械设计及与制造,2010,(3):32-34.
    [38] Yu Lie,et al.Compliant Foil Bearings Used as Emergence Bearings.Proceedings of the9thInternational Symposium on Magnetic Bearings,Lexington,Kentucky,USA,2004:129-136.
    [39]“Foil Bearing Used as Back-up for Magnetic Bearing”,http://www.wohawkinnovative.com/fall98.htm.
    [40] Swanson E E, Heshmat H, Walton J.Performance of a Foil-Magnetic Hybrid Bearing.Journalof Engineering for Gas Turbines and Power,2002,124:375-382.
    [41] Reitsma T W.Development of Long-life auxiliary bearings for critical service turbo-machineryand high-speed motors.Proceedings of the8th International Symposium on Magnetic Bearings,Mito,Japan,2002:507-514.
    [42]谭忠文,万力,何树延.HTR-10立式磁悬浮转子初步设计阶段的跌落冲击仿真分析.核动力工程,2008,5:5-8.
    [43] Prashad H.A new generation rolling-element bearing—an investigation.BHEL J,2002.
    [44] Prashad H.A theoretical approach to evaluating the performance characteristics of double deckerhigh precision bearings.TriboTest,2004:251–263.
    [45] Prashad H.Relative comparison of stiffness and damping properties of double decker highprecision and conventional rolling-element bearing.Trib. Int.2002,35:265–269.
    [46] Prashad H.Pattern of cyclic stresses on outer race of conventional bearing vis-à-vis doubledecker high precision bearing-an investigation.BHEL J.2003,24(2):38–47.
    [47] Prashad H.Centrifugal forces on double decker high precision conventional ball bearings.Journalof Institution of Engineers,India2005,86:109–114.
    [48]席颖佳,李瑜萍.新一代双层高精密滚动轴承.轴承,2002:43-45.
    [49]万长森.滚动轴承的分析方法.北京:机械工业出版社,1987.
    [50] Hertz H.On the contact of elastic solids.J.Reine und Angew.Math,1881,92.
    [51] Palmgren A.Ball and Roller Bearing Engineering(3rd edition).Burbank,philadephia,1959.
    [52] Jones A B.Ball Motion and Sliding Friction in Ball Bearings.Trans ASME,Journal of BasicEngineering,1959,81:1-2.
    [53] Harris T A.Rolling Bearing Analysis(3rd edition).John Wiley&Sons Ltd,1991.
    [54] Boness R J.Minimum Load Requirement for the Prevention of Skidding in High Speed ThrustLoaded Ball Bearings.Trans ASME,Journal of Lubrication Technology,1981,103:35-39.
    [55] Walter C T.The Dynamics of Ball bearings.Trans. ASME,Journal of Lubrication Technology,1971,93:1-10.
    [56] Gupta P K.Advanced Dynamics of Rolling Elements.New York:Springer-Verlag,1984.
    [57] Gupta P K,Dill J F,Bandow H E.Dynamics of rolling element-bearings experimental validationof the DREB and RAPIDREB computer programs.J.of Trib,1985,107:132-137.
    [58] Meck C R,Tran L.Ball Bearing Dynamic Analysis Using Computer Methods-Part1:Analysis.Journal of Tribology1996,118:52-58.
    [59] Castle P,Dowson D.Theoretical Analysis of the Starved Elastohydrodynamic LubricationProblem for Cylinders in Line Contacts. Elastohydrodynamic Lubrication Symposium,Proceedings of Mechanical Engineering,1972,131:131-137.
    [60] Hamrock B Dowson D.Isothermal Elastohydrodynamic Lubrication of Point Contact-Part IV:Starvation Results ASME Journal of Lubrication Technology,1997,99:15-23.
    [61] Chang L.Analysis of High Speed Cylindrical Roller Bearings Using a Full EHD LubricationModel,Part1,2,STLE,1990,274-291.
    [62]冈本纯三(日),球轴承的设计计算.北京:机械工业出版社,2004.
    [63]张葵,李建华.球轴承摩擦力矩的分析计算.轴承,2001:8-11.
    [64]丁长安,周福章,朱均,等.沟道控制理论与滚珠姿态角的确定.机械工程学报,2001,37(2):58-61.
    [65]唐云冰,高德平,罗贵火.航空发动机高速滚珠轴承力学特性分析和研究.航空动力学学报,2006,21(2):354-359.
    [66]唐云冰.航空发动机高速滚动轴承力学特性研究.[博士学位论文].南京:南京航空航天大学,2005.
    [67]徐锦江.轴承数字化设计及其在高速陶瓷球轴承结构设计中的应用.[博士学位论文].天津:天津大学,2004.
    [68] Harold I,Burrier J.Optimizing the Structure and Properties of Silicon Nitride fro Rolling ContactBearing Performance,Tribology Transactions,1996,39(2):276-285.
    [69] Hoeprich, Michael R. Rolling element bearing contact geometry analysis. TribologyTransactions,1995,38(4):879-882.
    [70] Neng Tung Liao, Jen Fin Lin. A New Method for the Analysis of Deformation and Load in a BallBearing with Variable Contact Angle[J]. Transactions of ASME,2001,(123):304~312.
    [71]朱益利,徐龙祥.双层滚珠轴承力学特性分析.航空动力学报,2011,8(26):1914-1920.
    [72] Zhu Yili,Xu Longxiang.The Radial Stiffness and Application of Double-Decker BallBearing.Key Engineering Materials,2011,450:353-356.
    [73]张成铁,陈国定,李建华.高速滚动轴承的动力学分析,机械科学与技术,1997,16(1):136-139.
    [74] Hosang G W.Experimental and Computed Performance Characteristics of High-Speed SiliconNitride Hybrid Ball Bearings.Journal of Engineering for Gas Turbines and Power,Transactionsof the ASME,1991,113(10):635-642.
    [75] Stanley I,Pinel,et al.Design and Operating Characteristics of High-Speed, Small-Bore BallBearings.Tribology Transactions,1998,41(4):423-434.
    [76]张军.数值计算.北京:清华大学出版社,2008.
    [77]周国标,宋宝瑞,谢建利.数值计算.北京:高等教育出版社,2008.
    [78] Hernot X,Sartor M,Guillot J.Calculation of the Stiffness Matrix of Angular Contact BallBearings by Using the Analytical Approach.Journal of Mechanical Design,Transactions of theASME,2000,122(1):83~90.
    [79]刘卫群,罗继伟,吴长春,等.滚动轴承刚度分析程序,计算力学学报,2001,18(3):375-378.
    [80]陈锦江,任成祖,徐燕申.基于Matlab的球轴承接触应力与变形和负荷分布的计算.机械研究与应用,2004,17(1):59-61.
    [81]罗继伟.滚动轴承中的弹性接触问题及其数值求解.[博士学位论文].北京:清华大学,1989.
    [82]丁长安,张雷,周福章,等.线接触弹性接触变形的解析算法.摩擦学学报,2001,21(2):135-138.
    [83] Tengroth S,aggbad A H.最佳轴承配置计算与分析的通用计算机程序.哈尔滨轴承,1992,20(4):21-26.
    [84]浅野惠治,等.解析技术在滚动轴承领域的应用.国外轴承技术,1999,(4):1-5.
    [85] Crawford R Meeks.球轴承动力学分析的计算方法、第一部分:分析.国内外轴承技术,2000,1:48-56.
    [86]陈锦江,任成祖,徐燕申.数值计算赫兹接触问题的新方法.机床与液压,2004,(1):42-44.
    [87] Meeks C R.Ball bearing dynamic analysis using computer methods[J].Transactions of theASME,1996,118(1):52-58.
    [88]胡广书.数字信号处理导论.北京:清华大学出版社,2005.
    [89]顾家柳.转子动力学.北京:国防工业出版社,1985.
    [90]闻邦春,顾家柳,夏松波,等.高等转子动力学—理论、技术与应用.北京:机械工业出版,2000.
    [91] Zeng S.Modelling and experimental study of the transient response of an active magnetic bearingrotor during rotor drop on back-up bearings.Proceedings of the Institution of MechanicalEngineers,Part I:Journal of Systems&Control Engineering,2003,(217):505–517.
    [92]孟光.转子动力学研究的回顾与展望.振动工程学报,2002,15(1):1-9.
    [93]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.
    [94]钟一谔,何衍宗,王正,等,转子动力学:北京,清华大学出版社,1987.
    [95] Gasch R,Pfützner H.转子动力学导论(周仁睦译):北京,机械工业出版社,1986.
    [96]张文.转子动力学理论基础:北京,科学出版社,1990.
    [97]Reddy J N.An Introduction to the Finite Element Method.New York:McGraw Hill,1993.
    [98]Huebner K H.The Finite Element Method for Engineers.New York:John Wiley&Sons,1975.
    [99]郭春华.MATLAB在转子振动固有频率计算中的应用,四川轻化工学院学报,2001, Vol.14(4):55~60.
    [100]胡业发,周祖德,江征风.磁力轴承的基础理论与应用.北京:机械工业出版社,2006.
    [101]汪希平,朱礼进,于良,等.主动磁轴承转子系统动力学特性的研究[J].机械工程学报,2001,37(11):7-12.
    [102]虞烈.可控磁悬浮转子系统.北京:科学出版社,2003.
    [103] Jing Minqing,Li Zixin,Luo Min,et al.Unbalance response and touch-rubbing threshold speedof rotor subjected to nonlinear magnetic forces.Chinese Journal of Mechanical Engineering,2008,21(2):1-4.
    [104]赵雷,丛华,赵鸿宾.可控AMB刚度与阻尼特性研究.清华大学学报,1999,39(4):96-99.
    [105]胡海岩,孙久厚,陈淮海.机械振动与冲击.北京:航空工业出版社,1998.
    [106] Antti Y J K rkk inen,Marlene Helfert,Beat Aeschlimann,et al.Effect of Misalignment ofRetainer Bearing on Dynamic Responses of Rotor System during Emergency Stop.Proceedingsof the ASME2007International Design Engineering Technical Conferences&Computers andInformation in Engineering Conference,Las Vegas,Nevada,USA,2007:1635-1643.
    [107]Johnson K L.Contact mechanics.Combridge University Press,1985.
    [108]刘晓初,黄运尧.滚动轴承新的额定静负荷的研究,中国机械工程,2001,12(9):986-990。
    [109]斯雷恩A R,休斯S A.公差环以及具有这类公差环的安装组件.中国专利,公开号:CN102177357A,2011.
    [110]伍德黑德N S,斯莱恩A R.公差环组件.中国专利,公开号:CN1774580,2006.
    [111]斯雷恩A R.公差环.中国专利,公开号:CN102124241A,2011.
    [112]班卡拉利G.公差环的过程控制.中国专利,公开号:CN102282617A,2011.
    [113]带公差环的小型电动机的轴端.德国标准化学会,国外标准,标准号:DIN42020-1982,1982.
    [114]朱烨.通过公差环降低电动机噪音及振动.现代家电,2011,14:50-51.
    [115]韦仕荒,肖前进.一种减振电机.中国专利,公开号:CN201928117U,2011.
    [116] Trainer Joe.Tolerance Rings Improve PT Performance and Simplify Servicing.Powertransmission design,1985,27(4):33-35.
    [117] Rongley,Raymond A.Tolerance Rings improve bearing mounts.Machine Design,1982,54(3):91-94.
    [118] Slayne A.R. Performance characteristics of actuator/bearing joints made with tolerancerings. Digest of the Asia-Pacific Magnetic Recording Conference,2002,WE-P-14-01-WE-P-14-02.
    [119] Smith J W.Tolerance Rings (Presenting examples of Motor-Overload-Protection applicationsfrom the Appliance and Automotive industries).IEEE Industry Applications Magazine,2002,8(5):74-82.
    [120] Zhu Yili,Xu Longxiang.Influence of Elastic Buffer on Rotor Drop Dynamic Response.TheTwelfth International Symposium on Magnetic Bearings (ISMB12),Wuhan,China,2010:293-300.
    [121]朱益利,徐龙祥.带弹性环保护轴承的动力学特性.机械工程学报,2011,47(21):49-57.
    [122]切戈达耶夫(作者),李中郢(译者).金属橡胶构件的设计.北京:国防工业出版社,2000.
    [123]姜洪源,董春芳,敖宏瑞,等.航空发动机用金属橡胶隔振器动静态性能的研究.航空学报,2004,25(2):140-142.
    [124]王新,朱梓根.环形金属橡胶减振器.航空动力学报,1997,12(2):143-145.
    [125]姜洪源,夏宇宏,敖宏瑞,等.金属橡胶与弹簧组合型隔振器动静态性能的分析.中国机械工程,2002,113(21):1801-1804.
    [126]姜洪源,郝德刚,敖宏瑞.环形金属橡胶隔振器系统建模与实验研究.湖南科技大学学报,2005,20(1):13-16.
    [127]郭宝亭,朱梓根.金属橡胶阻尼器在转子系统中的应用.航空动力学报,2003,18(5):62-668.
    [128]敖宏瑞.金属橡胶干摩擦阻尼机理及应用研究.[博士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [129]黄协清,张铁山,张俊华.金属橡胶隔振特性研究.机械科学与技术,2000,19(6):977-980.
    [130]李宇明,郑坚,白鸿柏.金属橡胶材料的动态力学模型.材料研究学报,2003,17(5):499-504.