文昌鱼Ferritin基因表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼被认为是现存与脊椎动物最接近的原索动物,代表着从无脊椎动物到脊椎动物进化过程中的一个重要的过渡阶段,是研究脊椎动物起源与进化的经典实验模型。利用分子生物学手段,研究文昌鱼有关基因的结构、进化和表达,可为我们从分子水平上解开脊椎动物起源的奥秘。更重要的是,将进化与发育联系起来,可以更清楚地揭示有关基因在发育中的作用。
     铁蛋白Ferritin的主要生理功能是储存机体中的过剩铁,避免产生铁中毒和释放铁给需铁的细胞,用于体内生物合成含铁的蛋白质或酶,同时还可以防止铁双氧化过程中所产生的自由基带来的伤害。编码这一蛋白的基因已从人、动物、植物、真菌和细菌中得到分离。迄今为止,原索动物的铁蛋白却未见报道。
     我们在获得文昌鱼铁蛋白基因序列的基础上,通过切片原位杂交和免疫组织化学方法研究了该基因在文昌鱼体内的表达,进而对文昌鱼铁蛋白基因的功能和系统进化进行研究。
     文昌鱼铁蛋白(BbFRT)cDNA序列全长1038 bp,含有一个519 bp的开放阅读框(ORF),编码一个172氨基酸残基组成的多肽,分子量约为20.0kDa。在cDNA 5’端非翻译区有116个碱基, 3'端非翻译区为403个碱基,有一个终止子,并含有一个多腺苷酸信号AATAAA和一个poly(A)尾。起始密码子ATG位于118~120位核苷酸,并且在-3和+4位置均为嘌呤,符合典型的kozak结构。这就表明该cDNA编码一个全长蛋白质。对BbFRT cDNA 5’端非翻译区进行分析,发现在起始密码子ATG上游73 bp处存在一个铁蛋白特有的铁反应元件(iron responsive element,IRE)。该元件含有保守的CAGUGN环状结构和一个CYS,其mRNA二级结构形成典型的柄环结构。对NCBI数据库进行BLASTp相似性搜索发现该蛋白氨基酸序列与脊椎动物铁蛋白H亚基氨基酸序列同源性为68%,与L亚基氨基酸序列同源性为46-51%,与一些已报道的无脊椎动物铁蛋白氨基酸序列同源性为72-77%。
     系统进化分析表明,无脊椎动物和脊椎动物的铁蛋白各自聚为一个类群,而BbFRT蛋白与无脊椎动物铁蛋白聚为一类,说明其与无脊椎动物铁蛋白在进化地位上更加接近。
     将文昌鱼BbFRT基因插入pET28a融合表达载体,在原核E. coli中实现了高效稳定的表达,并纯化出BbFRT融合蛋白。利用该融合蛋白制备的多克隆抗体与文昌鱼的体液中的总蛋白进行Westen blot杂交,出现较强信号,说明在文昌鱼体内含有BbFRT蛋白,而且该抗体具有独特的专一抗性。
     切片原位杂交和免疫组织化学实验都显示BbFRT在文昌鱼体内广泛表达。
     对BbFRT的功能进行分析,发现细菌内毒素LPS处理文昌鱼后,BbFRT基因的表达量在转录水平和翻译水平上相对于对照分别升高了1.5倍和1.6倍。铁处理文昌鱼后,BbFRT基因的表达量在翻译水平上相对于对照升高了1.6倍。表明BbFRT基因表达能够被LPS和铁诱导。这就说明BbFRT不仅能够调节文昌鱼体内铁的代谢,而且对LPS起急性应急反应,在体内起免疫作用。
Amphioxus or lancelet, a protochordate, has long been regarded as a model animal for gaining understanding of the origin of vertebrates. Its genetic information on gene sequence and expression pattern has been widely used for interspecies comparative genome studies and developmental homology analysis.
     Ferritin plays a key role in cellular iron metabolism including iron storage and detoxification, which has been identified in a wide range of organisms including bacteria, fungi, plants and animals. However, little information is available regarding ferritin in the protochordates to date.
     The cDNA (GenBank accession number: AAQ21039) obtained from the gut cDNA library of B. belcheri is 1038 bp long, and its longest open reading frame (ORF) was 519 bp, corresponding to a deduced protein of 172 amino acids with a predicted molecular mass of approximately 20 kDa. The 5’-untranslated region (UTR) was 116 bp long, and the 3’-UTR 403 bp long with a polyadenylation signal AATAAA and a polyadenylation tail . The initiation codon (ATG) was assigned on the basis that there is no ATG in the 5’-UTR 116 nucleotides and the DNA surrounding the initiation codon AT G has a purine at positions of both -3 and +4, which is in accordance with the Kozak consensus sequence. Therefore, cDNA encodes a full-length sequence protein. Analysis of the 5’-UTR demonstrated the presence of a putative iron-responsive element (IRE) in the 5'UTR of BbFRT 73 bp upstream of the start codon ATG, which includes a typical CAGUGN loop and a bulged Cys. The predicted secondary structure of BbFRT IRE mRNA was a typical stem loop structure like that identified in most ferritin mRNAs.
     Sequence comparisons showed that BbFRT was more identical to H-chains (68%) of vertebrate ferritins than to the L-chains (46-51%). It also shared 72-77% identity to invertebrate ferritins documented so far. Phylogenetic analysis revealed two separate clusters of vertebrate and invertebrate ferritins . The new ferritin BbFRT was grouped together with the invertebrate ferritin cluster.
     An expression vector including the entire open reading frame of BbFRT and a 5’additional tag of pET28a is constructed and transformed into E. coli. Recombinant protein is expressed and purified. Rabbit antisera against the purified BbFRT were obtained. Western blotting analysis exhibited that the rabbit antisera reacted with B. belcheri humoral fluids, producing a ~20 kDa band, corresponding to the molecular mass predicted by BbFRT cDNA. These denoted that the rabbit antisera prepared display a conspicuous antigen-specific reactivity.
     Both in situ hybridization histochemistry and immunohistochemical staining revealed that BbFRT was ubiquitously expressed in B. belcheri.
     In addition, BbFRT expression was up-regulated by 1.6-fold and 1.5-fold, respectively, following exposure to LPS and iron at both transcriptional and translational levels. These suggest that BbFRT seems a protein with a dual function functioning in both immune response and iron metabolism.
引文
方永强,翁幼竹,胡晓霞。文昌鱼内柱结构与功能及其神经内分泌调节。自然科学进展,2002,12(10):1090-1094
    方永强,周寿康,翁幼竹等。LHβmRNA在文昌鱼脑和哈氏窝的定位及其表达。自然科学进展,2001,11:992-994
    方永强。文昌鱼生态习性及其资源的保护。动物学杂志,1987,22:41-45
    郭秀君。《微生物学》。济南,山东大学出版社,1994,304-306
    王玢,左明雪。人体及动物生理学。高等教育出版社(第二版)北京。2001。300-301
    张士璀,袁金铎,李红岩。文昌鱼—研究脊椎动物起源和进化的模式动物。生命科学,2001,13:214-218
    张天荫。动物胚胎发育讲座(二):文昌鱼的胚胎发生。生物学通报,1994,29(8):25-27
    王群力,孔波,黄河清。铁蛋白纳米蛋白壳结构与功能研究新进展。《化学进展》,2004,16(4):516-519。
    李忻怡等。青岛文昌鱼铁蛋白ferritin基因的序列分析、同源性比较及二级结构预测。山东大学学报(理学版),2003,38(5):116-120。
    曹廷明,黄河清,孔波。分析技术在铁蛋白结构与功能研究中的应用。《分析仪器》,2003,2:38-41。
    Altschul, S.F., Madden, T.L., Sch?ffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids , 1997. Res. 25, 3389-3402.
    Andrew, S.C., Arosio, P., Bottke, W., Briat, J.F., Von Darl, M., Harrison, P.M., Laulhère, J.P., Levi, S., Lobreaux, S. and Yewdall, S.J. Structure, function and evolution of ferritins. J. Inorg. Biochem., 1992. 47, 161-174.
    Beck, G., Ellis, T.W., Habicht, G.S., Schluter, S.F., Marchalonis, J.J. Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev. Comp. Immunol., 2002. 26, 11-26.
    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976. 72, 248-254.
    Burland, T.G. DNASTAR's Lasergene sequence analysis software. Methods Mol. Biol. 2000. 132, 71-91.
    Carlyon, J.A., Ryan, D., Archer, K. and Fikrig, E. Effects of Anaplasma phagocytophilum on Host Cell Ferritin mRNA and Protein Levels. Infect. Immun., 2005. 73, 7629–7636.
    Charlesworth, A., Georgieva, T., Gospodov, I., Law, J.H., Dunkov, B.C., Ralcheva, N., Barillas-Mury, C., Ralchev, K., Kafatos, F.C. Isolation and properties of Drosophila melanogaster ferritin—molecular cloning of a cDNA that encodes one subunit, and localization of the gene on the third chromosome. Eur. J. Biochem. 2005. 247, 470-5.
    Demmer, J., Stasiuk, S.J., Adamski, F.M., Grigor, M.R. Cloning and expression of the transferrin and ferritin genes in a marsupial, the brushtail possum (Trichosurus vulpecula). Biochim. Biophys. Acta. 1999. 14, 65-74.
    Dunkov, B.C., Zhang, D., Choumarov, K., Winzerling, J.J., Law, J.H. Isolation and characterization of mosquito ferritin and cloning of a cDNA that encodes one subunit. Arch. Insect Biochem. Physiol. 1995. 29, 293-307.
    Durand, J.P., Goudard, F., Pieri, J., Escoubas, J.M., Schreiber, N., Cadoret, J.P. Crassostrea gigas ferritin: cDNA sequence analysis for two heavy chain type subunits and protein purification. Gene 2004. 338, 187-195.
    Fan, C., Zhang, S., Liu, Z., Li, L., Luan, J., Saren, G. Identification and expression of a novel class of glutathione-S-transferase from amphioxus Branchiostoma belcheri with implications to the origin of vertebrate liver. Int. J. Biochem. Cell Biol. 2007. 39, 450-61.
    Geiser, D.L., Mayo, J.J., Winzerling, J.J. The unique regulation of Aedes aegypti larval cell ferritin by iron. Insect Biochem. Mol. Biol. 2007, 37, 418-429.
    Geiser, D.L., Zhang, D., Winzerling, J.J. Secreted ferritin: mosquito defense against iron overload? Insect Biochem. Mol. Biol. 2006. 36, 177-187.
    Georgieva, T., Dunkov, B.C., Dimov, S., Ralchev, K., Law, J.H. Drosophila melanogaster ferritin: cDNA encoding a light chain homologue, temporal and tissue specific expression of both subunit types. Insect Biochem. Mol. Biol. 2002. 32, 95-302.
    Gerard, B., Farman, N., Raja, K.B., Eugene, E., Grandchamp, B., Beaumont, C. Expression of H and L ferritin mRNAs in mouse small intestine. Exp. Cell Res. 1996. 228, 8-13.
    Harrison, P.M., Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochem. Biophys. Acta. 1996. 1275, 161-203.
    Hempstead, P.D., Yewdall, S.J., Fernie, A.R., Lawson, D.M., Artymink, P.J., Rice, D.W., Ford, G.C., Harrison, P.M. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 1997. 268, 424-448.
    Hsieh, S.L., Chiu, Y.C., Kuo, C.M. Molecular cloning and tissue distribution of ferritin in Pacific White shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2006. 21, 279-83.
    Huang, T., Law, J.H., S?derh?ll, K. Purification and cDNA cloning of ferritin from the hepatopancreas of the freshwater crayfish Pacifastacus leniusculus. Eur. J. Biochem. 1996. 236, 450-456.
    Jeong, B.R., Chung, S.M., Baek, N.J., Koo, K.B., Baik, H.S., Joo, H.S., Chang, C.S. and Choi, J.M. Characterization, cloning and expression of the ferritin gene from the Korean Polychaete, Periserrula leucophryna. J. Microbiol. 2006.44, 54-63.
    Kim, S.R., Lee, K.S., Yoon, H.J., Park, N.S., Lee, S.M., Kim, I., Seo, S.J., Sohn, H.D., Jin, B.R. Molecular cloning, expression and characterization of cDNA encoding the ferritin subunits from the beetle, Apriona germari. Comp. Biochem. Physiol. B 2004. 138, 423-433.
    Kopácek, P., Zdychová, J., Yoshiga, T., Weise, C., Rudenko, N., Law, J.H. Molecular cloning, expression and isolation of ferritins from two tick species-Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 2003. 33, 103-113.
    Kozak, M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987. 15, 8125-48.
    Liang, Y., Zhang, S., Lun, L. & Han, L., a. Presence and localization ofantithrombin and its regulation after acute lipopolysaccharide exposure in amphioxus, with implications for the origin of vertebrate liver. Cell Tissue Res. 2006, 323, 537-541.
    Liang, Y. & Zhang, S., b. Demonstration of plasminogen-like protein in amphioxus with implications for the origin of vertebrate liver. Acta. Zool. 2006. 87, 141–145.
    Liu, Z., Zhang, S., Yuan, J., Sawant, M.S., Wei, J., Xu, A. Molecular cloning and phylogenetic analysis of AmphiUbf80, a new member of Ubiquitin family from the amphioxus Branchiostoma belcheri tsingtauense. Curr. Sci. 2002. 83, 50-3.
    Mahanama, D.Z., Jehee, L. Two ferritin subunits from disk abalone (Haliotis discus discus): Cloning, characterization and expression analysis. Fish Shellfish Immunol. 2007. 23, 624-635.
    Ong, D.S., Wang, L., Zhu, Y., Ho, B., Ding, J.L. The response of ferritin to LPS and acute phase of Pseudomonas infection. J. Endotoxin Res. 2005. 11, 267-280.
    Orino, K., Eguchi, K., Nakayama, T., Yamamoto, S. and Watanabe, K. Sequencing of cDNA clones that encode bovine ferritin H and L chains. Comp. Biochem. Physiol. B 1997. 118, 667-673.
    Pan, D., He, N., Yang, Z., Liu, H., Xu, X. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev. Comp. Immunol. 2005. 29, 103-112.
    Rehm, B.H. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Microbiol. Biotechnol. 2001. 57, 579–592.
    Rogers, J.T., Bridges, K.R., Durmowicz, G.P., Glass, J., Auron, P.E., Munro, H.N. Translation control during the acute phase response. Ferritin synthesis in response to interleukin-1. J. Biol. Chem. 1990. 265, 14572-14578.
    Santamaria, R., Irace, C., Festa, M., Maffettone, C., Colonna, A. Induction of ferritin expression by oxalomalate. Biochim. Biophys. Acta. 2004. 1691, 151-159.
    Theil, E.C. Ferritin: structure, gene regulation and cellular function in animals, plants and microorganisms. Annu. Rev. Biochem. 1987. 56, 289-315.
    Torti, F.M. and Torti, S.V. Regulation of ferritin genes and proteins. Blood 2002. 99, 3505-3516.
    Torti, S.V., Kwak, E.L., Miller, S.C., Miller, L.L., Ringold, G.M., Myambo, K.B., Young, A.P., Torti, F.M. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor inducible gene. J. Biol. Chem. 1988. 263, 12638-44.
    Towbin, H., Stachelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979. 76, 4350-4354.
    Tsygita, A. and Yariv, J. Preliminary results for the primary structure of bacterioferritin of E. coli. Biochem. J. 1985. 231, 209-212.
    Von Darl, M., Harrison, P.M., Bottke, W. cDNA cloning and deduced amino acid sequence of two ferritins: Soma ferritin and yolk ferritin, from the snail Lymnaea stagnalis. L. Eur. J. Biochem. 1994. 222, 353-66.
    Xue, J., Zhang, S., Liu, N., Liu, Z. Verification, characterization and tissue-specific expression of UreG, a urease accessory protein gene, from the amphioxus Branchiostoma belcheri. Acta. Biochim. Biophys. Sin. (Shanghai). 2006. 38, 549-55.
    Zhang, J., Li, F., Wang, X., Zhou, Q., Xiang, J. Cloning, expression and identification of ferritin from Chinese shrimp, Fenneropenaeus chinensi. J. Biotechnol. 2006. 125, 173-84.
    Zhang, Y., Meng, Q., Jiang, T., Wang, H., Xie, L., Zhang, R. A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata). Com. Biochem. Physiol. B 2003. 135, 43-54.