基于可能性度量的机械系统可靠性分析和评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工程系统问题的复杂性和不确定因素的逐渐增加,可靠性日益成为科学和工程中的一个重要概念和保证工程系统功能稳定的主要质量指标。传统的基于概率(随机)可靠性理论的设计、分析方法是目前用于不确定性处理的最为常用和成功的方法。但对于结构复杂、工作条件经常改变的机械系统(如大型起重运输机械),往往较难或无法获得足够的统计数据,且初始数据通常包含着大量的主观信息和认知不确定性(Epistemic uncertainty)。由于这类系统通常具有多发性故障、多故障模式等特点,适用于设计初期的可靠性数据可信性不大。传统的概率可靠性方法对已知数据的依赖性较强,计算或分析结果往往跟实际情况偏差较大。
     本文在国家自然科学基金项目资助下,针对概率可靠性方法在理论和应用上的若干局限性,以及机械装备设计中常常出现的数据不足及数据具有模糊性的实际情况,基于融合可能性理论模型和可能性计算方法的可能性度量(Possibilistic measurements)体系,研究信息不完善条件下复杂机械系统的可靠性分析和评价问题。
     研究工作目的之一是探索基于可能性度量方式的系统可靠性分析的新理论和新方法;其次,为系统非概率可靠性分析建立基于“不确定形式规范化一测度与积分量化一应用方法研究”流程的设计框架;最后为提高统计数据缺乏时机械装备的可能可靠性设计水平和可能可靠性管理水平提供技术支撑与技术保障。
     结合模型研究和方法开发,结合定性分析和定量计算,论文研究的主要工作如下:
     (1)研究可靠性设计和分析中不确定性的认知属性及其处理问题。剖析机械系统和结构可靠性分析中涉及基本输入、可靠性模型、度量手段以及外部操作环境等多方面来源的不确定因素及其实质,给出实际可靠性工程中数据不足现象的表现、特征及其认知不确定性本质。比较在概率体系和非概率体系框架下,可靠性中不确定性解决方案的不同度量方式,进而说明随机可靠性模型中特征参数、分布类型、样本容量和先验分布等因素对模型偏差的较大影响。提供认知不确定性在表达、合成和传播上的主要方式,为可靠性分析中不确定因素的处理提供必要的理论基础框架。
     (2)研究可能不确定性及其相应信息的度量问题。通过可能不确定性命题对应的信息类型和语义解释,说明可能性度量方式的测度二元性(可能性测度和必要性测度)和量化双极性(乐观标准和悲观标准)特点在刻画认知不确定性时的计算实现。通过可能性理论与概率论和模糊集合论在公理背景、模型表达和运算特点等方面的比较研究,给出可能性度量方式在相关理论中的测度转化形式。接着探讨建造可能性分布函数的隶属函数生成法和概率分布转化法。以此为基础,通过对少量客观数据进行主观赋值,给出在可能可靠性理论建模中基于可能性中值的可能性分布构造方法,并对齿轮弯曲疲劳强度试验中的寿命分布进行实例分析,建立数据不足时基于可能性方法的系统分析和可靠性设计的测度与积分框架。
     (3)研究基于可能性度量的可能可靠性建模问题。以可能性测度取代概率测度刻画系统(元部件)的失效行为,将寿命视为可能性空间上的模糊变量。通过拓宽系统寿命的定义域,在不影响问题本质的前提下简化能双(Posbist)可靠性模型的推导,实现包括串联、并联、串并联混合系统、冷储备系统等在内的典型系统Posbist可靠度计算。通过可能可靠性与概率可靠性的对比分析实例,说明认知不确定性在可靠性一般系统模型中的度量方法,建立数据不足条件下结合可能性方法与系统可靠性分析的一般模型框架。
     (4)研究对应典型系统可能可靠模型的故障树分析和重要度分析问题。一方面,从故障角度采用可能性测度刻画系统中状态变量的可能不确定属性,重新定义单调关联系统和可能性故障树的结构函数,建立基于能双相干系统的故障树模型并推导适用于定性分析的最小割集(MCs)模型和适用于定量分析的逻辑门的可能性算子。另一方面,结合可能性理论的自然语言处理能力和广义信息论对非可加性测度的引申,建立基于可能性信息熵的重要性测度模型及分析方法。通过基于集合论和测度论的二维模型框架,定义可能性空间上公理化的重要度指标。通过重要性事件的识别实例对认知不确定性的敏感性分析问题进行探索,构建一种适合实际可靠性分析的应用方法。
     综合以上工作,在起重机械结构方案选型、起重机钢丝绳断绳事故分析、起重机危险因素分析以及安全综合评价等工程实例中验证本文研究结果,得出以下结论,即认知不确定性描述对于数据不足现象处理的适应性、可能不确定度量对于认知不确定处理的有效性,以及可能可靠性系统模型与故障树模型对于可能性度量方法应用于可靠性分析和安全评价等工程实际的可行性。
     本文的研究可望推广应用于其它多种复杂设备的可靠性综合评估、故障检测和安全控制中。
With an ever-increasing tendency to take uncertainty factors into account in engineering design, reliability has now been an important concept in science and engineering as well as a primary quality index of guaranteeing stable performances. The traditional stochastic/ probabilistic reliability method is a successful tool to handling uncertainty and has been widely used in engineering. Yet considering complex mechanical systems with frequently variant working conditions (e.g. crane and transporter), necessary statistic data is often not available, and there exist vast subjective information and epistemic uncertainty in initial data. Due to the frequent faults and multiple fault modes of such mechanical systems, their reliability data is thus different according to the adopted statistical approach. Moreover, the reliability data is also variant according to different types of mechanical system, which leads to lack of data or limited belief in preliminary design. The stochastic method is strongly depends upon the available information, which greatly restricts its applications in engineering.
     Against the backgrounds of the NSFC project, in consideration of some drawbacks of stochastic reliability method in theory and applications, as well as the existence of insufficient and vague data in actual equipments design, the reliability analysis and evaluation problems of complex mechanical systems are investigated in this dissertation, by means of possibilistic measurements integrating possibilistic theoretical models and operational methodologies.
     The purpose of this study includes three aspects. First of all, it attempts to explore new reliability theories and methodologies in the context of possibility theory and measurement. Secondly, it attempts to build up a design framework from uncertainty formalization to integral/measure qualification, and then to application methodologies. Thirdly, it attempts to provide some technical supports and guarantees for possibilistic reliability design and possibilistic reliability management in the case of limited statistical data.
     In combination with theoretical research and methodological exploitation, and integrating qualitative analysis with quantitative computations, the dissertation includes the following contributions:
     (1) The representation, synthesize and qualification of epistemic uncertainty in reliability design and analysis are investigated when necessary statistical data is scarce. Starting with a holistic understanding of uncertainty, uncertainty factors inherent in reliability inputs, reliability models, reliability inferences and external operating environments are analyzed in detail to find out their essences, and then the behaviors and appearances of insufficient data in reliability engineering are presented, which reveal the handling of epistemic uncertainty plays an important role in reliability analysis with imprecise or incomplete parameters. After comparing probabilistic approach with non-probabilistic approach in reliability design, some vital factors in model errors such as character parameters, distribution types, sample capacities and prior distributions are pointed out in turn, which provides a theoretical background for uncertainty formalization and validation in reliability analysis.
     (2) The measurements of possibilistic uncertainty and its corresponding information are studied. With an explanation of information types and information semantic of possibilistic uncertainty, the duality of possibility measure and necessity measure, as well as the bipolarity of optimistic criterion and pessimistic criterion are explored for epistemic uncertainty validation computationally. By a comparative analysis of possibility theory with some relative theories, the connections and transformations between them are proposed. Then two approaches to constructions of possibility distributions are provided, respectively as possibility distribution generations based on membership functions and possibility distribution transformations from probability distribution. Especially, when there is limited objective reliability data, a new method of developing the possibility distribution by subjective assignment strategy is put forward, which makes use of the concept of interval-valued possibilistic mean value of a L-R fuzzy number and is then illustrated by the lifetime data from fatigue reliability tests. These works provide a possibilistic design framework on the measure and integral background.
     (3) The possbilistic reliability models of typically general systems are constructed. Characterizing the systems(components) failure behavior by possibility measures in place of probability measures, treating the systems (components) lifetime as fuzzy variables in the possibility space, and introducing possibilistic approaches into system reliability modeling and analysis, the possibilistic reliability theories are advanced based on possibilistic measurements. By expanding the universe of discourse, the derivation of Posbist reliability models is simplified without loss of the nature of the problems to be solved, and the proofs and calculations of Posbist reliability of typical systems including series, parallel, series-parallel, parallel-series, and cold standby systems are much more straightforward. The detailed application examples in system reliability analysis provide a possibilistic design framework on the general reliability models background.
     (4) The models of possibilistic FTA and the approach to possibilistic importance analysis in accord with possibilistic reliability theory are exploited. From one side, a Posbist fault tree model of coherent systems is constructed by means of possibilistic characterizations of state variables from the viewpoint of fault, along with redefinitions of structure functions of coherent systems and possibilistic fault tree. The MCS model for qualitative analysis and possibilistic operators of logic gates for quantitative analysis are then proposed, respectively. They are suitable for predicting and diagnosing failures and evaluating reliability and safety of systems, in which the statistical data is scarce or the failure probability is extremely small. From another side, combining the ability of possibility theory in handling natural language with the extension of non-addictive measures by GIT, a new importance measure is proposed based upon possibilistic information entropy. In a two-dimensional framework combining both the set theory and the measure theory, an axiomatic index of importance is defined in the possibility space and then the modeling principles are presented after investigating the possibilistic information semantics, measure-theoretic terms and entropy-like models. Not only uncertainty quantification but also sensitivity analysis of possibilistic uncertainty is concerned in this study, which provide a practical methodology on the reliability application background.
     From the above works, with the engineering application of the concept selection for mechanical systems, fault tree analysis of the crane rope and a comprehensive safety evaluation of crane machinery, our conclusions could be summarized as follows, i.e. the adjustability of epistemic uncertainty characterizations for the occurrences of insufficient data, the effectiveness of possibilistic measurements for the handling of epistemic uncertainty, and the feasibility of possibilistic system models and fault tree models for the application of possibilistic measurements in reliability analysis.
     In this dissertation, the proposed models and methodologies would be extended to applications in the overall reliability evaluations, fault diagnosis and safety control of other complex engineering machinery.
引文
[1]Cai K Y. System failure engineering and fuzzy methodology:An introductory overview. Fuzzy Sets and Systems,1996,83 (2):113-133.
    [2]牟致忠,朱文予.机械可靠性设计.北京:机械工业出版社,1993.
    [3]宋保维.系统可靠性设计与分析.西安:西北工业大学出版社,2000.
    [4]孙新利,陆长捷.工程可靠性教程.北京:国防工业出版社,2005.
    [5]高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社,2002.
    [6]郭波,武小悦,张秀彬等.系统可靠性分析.北京:国防工业出版社,2002.
    [7]李海泉,李刚.系统可靠性分析与设计.北京:科学出版社,2003.
    [8]朱文予.机械概率设计与模糊设计.北京:高等教育出版社,2001.
    [9]高镇同.疲劳可靠性.北京:北京航空航天大学出版社,2000.
    [10]徐灏.机械强度的可靠性设计.北京:机械工业出版社,1984.
    [11]卢玉明.机械零件的可靠性设计.北京:高等教育出版社,1989.
    [12]曾攀.材料的概率疲劳损伤特性及现代结构分析原理.北京:科学技术文献出版社,1993.
    [13]王超,王金等.机械可靠性工程.北京:冶金工业出版社,1992.
    [14]王光远.工程软设计理论.北京:科学出版社,1992.
    [15]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996.
    [16]董玉革.机械模糊可靠性设计.北京:机械工业出版社,2000.
    [17]黄洪钟.模糊设计.北京:机械工业出版社,1999.
    [18]Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures:from A. M. Freudenthal's criticisms to modern convex modeling. Computers and Structures,1995,56 (6):871-895.
    [19]吴永平.工程机械可靠性.北京:人民交通出版社,2002.
    [20]顾迪民.起重机械事故分析和对策.北京:八民交通出版社,2001.
    [21]王福绵.起重机械事故预防与故障分析.北京:北京理工大学出版社,2008.
    [22]Kaufmann A. Introduction to the Fuzzy Subsets. New York:Academic Press,1975.
    [23]Blockley D I. The Nature of Structural Design and Safety. New York:John Wiley & Sons,1980.
    [24]Brown C B. The merging of fuzzy and crisp information. Journal of the Engineering Mechanics Division, ASCE,1980,106(1):123-133.
    [25]Brown C B. Entropy constructed probabilities. Journal of the Engineering Mechanics Division, ASCE, 1980,106 (4):633-640.
    [26]Yao J T P. Damage assessment of existing structures. Journal of the Engineering Mechanics Division, ASCE,1980,106 (4):785-799.
    [27]Shiraishi N, Furuta H. Reliability analysis based on fuzzy probability. Journal of the Engineering Mechanics Division, ASCE,1983,109(6):1445-1459.
    [28]Ayyub B M, Lai K L. Structural reliability assessment with ambiguity and vagueness in failure. Naval Engineers Journal,1992,104 (3):21-35.
    [29]Tanaka H, Fan L T, Lai F S, Toguchi K. Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability 1983,32 (5):453-457.
    [30]Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems,1990,34 (2):145-155.
    [31]Soman K P, Misra K B. Fuzzy fault tree analysis using resolution identity and extension principle, Internat. Journal of Fuzzy Math.1993,1:193-212.
    [32]Misra K B, Soman K P. Multistate fault tree analysis using fuzzy probability vectors and resolution identity. In:Onisawa T and Kacprzyk J Eds., Reliability and Safety Analysis under Fuzziness. Heidelberg:Physica-Verlag,1995:113-125.
    [33]Sawyer J P, Rao S S. Fault tree analysis of mechanical systems. Microelectronics and Reliability, 1994,54 (4):653-667.
    [34]Lin C T, Wang M J. Hybrid fault tree analysis using fuzzy sets. Reliability Engineering and System Safety,1997,58 (3):205-213.
    [35]Furuta H, Shiraishi N, Fuzzy importance in fault tree analysis. Fuzzy Sets and Systems,1984,12 (3): 205-213.
    [36]Suresh P V, Babar A K, Raj V V. Uncertainty in fault tree analysis:A fuzzy approach. Fuzzy Sets and Systems,1996,83 (2):135-141.
    [37]Pan H S, Yun W Y. Fault tree analysis with fuzzy gates. Computers and Industrial Engineering,1997, 33 (3-4):569-572.
    [38]Timothy J R. Fuzzy logic with engineering applications. Hoboken, NJ:John Wiley,2004.
    [39]Keller A Z. Kara-Zaitri C. Further applications of fuzzy logic to reliability assessment and safety analysis. Microelectronics and Reliability,1989,29 (3):399-404.
    [40]Singer D. Fault tree analysis based on fuzzy logic. Computers and Chemical Engineering,1990,14 (3):259-266.
    [41]Weber D P. Fuzzy fault tree analysis. The 3rd IEEE Conference on Fuzzy Systems, part 3,1994: 1899-1904.
    [42]Guimarees A C F, Ebecken N F F. Fuzzy FTA:a fuzzy fault tree system for uncertainty analysis. Annals of Nuclear Energy,1999,26 (6):523-532.
    [43]Bowles J B, Pelaez C E. Application of fuzzy logic to reliability engineering, Proceedings of the IEEE,1995,83 (3):435-449.
    [44]Gmytrasiewicz P, Hassberger J A, Lee J C. Fault tree based diagnostics using fuzzy logic. IEEE Trans. On Pattern Analysis and Machine Intelligence,1990,12 (11):1115-1119.
    [45]Bowles J B, Pelaez C E. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis, Reliability Engineering and System Safety,1995,50 (2):203-213.
    [46]Pelaez C E, J B Bowles. Applying fuzzy cognitive-maps knowledge representation to failure modes effects analysis, IEEE Proc. Annual Reliability and Maintainability Symposium,1995:450-456.
    [47]Utkin L V. Redundancy optimization by fuzzy reliability and cost of system components. Microelectronics and Reliability,1994,34 (1):53-59.
    [48]Dhingra K A. Optimal apportionment of reliability and redundancy in series systems under multiple objectives. IEEE Transactions on Reliability,1992,41 (4):576-682.
    [49]Reddy R K, Haldar A. A random-fuzzy reliability analysis. In:Ayyub B M ed. Proceedings of the First International Symposium on Uncertainty Modeling and Analysis. Los Alamitos:IEEE Computer Society Press,1990:161-166.
    [50]Viertl R, Gurker W. Reliability estimation based on fuzzy life time data. In:Onisawa T and Kacprzyk J Eds. Reliability and Safety Analysis under Fuzziness. Heidelberg:Physica-Verlag,1995:153-168.
    [51]Viertl R. Statistics with non-precise data. Journal of Computing and Information Technology,1996,4 (4):215-224.
    [52]Huang H Z. Fuzzy multi-objective optimization decision-making of reliability of series system. Microelectronics and Reliability,1997,37 (3):447-449.
    [53]Verma D, Knezevic J. A fuzzy weighted wedge mechanism for feasibility assessment of system reliability during conceptual design. Fuzzy Sets and Systems,1996,83 (2):179-187
    [54]Kanagawa A, Ohta H. Fuzzy design for fixed-number life tests. IEEE Transactions on Reliability, 1990,39 (3):394-398.
    [55]Kanagawa A, Ohta H. Fixed-time life tests based on fuzzy life characteristics. IEEE Transactions on Reliability,1992,41 (2):317-320.
    [56]Soman K P, Misra K B. Estimation of parameters of failure distributions with fuzzy data. International Journal of Systems Science,1995,26 (3):659-670.
    [57]Wang G Y, Wang W Q. Fuzzy reliability analysis of seismic structures. In:Feny D, Liu X ed. Fuzzy Mathematics in Earthquake Researches. Beijing:Seismological Press,1985:93-102
    [58]王光远,张鹏,陈艳艳.工程结构及系统的模糊可靠性分析.南京:东南大学出版社,2001.
    [59]赵国藩.结构可靠度理论.北京:中国建筑工业出版社,2000.
    [60]方华灿,陈国明.模糊概率断裂力学.东营:石油大学出版社,1999.
    [61]胡毓仁,陈伯真.船舶与海洋工程结构疲劳可靠性分析.北京:人民交通出版社,1996.
    [62]Cai K Y. Fuzzy reliability theories. Fuzzy Sets and Systems,1991,40 (3):510-511.
    [63]Cai K Y. Introduction to Fuzzy Reliability. Boston:Kluwer academic publishers,1996.
    [64]Liu Y B, Qiao Z, Wang G Y. Fuzzy random reliability of structures based on fuzzy random variables. Fuzzy Sets and Systems,1997,86 (3):345-355.
    [65]Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,1978,1(1):3-28.
    [66]Dubois D, Prade H. Possibility Theory:An Approach to Computerized Processing of Uncertainty. New York:Plenum Press,1988.
    [67]De Cooman G. Possibility theory Ⅰ:the measure-and integral-theoretical groundwork. International Journal of General Systems,1997,25 (4):291-323.
    [68]De Cooman G. Possibility theory-Ⅱ:conditional possibility. International Journal of General Systems, 1997,25 (4):325-351.
    [69]De Cooman G. Possibility theory-Ⅲ:possibilistic independence. International Journal of General Systems,1997,25 (4):353-371.
    [70]Klir G J. Fuzzy Sets:An Overview of Fundamentals, Applications and Personal Views. Beijing: Beijing Normal University Press,2000.
    [71]Klir G J. Uncertainty and Information:Foundations of Generalized Information Theory. New Jersey: John Wiley & Sons,2006.
    [72]De Cooman G, Zhang G, Kerre E E. Possibility measure and possibility integrals defined on a complete lattice. Fuzzy Sets and Systems,2001,120 (3):459-467.
    [73]Mesiar R. Fuzzy measure and integrals. Fuzzy Sets and Systems,2005,156 (3):365-370.
    [74]Carlsson C, Fuller R. On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems,2001,122 (2):315-326.
    [75]Sportt M. A theory of possibility distributions. Fuzzy Sets and Systems,1999,102 (2):135-155.
    [76]Dubois D, Lang J, Prade H. Possibilistic logic. In:handbook of logic in artificial intelligence and logic programming:non-monotonic reasoning and uncertain reasoning, New York:Oxford University Press,1994,3:439-513.
    [77]Lee J, Liu K F R, Chiang W. A possibilistic-logic-based approach to integrating imprecise and uncertain information. Fuzzy Sets and Systems,2000,113 (2):309-322.
    [78]Dubois D, Prade H. Fuzzy sets in approximate reasoning, Part 1:Inference with possibility distributions. Fuzzy Sets and Systems,1991,40 (1):143-202.
    [79]Krishnapuram R, Keller J M. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems,1993,1 (2):98-110.
    [80]陈元谱,尹建伟,董金祥.基于可能性理论的聚类分析.计算机工程与应用,2003(13):85-87.
    [8l]刘东波.可能性理论与不相容知识处理.小型微型计算机系统,1994,15(3):20-28.
    [82]陈顺怀,冯恩德,王呈方.关于模糊优化可能度定义的讨论.武汉理工大学学报,2001,23(3):54-57.
    [83]Jensen H A. Structural optimal design of systems with imprecise properties:a possibilistic approach. Advances in Engineering Software,2001,32 (12):937-948..
    [84]刘普寅,吴孟达.模糊理论及其应用.长沙:国防科技大学出版社,1998.
    [85]刘立柱.概率与模糊信息论及其应用.北京:国防工业出版社,2004.
    [86]Wolkenhauer O. Possibility theory with applications to data analysis. Taunton, Somerset, England: Research Studies Press, New York:Wiley,1998.
    [87]Tanaka H, Lee H. Exponential possibility regression analysis by identification method of possibilistic coefficients. Fuzzy Sets and Systems,1999,106 (2):155-165.
    [88]Kozine I O, Filimonov Y V. Imprecise reliabilities:experiences and advances. Reliability Engineering and System Safety,2000,67 (1):75-83.
    [89]Mourelatos Z, Zhou J. Reliability estimation and design with insufficient data based on possibility theory. AIAA Journal,2005,43 (8):1696-1705.
    [90]Moller B, Beer M, Graf W, et al. Possibility theory based safety assessment. Computer-Aided Civil and Infrastructure Engineering,1999,14 (2):81-91.
    [91]Kikuchi S, Chakroborty P. Place of possibility theory in transportation analysis. Transportation Research Part B:Methodological,2006,40 (8):595-615.
    [92]Dubois D, Prade H. Possibility Theory and Its Applications:A Retrospective and Prospective View. The IEEE Int. Conf. on Fuzzy System,2003:3-11.
    [93]Onisawa T, An Application of fuzzy concepts to modeling of reliability analysis, Fuzzy Sets and Systems,1990,37 (3):267-286.
    [94]Onisawa T. An approach of system reliability analysis using failure possibility and success possibility. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium,1995,4:2069-2076.
    [95]Cappelle B, Kerre E E. On a possibilistic approach to reliability theory. In:Proceedings of the Second International Symposium on Uncertainty Analysis, Maryland MD,1993:415-418.
    [96]Cappelle B, Kerre E E. A general possibilistic framework for reliability theory. IPMU'94, Lecture Notes in Computer Science,1995,945:311-317.
    [97]Cappelle B, Kerre E E. Computer assisted reliability analysis:An application of possibilistic reliability theory to a subsystem of a nuclear power plant. Fuzzy Sets and Systems,1995,74 (1): 103-113.
    [98]蔡开元,文传源,张明廉.模糊可靠性理论中的基本概念.航空学报,1993,14(7):388-397.
    [99]Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems,1991,42 (2):145-172.
    [100]Cai K Y, Wen C Y, Zhang M L. Posbist reliability behavior of typical systems with two types of failure. Fuzzy Sets and Systems,1991,43 (1):17-32.
    [101]Utkin L.V. Fuzzy reliability of repairable systems in the possibility context. Microelectronics and Reliability,1994,34(12):1865-1876.
    [102]Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context. Fuzzy Sets and Systems,1996,83 (2):203-213.
    [103]De Cooman G. On modeling possibilistic uncertainty in two-state reliability theory. Fuzzy Sets and Systems,1996,83 (2):215-238.
    [104]Cai K Y, Wen C Y, Zhang M L. Fuzzy states as a basis for a theory of fuzzy reliability. Microelectronics and Reliability,1993,33 (15):2253-2263.
    [105]Cai K Y, Wen C Y, Zhang M L. Mixture models in profust reliability theory. Microelectronics and Reliability,1995,35 (6):985-993.
    [106]Cutello V, Montero I, Yanez J. Structure functions with fuzzy states. Fuzzy Sets and Systems,1996, 83 (2):189-202.
    [107]Cai K Y. Q-scale measures of fuzzy sets. Fuzzy Sets and Systems,1994,66 (1):59-81.
    [108]Pandey D, Tyagi S K. Profust reliability of a gracefully degradable system, Fuzzy Sets and Systems, 2007,158 (7):794-803.
    [109]Li B, Zhu M, Xu K. A practical engineering method for fuzzy reliability analysis of mechanical structures. Reliability Engineering and System Safety,2000,67 (3):311-315.
    [110]黄洪钟.关于机械系统的模糊-随机可靠度理论的研究.机械科学与技术,1992,42(1):1-6.
    [111]黄洪钟.机械结构广义强度的模糊可靠性计算理论.机械工程学报,2001,37(6):106-108.
    [112]董玉革,朱文予,陈心昭.机械模糊可靠性计算方法的研究.系统工程学报,2000,15(1):7-12.
    [113]江涛,陈建军,拓耀飞.随机应力模糊强度时模糊可靠性计算理论的等价性研究.机械强度,2006,28(1):61-65.
    [114]吕震宙,岳珠峰.模糊随机可靠性分析的统一模型.力学学报,2004,36(5):533-539.
    [115]Cremona C, Gao Y. The possibilistic reliability theory:theoretical aspects and applications. Structural Safety,1997,19 (2):173-201.
    [116]Kawamura H, Kuwamoto Y. Combined probability-possibility evaluation theory for structural reliability. In:Onisawa T and Kacprzyk J Eds., Reliability and Safety Analysis under Fuzziness. Heidelberg:Physica-Verlag,1995,341-357.
    [117]Savoia M. Structural reliability analysis through fuzzy number approach, with application to stability. Computers and Structures,2002,80 (12):1087-1102.
    [118]Moller B, Graf W, Beer M. Discussion on "Structural reliability analysis through fuzzy number approach, with application to stability". Computers and Structures,2004,82 (2-3):325-327.
    [119]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报,2002,19(1):89-93.
    [120]郭书祥,吕震宙.结构可靠性分析的概率和非概率混和模型.机械强度,2002,24(2):524-527.
    [121]郭书祥,吕震宙.模糊结构和机械系统的能度可靠性分析方法.机械强度,2003,25(4):430-432.
    [122]冯静,吴孟达.Profust故障树建模与分析.国防科技大学学报,2001,23(1):85-88.
    [123]Huang H Z, Tong X, Zuo M J. Posbist fault tree analysis of coherent systems. Reliability Engineering and System Safety,2004,84 (2):141-148.
    [124]宋华,张洪钺,王行仁.T-S模糊故障树分析方法.控制与决策,2005,20(8):854-859.
    [125]Papalambros P Y, Michelena N F. Trend and challenges in system design optimization. Proceedings of the International Workshop on Multidisciplinary Design Optimization, Pretoria, S. Africa, August, 2000.
    [126]Huang H Z, Wu W D, Liu C S, A coordination method for fuzzy multi-objective optimization of system reliability. Journal of Intelligent and Fuzzy Systems,2005,16 (3):213-220.
    [127]Nikolaidis E, Chen S, Cudney H H, et al. Comparison of probabilistic and possibility theory-based methods for design against catastrophic failure under uncertainty. Journal of Mechanical Design, 2004,126 (3):386-394.
    [128]Mourelatos Z P, Zhou J. A design optimization method using evidence theory. Journal of Mechanical Design,2006,128 (4):901-908.
    [129]Youn B D, Choi K K. Selecting Probabilistic Approaches for Reliability-Based Design Optimization. AIAA Journal,2004,42 (1):124-131.
    [130]Choi K K, Du L, Youn B D. A new fuzzy analysis method for possibility-based design optimization. 10th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA-2004-4585, N.Y.,2004.
    [131]Youn B D, Choi K K. A New response surface methodology for reliability-based design optimization (RBDO). Computers and Structures,2004,82 (2-3):241-256.
    [132]Youn B D, Choi K K. Enriched performance measure approach for reliability-based design optimization. AIAA Journal,2005,43 (4):874-884.
    [133]Youn B D. Integrated framework for design optimization under aleatory and/or epistemic uncertainties using adaptive-loop method. ASME 2005-85253, Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach, California, 2005.
    [134]Hall D L, Llinas J. An introduction to multisensor data fusion. Proceeding of the IEEE,1997,85 (1): 6-23.
    [135]Dubois, D. and Prade, H. Possibility theory and data fusion in poorly informed environments. Control Engineering Practice,1994,2 (5):811-823.
    [136]Dubois D, Prade H. Possibility theory in information fusion. Proceedings of the Third International Conference on Fusion,2000,1:10-13.
    [137]Delmotte F, Borne P. Modeling of reliability with possibility theory. IEEE Transactions on Systems, Man, and Cybernetics,1998,20 (1):78-88.
    [138]Beynon M, Curry B, Morgan P. The Dempster-Shafer theory of evidence:an alternative approach to multicriteria decision modeling. Omega,2000,28 (1):37-50.
    [139]Kohlas J, Monney P A. Theory of evidence:A survey of its mathematical foundations, applications and computational aspects. Mathematical Methods of Operations Research,1994,39 (1):35-68.
    [140]Agarwal H, Renaud J E, Preston E L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering and System Safety,2004,85 (1-3): 281-294.
    [141]王永传,王浩,郁文贤等.信息融合技术在可靠性评估中的应用.系统工程与电子技术,2000,22(3):75-80.
    [142]Klir G J, Folger T A. Fuzzy Sets, uncertainty and information. New Jersey:Prentice Hall, Englewood Cliff,1988.
    [143]Rowe W D, Understanding uncertainty. Risk Analysis,1994,14 (5):743-750.
    [144]Nikolaidis E. Types of uncertainty in design decision making. In:E.Nikolaidis, D. M. Ghiocel and S. Singhal (Eds.), Engineering Design Reliability Handbook. New York:CRC Press,2005.
    [145]Oberkampf W L, DeLand S M, Rutherford B M, et al. Estimation of total uncertainty in modeling and simulation. Sandia Report 2000-0824, Albuquerque, NM,2000.
    [146]Oberkampf W L, Helton J C, Joslyn CA, et al., Challenge problems:uncertainty in system response given uncertain parameters. Reliability Engineering and System Safety,2004,85 (1-3):11-19.
    [147]Ferson S, Ginzburg L R. Different methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety,1996,54 (2-3):133-144.
    [148]Klir G J, and Yuan B. Fuzzy Sets and Fuzzy Logic:Theory and Applications. New York: Prentice-Hall,1995.
    [149]Antonsson E K, Otto K N, Imprecision in engineering design. Journal of Mechanical Design,1995, 117 (B):25-32.
    [150]黄洪钟.影响机械结构可靠性的不确定性分析.机械设计,1995,12(9):56-57.
    [151]孙康文,黄俊,熊雯.飞行器设计中不确定性因素分析.飞行力学,2008,26(3):1-4.
    [152]郭书祥.非随机不确定结构的可靠性方法和优化设计研究:(博士学位论文).西安:西北工业大学,2002.
    [153]佟欣.基于可能性理论的模糊可靠性设计:(硕士学位论文).大连:大连理工大学,2003.
    [154]李永华.稳健可靠性理论及优化方法研究:(博士学位论文).大连:大连理工大学,2005.
    [155]杨纶标,高英仪.模糊数学原理及应用(第四版).广州:华南理工大学出版社,2005.
    [156]刘宝碇,彭锦.不确定理论教程.北京:清华大学出版社,2005.
    [157]Aughenbaugh J M. Managing uncertainty in engineering design using imprecise probabilities and principles of information economics:(PhD dissertation). Mechanical Engineering of Georgia Institute of Technology,2006.
    [158]Elishakoff I. Discussion on a non-probabilistic concept of reliability. Structuural Safety,1995,17 (3): 195-199.
    [159]Utkin L V. Interval reliability of typical systems with partially known probabilities. European Journal of Operational Research,2003,153 (3):790-802.
    [160]吕震宙,冯蕴雯.结构可靠性问题的若干进展.力学学报,2000,30(1):21-28.
    [161]Braibant V, Oudshoorn A, Boyer C. Nondeterministic "possibilistic" approaches for structural analysis and optimal design. AIAA Journal,1999,37 (10):1298-1303.
    [162]http://www.sandia.gov./epistemic/eup_content.htm.
    [163]Zio E. Reliability engineering:Old problems and new challenges. Reliability Engineering and System Safety,2009,94 (2):125-141.
    [164]Helton J C. Alternative representations of epistemic uncertainty. Reliability Engineering and Systems Safety,2004,85(1-3):1-10.
    [165]Ferson S, Joslyn C A., Helton J C, et al. Summary from the epistemic uncertainty workshop: consensus amid diversity. Reliability Engineering and System Safety,2004,85 (1-3):355-369.
    [166]Flage R, Aven T, Zio E. Alternative representations of uncertainty in system risk and reliability analysis:review and discussion. In:Proceedings of ESREL 2008, Valencia Spain, September 2008.
    [167]Klir G. J, Parviz B. Probability-possibility transformations:a comparison. International Journal of General Systems,1992,21 (3):291-310.
    [168]Chen S Q. Comparison of probabilistic and fuzzy set approaches for designing in the presence of uncertainty:(PhD dissertation). Aerospace Engineering of Virginia Polytechnic Institute and State University,2000.
    [169]Medasani S, Kim J, Krishnapuram R. An overview of membership function generation techniques for pattern recognition. International Journal of Approximate Reasoning,1998,19 (3-4):391-417.
    [170]Adduri P R, Penmetsa R C, GrandhiR V. Membership function development for reliability analysis with mixed uncertain variables. The 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, Apr.2005:18-21.
    [171]Dubois D., Prade H, Sandri S. On possibiiity/pmbability transformations. Lowen R, Lowen M. eds, Fuzzy Logic:State of the Art. New York:Kluwer Academic Publication.1993.
    [172]Klir G. A principle of uncertainty and information invariance. International Journal of General Systems,1990,17 (2-3):249-275.
    [173]Cliff Joslyn. Measurement of possibilistic histograms from interval data. International Journal of General Systems,1997,26 (1-2):9-33.
    [174]Yamada K., Probability-possibility transformation based on evidence theory. IFSA World Congress and 20th NAFIPS International Conference,2001,1:70-75.
    [175]D. Dubois, L. Foulloy, and G. Mauris et al. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing,2004,10 (4):273-297.
    [176]G. Jumarie. Possibility-probability transformation:a new result via information theory of deterministic functions. Kybernetes,1994,23 (5):56-59.
    [177]M. Oussalah. On the probability/possibility transformations:a comparative analysis. International Journal of General Systems,2000,29:671-718.
    [178]Dubois D, Prade H. The mean value of fuzzy number. Fuzzy Sets and Systems,1987,24 (3):279-300.
    [179]Yamashiro M. The median for a L-R fuzzy number. Microelectronics and Reliability,1995,35 (2): 269-271.
    [180]Delgado M, Vila M A, Voxman W. On a canonical representation of fuzzy numbers.Fuzzy Sets and Systems,1998,93(1):125-135.
    [181]Carlsson C, Full'er R. On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems 2001,122 (2):315-326.
    [182]Full'er R, Majlender P. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and Systems,2003,136 (3):363-374.
    [183]高镇同,蒋新桐,熊峻江.疲劳性能试验设计和数据处理.北京:北京航空航天大学出版社,1999.
    [184]陶晋,王小群,谈嘉祯.40Cr调质齿轮弯曲强度可靠性试验研究.北京科技大学学报,1997,19(5):482-484.
    [185]卢梅,陶晋,史铁军等.25cZrMOv气体渗氮齿轮弯曲疲劳强度的试验研究.机械传动.2000,24(4):27-28.
    [186]陈举华,刘华文,郭毅之等.复杂机械系统可靠性试验的小样本开发.农业机械学报,2001,32(5):82-85.
    [187]陈举华,徐楠,安艳秋.42CrMo材料硬齿面齿轮全寿命试验及数据分析.机械传动,2005,29(5):63-65.
    [188]李超,王金诺.小子样机械产品可靠性试验研究.中国机械工程,2004,15(21):1898-1902.
    [189]李洪双.小子样可靠性分析方法及及应用研究:(硕士学位论文).西安:西北工业大学,2006.
    [190]徐楠.42CrMo钢疲劳可靠性分析与裂纹萌生微观机理研究:(博士学位论文).济南:山东大学,2006.
    [191]Tang J, Zhao J. A practical approach for predicting fatigue reliability under random cyclic loading. Reliability Engineering and Systems Safety,1995,50 (1):7-15.
    [192]Ling J, Pan J. An engineering method for reliability analyses of mechanical structures for long fatigue lives.Reliability Engineering and Systems Safety,1997,56 (2):135-142.
    [193]中华人民共和国标准(GB/T14230-1993).《齿轮弯曲疲劳强度试验方法》.北京:北京标准出版社,1993.
    [194]中华人民共和国标准(GB3077-1999).《合金结构钢的化学成分与力学性能》.北京:北京标准出版社,1999.
    [195]Lee W.S, Grosh D.L, Tillman F.A. et al. Fault tree analysis, methods, and applications:A review. IEEE Transactions on Reliability,1985, R-34 (3):194-203.
    [196]Borst M V, Schoonakker H. An overview of PSA importance measures. Reliability Engineering and System Safety,2001,72 (3):241-245.
    [197]陈志业.故障树的编制与应用.北京:北京科学技术出版社,1989.
    [198]陈志业,王平,董铸.故障树分析与计算机算法.北京:北京科学技术出版社,1989.
    [199]史定华,王松瑞.故障树分析技术方法和理论.北京:北京师范大学社,1993.
    [200]Hall J W. Uncertainty-based sensitivity indices for imprecise probability distributions. Reliability Engineering and System Safety,2006,91 (10-11):1443-1451.
    [201]Borgonovo E., A new uncertainty importance measure. Reliability Engineering and System Safety, 2007,92 (6):771-784.
    [202]赵荣侠,崔群劳.测度与积分.西安:西安电子科技大学出版社,2002.
    [203]Ramer A, Padet C. Information semantics of possibilistic uncertainty. Fuzzy Sets and Systems,1995, 69 (3):299-303.
    [204]Sgarro A. Possibilistic information theory:a coding theoretic approach. Fuzzy Sets and Systems, 2002,132(1):11-32.
    [205]Sgarro A, Dinu L. P., Possibilistic entropies and the compression of possibilistic data, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10 (6):635-653.
    [206]Sgarro A. An axiomatic derivation of the coding theoretic possibilistic entropy. Fuzzy Sets and Systems,2003,143 (3):335-353.
    [207]R.L. Iman. A matrix-based approach to uncertainty and sensitivity analysis for fault trees [J]. Risk Analysis,1987,7(1):21-33.
    [208]Campolongo F, Saltelli A. Sensitivity analysis of an environmental model:an application of different Analysis methods. Reliability Engineering and System Safety,1997,57 (1):49-69.
    [209]中国机械工业安全卫生协会.机械制造企业安全质量标准化工作指南.北京:中国林业出版社,2005.
    [210]顾必冲,黎启飞.起重运输机械可靠性.北京:人民交通出版社,1993.
    [211]吴宗之等.工业危险辨识与评价.北京:气象出版社,2000.
    [212]任树奎,王福绵.起重机械安全与技术检验手册.北京:中国劳动出版社,1993.
    [213]张岳明.起重机钢丝绳的使用分析.中国新技术新产品,2008(11):95.
    [214]Torkar M. Arzensek B. Failure of crane wire rope. Engineering Failure Analysis,2002,9:227-233.