胡杨XTH调控烟草盐诱导肉质化及缓解重金属胁迫的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐离子和重金属离子抑制植物正常的生长发育。过高的盐浓度会破坏植物体内的水分平衡、离子平衡和活性氧平衡;而过量的重金属离子(如Cd2+)能够通过干扰光合、呼吸、营养平衡等生理过程来抑制植物生长,甚至导致植物死亡。在我国西北干旱盐碱的荒漠地区,胡杨(Populus euphrattca)是唯一能够成林的乔木树种。胡杨叶片在长期盐处理后能够发生肉质化,起到稀释组织和细胞中盐分的作用,但盐诱导肉质化的分子机制尚不清楚。另有研究表明,胡杨对Cd2+的响应非常敏感,但其对重金属胁迫的响应和适应机理还不明确。
     木葡聚糖内糖基转移酶/水解酶调控细胞壁的松弛和伸展。本实验室前期从胡杨叶片中克隆得到PeXTH全长基因,荧光定量PCR结果显示该基因在长期盐胁迫下的表达呈上调趋势,因此PeXTH很有可能参与盐诱导的胡杨叶片肉质化的发生,从而提高胡杨的抗盐性。此外,XTH基因能够响应重金属胁迫,在低浓度的Cd2+胁迫下,胡杨PeXTH基因的表达水平提高了1.2~2.1倍,因而该基因也可能参与胡杨适应Cd2+胁迫的生理过程。
     本论文利用转基因技术,将PeXTH基因在模式植物烟草中过量表达,通过比较转基因烟草和野生型烟草在叶片显微结构、形态表型、生理特征等方面的差异表现,探讨了PeXTH在植物适应盐胁迫和重金属胁迫中的作用机制。主要研究结果如下:
     1.PeXTH蛋白具有木葡聚糖内转糖苷酶(XET)的催化活性域DEIDFEFLG,且定位在内质网和细胞壁上。
     2.PeXTH的纯化蛋白大小约为35kD,且具有体外XET活性。该蛋白发挥活性的最适温度是37℃,最适pH是6.0。
     3.PeXTH通过调控组织肉质化来提高植物耐盐性。实验表明,PeXTH基因的过表达使转基因烟草的抗盐性增加,盐胁迫下转基因烟草的存活率和根长都明显高于野生型。这种变化来源于转基因烟草叶片显微结构和生理特征的改变:同野生型烟草相比,转基因烟草的肉质化程度明显提高,栅栏组织细胞排列更为紧密,叶肉细胞的胞间隙较小,从而导致转基因烟草单位叶面积水含量和鲜/干重比值这两个肉质化指标分别比野生型烟草高36%和39%;这种显微结构的变化一方面可以达到稀释盐分的效果,另一方面也有助于提高转基因烟草的叶片保水力,从而在盐胁迫下起到稀释叶组织和细胞盐浓度的作用。此外,叶肉细胞数目的增加和胞间隙的减小还有利于碳利用率和光合效率的提高。总之,PeXTH基因的过表达能够通过引发叶片肉质化来提高转基因烟草的抗盐性。
     4.PeXTH还可以缓解植物的Cd2+胁迫。PeXTH基因的过表达能够使转基因烟草的抗Cd2+性提高,Cd2+胁迫下转基因烟草叶和根生长受到的抑制明显较小:Cd2+胁迫下,转基因烟草根系的Cd2+内流显著低于野生型烟草,从而使转基因烟草根尖和根成熟区中积累的Cd2+比野生型烟草少49%-58%;值得注意的是,转基因烟草根系的木葡聚糖降解活性比野生型烟草高56%~87%,导致根细胞壁中的木葡聚糖含量比野生型烟草低25%~27%。由此可见,PeXTH基因的过表达提高了转基因烟草根系的木葡聚糖降解活性,降低了根细胞壁中的木葡聚糖含量,导致Cd2+结合位点减少,从而使根系对Cd2+的吸收减弱,减少了Cd2+在根中的积累,最终缓解了Cd2+对转基因烟草的毒害。
Salt ions and heavy metals suppress plant growth and development. High salt concentrations lead to water deficit and ion toxicity, which induce oxidative damage in plants. Excess heavy metals, such as cadmium (Cd2+) interferes with a series of physiological processes, including photosynthesis, transpiration, and nutrient balance, resulting in growth retardation and eventually plant death. Being a valuable tree species that survives in saline and alkaline desert sites, Populus euphratica has great potential for genetic improvement in large-scale afforestation. During a prolonged period of salt stress, P. euphratica develops pronounced succulent leaves, which benefits the adaptation of P. euphratica to salt environments. However, the molecular mechanism of salt-induced succulence remains poorly understood. P. euphratica has been shown to be sensitive to Cd2+stress, the acclimation and adaptation processes need to be investigated.
     Xyloglucan endotransglucosylase/hydrolase (XTH) is considered to be a vital factor controlling cell wall loosening and extensibility. We had cloned the full-length PeXTH gene from leaves of P. euphratica. Real-time PCR assay showed that the expression of PeXTH was up-regulated under salt conditions. Therefore, the PeXTH gene was suggested to involve in salt-induced leaf succulence and thus enhancing salt tolerance of P. euphratica. In addition, XTH is involved in the plant response to heavy metal toxicity. However, the link between XTH and Cd2+stress has not yet been established in higher plants. PeXTH expression was up-regulated by1.2-2.1fold in P. euphratica roots and leaves upon Cd2+exposure (40μM-80μM CdCL2), indicating that the PeXTH gene might play a role in Cd2+tolerance of P. euphratica.
     In this study, the PeXTH gene was overexpressed into tobacco by transgenic technique. We investigated the functions of PeXTH in salinity and Cd2+tolerance by comparing the leaf anatomy, plant morphology, and physiological traits of PeXTH-transgenic and wild-type tobacco plants. The main results and conclusions are as follows:
     1. The putative amino acid sequence of PeXTH protein contained the DEIDFEFLG domain, which has been proposed to be the catalytic site of xyloglucan endotrans-glucosylase (XET). In addition, PeXTH localized exclusively to the endoplasmic reticulum and cell wall.
     2. Purified PeXTH protein was approximately35kD and had XET activity in vitro. The optimum temperature of the enzyme was37℃and the optimum pH was6.0.
     3. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH over-expression. Compared with the wild type, PeXTH-transgenic plants contained36%higher water content per unit area and39%higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a47%-78%greater net photosynthesis under control and salt treatments. Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.
     4. Tobacco plants overexpressing PeXTH were more tolerant to Cd2+stress than wild-type tobacco in terms of root and shoot growth. Transgenic lines accumulated49%-58%less Cd2+in root apical and mature regions, as compared to the wild-type. The less buildup of Cd2+in roots of transgenic lines was the result of lower influx of Cd2+under Cd2+stress. It is noting that transgenic plants displayed56%-87%higher xyloglucan degradation activity (XDA) than the wild type, leading to a25%-27%decline of xyloglucan content in the root cell walls. Therefore, overexpression of PeXTH increased the activity of XDA in transgenic plants, which enhanced the degradation of xyloglucan in the wall. The down-regulated amount of xyloglucan led to less binding sites for Cd2+and thus reduced the root Cd2+uptake and buildup in transgenic plants. Consequently, the Cd2+toxicity was eventually alleviated in transgenic tobacco.
引文
1. 丁明全.盐胁迫下胡杨表达谱微阵列分析及差异表达基因的功能解析[D].北京:北京林业大学,2011.
    2. 杜丽萍.胡杨木葡聚糖内转糖苷酶基因PeXET的克隆及功能分析[D].北京:北京林业大学,2009.
    3. 李旦旦.胡杨钙离子结合蛋白PeCBL6、PeCBL10基因的克隆与功能研究[D].北京:北京林业大学,2012.
    4. 李静.抗盐菌根菌Paxillus与吸水剂提高树木耐盐机制研究[D].北京:北京林业大学,2010.
    5. 綦翠华,韩宁,王宝山.不同盐处理对盐地碱蓬幼苗肉质化的影响[J].植物学通报,2005,22:175-182.
    6. 孙健.胡杨响应盐胁迫与离子平衡调控信号网络研究[D].北京:北京林业大学,2011.
    7. 王瑞刚.盐诱导氧化胁迫与杨树耐盐性研究[D].北京:北京林业大学,2007.
    8. 赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993,9-10.
    9. 赵运军,李来庚.植物细胞壁松弛因子[J].植物生理学报,2011.47:925-935.
    10. Albert R. Salt regulation in halophytes [J]. Oecologia,1975,21:57-71.
    11. Andradc LR, Farina M. Filho GMA. Role of Padina gymnospora (Dictyotales. Phacophyccae) cell walls in cadmium accumulation [J]. Phycologia,2002,41:39-48.
    12. Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, Brumer H. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:biological implications for cell wall metabolism [J]. The Plant Cell,2007,19:1947-1963.
    13. Becnel J, Natarajan M, Kipp A, Braam J. Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator [J]. Plant Molecular Biology,2006,61:451-467.
    14. Braam J. In touch:plant responses to mechanical stimuli [J]. New Phytologist,2005,165:373-389.
    15. Britto DT, Kronzucker HJ. Cellular mechanisms of potassium transport in plants [J]. Physiologia Plantarum,2008,133:637-650.
    16. Buckeridge MS, Rayon C, Urbanowicz B, Tine MAS, Carpita NC. Mixed linkage (1→3),(1→4)-β-D-glucans of grasses [J]. Cereal Chemistry,2004,81:115-127.
    17. Campbell P, Braam J. Co-and/or post-translational modifications are critical for TCH4 XET activity [J]. The Plant Journal,1998,15:553-561.
    18. Campbell P, Braam J. Xyloglucan endotransglycosylascs:diversity of genes, enzymes and potential wall-modifying functions [J]. Trends in Plant Science,1999a,4:361-366.
    19. Campbell P, Braam J. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis [J]. The Plant Journal,1999b,18:371-382.
    20. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants:consistency of molecular structure with the physical properties of the walls during growth [J]. The Plant Journal,1993,3:1-30.
    21. Catala C, Rose JKC, Bennett AB. Auxin regulation and spatial localization of an endo-1,4β-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls [J]. The Plant Journal,1997,12:417-426.
    22. Catala C, Rose JKC, York WS, Albersheim P, Darvill AG, Bennett AB. Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls [J]. Plant Physiology,2001,127:1180-1192.
    23. Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron [J]. Plant, Cell & Environment,1999,22:1009-1017.
    24. Chen S, Li J, Wang S, Huttermann A, Altman A. Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl [J]. Trees,2001,15:186-194.
    25. Chen S, Li J, Fritz E, Wang S, Hiittermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress [J]. Forest Ecology and Management,2002a,168:217-230.
    26. Chen S, Li J, Wang T, Wang S, Polle A, Huttermann A. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar [J]. Journal of Plant Growth Regulation,2002b,21:224-233.
    27. Chen S, Li J, Wang S, Fritz E, Hiittermann A, Altman A. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa [J]. Canadian Journal of Forest Research,2003,33:967-975.
    28. Chen S, Olbrich A, Langenfeld-Heyser R, Fritz E, Polle A. Quantitative X-ray microanalysis of hydrogen peroxide within plant cells [J]. Microscopy Research and Technique,2009,72:49-60.
    29. Chen S, Polle A. Salinity tolerance of Populus [J]. Plant Biology,2010,12:317-333.
    30. Chen Z, Pottosin Ⅱ, Cuin TA, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley [J]. Plant Physiology,2007,145:1714-1725.
    31. Cho SK, Kim JE, Park JA, Eom TJ, Kim WT. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants [J]. FEBS Letters,2006,580: 3136-3144.
    32. Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglcosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants(Solarium lycopersicum cv. Dotaerang) [J]. Plant Cell Reports, 2011,30:867-877.
    33. Clemens S, Kim EJ, Neumann D, Schroeder JI. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J]. The EMBO Journal,1999,18:3325-3333.
    34. Cobbett C. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis [J]. Annual Review of Plant Biology,2002,53:159-182.
    35. Cosgrove DJ. Assembly and enlargement of the primary cell wall in plants [J]. Annual Review of Cell and Developmental Biology,1997,13:171-201.
    36. Cosgrove DJ. Growth of the plant cell wall [J]. Nature Reviews Molecular Cell Biology,2005,6: 850-861.
    37. DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium:staking all on metabolism and gene expression [J]. Journal of Integrative Plant Biology,2008,50:1268-1280.
    38. de Silva J, Jarman CD, Arrowsmith DA, Stronach MS, Chengappa S, Sidebottom C, Reid JSG. Molecular characterization of a xyloglucan-specific endo-(1→4)-β-D-glucanase (xyloglucan endo-transglycosylase) from nasturtium seeds [J]. The Plant Journal,1993,3:701-711.
    39. di Toppi LS, Gabbrielli R. Response to cadmium in higher plants [J]. Environmental and Experimental Botany,1999,41:105-130.
    40. Ding M. Hou P, Shen X. et al. Salt-induced expression of genes related to Na'/K'and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species [J]. Plant Molecular Biology, 2010,73:251-269.
    41. Edwards M, Dea ICM, Bulpin PV, Reid JSG. Purification and properties of a novel xyloglucan-specific endo-(1→4)-β-D-glucanase from germinated nasturtium seeds (Tropaeolum majus L.) [J]. The Journal of Biological Chemistry,1986,261:9489-9494.
    42. Eklof JM, Brumer H. The XTH gene family:an update on enzyme structure, function, and phytogeny in xyloglucan remodeling [J]. Plant Physiology,2010,153:456-466.
    43. Fanutti C, Gidley MJ, Reid JSG. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1-4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds [J]. The Plant Journal,1993,3:691-700.
    44. Fanutti C, Gidley MJ, Reid JSG. Substrate subsite recognition of the xyloglucan endo-transglycosylase or xyloglucan-specific endo-(1→4)-β-D-glucanase from the cotyledons of germinated nasturtium (Tropaeolum majus L.) seeds [J]. Planta,1996,200:221-228.
    45. Fritz E. X-ray microanalysis of diffusible elements in plant cells after freeze-drying, pressure-infiltration with ether and embedding in plastic [J]. Scanning Microscopy,1989,3:517-526.
    46. Fry SC. Smith RC, Rcnwick KF, Martin DJ, Hodge SK, Matthews KJ. Xyloglucan endotrans-glucosylase, a new wall-loosening enzyme activity from plants [J]. The Biochemical Journal,1992, 282:821-828.
    47. Fry SC. Novel 'dot-blot' assays for glycosyltransferases and glycosylhydrolases:optimization for xyloglucan endotransglycosylase (XET) activity [J]. The Plant Journal,1997,11:1141-1150.
    48. Geilfus CM, Zorb C, Neuhaus C, Hansen T, Luthen H, Muhling KH. Differential transcript expression of wall-loosening candidates in leaves of maize cultivars differing in salt resistance [J]. Journal of Plant Growth Regulation,2011,30:387-395.
    49. Geisler-Lee J, Geisler M, Coutinho PM, et al. Poplar carbohydrate-active enzymes. Gene identi-fication and expression analyses [J]. Plant Physiology,2006,140:946-962.
    50. Gekeler W, Grill E, Winnacker EL, Zenk MH. Algae sequester heavy metals via synthesis of phytochelatin complexes [J]. Archives of Microbiology,1988,150:197-202.
    51. Genovesi V, Fomale S, Fry SC, et al. ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana [J]. Journal of Experimental Botany,2008,59:875-889.
    52. Gibson AC. The anatomy of succulence. In:Ting IP, GibbsM, eds. Crassulacean acid metabolism [M]. Rockville:American Society of Plant Physiologists,1982,1-30.
    53. Grill E, Winnacker EL, Zenk MH. Phytochelatins:the principal heavy-metal complexing peptides of higher plants [J]. Science,1985,230:674-676.
    54. Grill E, Loffler S, Winnacker EL, Zenk MH. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) [J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86:6838-6842.
    55. Gu RS, Fonseca S, Puskas LG, Hackler LJR, Zvara A, Dudits D, Pais MS. Transcript identification and profiling during salt stress and recovery of Populus euphratica [J]. Tree Physiology,2004a,24: 265-276.
    56. Gu R, Liu Q, Pei D, Jiang X. Understanding saline and osmotic tolerance of Populus euphratica suspended cells [J]. Plant Cell, Tissue and Organ Culture,2004b,78:261-265.
    57. Hameed M, Ashraf M, Ahmad MSA, Naz N. Structural and functional adaptation in plants for salinity tolerance. In:Ashraf M, Ozturk M, Ahmad MSA, eds. Plant adaptation and phyto-remediation [M]. Dordrecht:Springer,2010,151-170.
    58. Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening [J]. Journal of Experimental Botany,2011,62:815-823.
    59. He JY, Zhu C, Ren YF, Yan YP, Cheng C, Jiang DA, Sun ZX. Uptake, subcellular distribution, and chemical forms of cadmium in wild-type and mutant rice [J]. Pedosphere,2008,18:371-377.
    60. Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure [J]. Journal of Experimental Botany,2003, 54:1833-1839.
    61. Hrmova M, Farkas V, Lahnstein J, Fincher GB. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans [J]. The Journal of Biological Chemistry,2007,282:12951-12962.
    62. Hrmova M, Farkas V, Harvey AJ, Lahnstein J, Wischmann B, Kaewthai N, Ezcurra I, Teeri TT, Fincher GB. Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.) [J]. The FEBS Journal,2009,276: 437-456.
    63. Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves [J]. Plant Growth Regulation,2004,42:227-238.
    64. Hyodo H, Yamakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, Kohchi T. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana [J]. Plant Molecular Biology,2003,52:473-482.
    65. Jan A, Yang G, Nakamura H, Ichikawa H, Kitano H, Matsuoka M, Matsumoto H, Komatsu S. Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice [J]. Plant Physiology.2004.136:3670-3681.
    66. Johansson P. Brumer H, Baumann MJ, Kallas AM, Henriksson H. Dcnman SE, Teeri TT, Jones TA. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding [J]. The Plant Cell,2004,16:874-886.
    67. Kaewthai N, Harvey AJ, Hrmova M, Brumcr H, Ezcurra I, Teeri TT, Fincher GB. Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris [J]. Plant Biotechnology,2010, 27:251-258.
    68. Kallas AM, Piens K, Denman SE, Henriksson H, Faldt J, Johansson P, Brumer H, Teeri TT. Enzymatic properties of native and deglycosylated hybrid aspen(Populus tremula×tremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris [J]. The Biochemical Journal, 2005,390:105-113.
    69. Kluge M, Razanoelisoa B, Brulfert J. Implications of genotypic diversity and phenotypic plasticity in the ecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar [J]. Plant Biology,2001,3:214-222.
    70. Ko JH, Han KH, Park S, Yang J. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling [J]. Plant Physiology.2004. 135:1069-1083.
    71. Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:237-260.
    72. Konno H, Nakato T, Nakashima S, Katoh K. Lygodium japonicum fern accumulates copper in the cell wall pectin [J]. Journal of Experimental Botany,2005,56:1923-1931.
    73. Kooiman P. A method for the determination of amyloid in plant seeds [J]. Recueil des Travaux Chimiques des Pays-Bas,1960,79:675-678.
    74. Kurasawa K, Matsui A, Yokoyama R, Kuriyama T, Yoshizumi T, Matsui M, Suwabe K, Watanabe M, Nishitani K. The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana [J]. Plant & Cell Physiology,2009,50:413-422.
    75. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation [J]. Planta,2010,232:1191-1205.
    76. Liu Y, Liu D, Zhang H, Gao H, Guo X, Wang D, Zhang X, Zhang A. The α-and β-expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat:Molecular cloning, gene expression, and EST data mining [J]. Genomics,2007a,90:516-529.
    77. Liu YB, Lu SM, Zhang JF, Liu S, Lu YT. A xyloglucan endotransglucosylase/hydrolase involved in growth of primary root and alters the deposition of cellulose in Arabidopsis [J]. Planta,2007b,226: 1547-1560.
    78. Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances [J]. Journal of Experimental Botany,1997,48:123-128.
    79. Lux A, Martinka M, Vaculik, White PJ. Root responses to cadmium in the rhizosphere:a review [J]. Journal of Experimental Botany,2011,62:21-37.
    80. Mantovani A. A method to improve leaf succulence quantification [J]. Brazilian Archives of Biology and Technology,1999,42:9-14.
    81. Maris A, Suslov D, Fry SC, Verbelen JP, Vissenberg K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension [J]. Journal of Experimental Botany,2009,60: 3959-3972.
    82. Maris A, Kaewthai N, Eklof JM, Miller JQ Brumer H, Fry SC, Verbelen JP, Vissenberg K. Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana [J]. Journal of Experimental Botany,2011,62:261-271.
    83. Marjanac G, Karimi M, Naudts M, Beeckman T, Depicker A, Buck SD. Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types [J]. New Phytologist,2009,184:851-864.
    84. Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R, Navarro-Avino J. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils [J]. Chemosphere,2006,64:478-485.
    85. Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, Komeda Y, Nishitani K. AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements [J]. The Plant Journal,2005,42:525-534.
    86. Mendoza-Cozatl DG, Zhai Z, Jobe TO, et al. Tonoplast-localized Abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance [J]. The Journal of Biological Chemistry,2010,285:40416-40426.
    87. Miedes E, Lorences EP. Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening [J]. Journal of Plant Physiology,2009,166:489-498.
    88. Miedes E, Zarra I, Hoson T, Herbers K, Sonnewald U, Lorences EP. Xyloglucan endotrans-glucosylase and cell wall extensibility [J]. Journal of Plant Physiology,2011,168:196-203.
    89. Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008, 59:651-681.
    90. Ndamukong 1, Chetram A, Saleh A, Avramova. Wall-modifying genes regulated by the Arabidopsis homolog of trithorax, ATX1:repression of the XTH33 gene as a test case [J]. The Plant Journal, 2009,58:541-553.
    91. Nelson BK. Cai X. Nebcnfuhr A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants [J]. The Plant Journal.2007,51:1126-1136.
    92. Nelson EA, Sage RF. Functional constraints of CAM leaf anatomy:tight cell packing is associated with increased CAM function across a gradient of CAM expression [J]. Journal of Experimental Botany,2008,59:1841-1850.
    93. Nelson EA, Sage TL, Sage RF. Functional leaf anatomy of plants with crassulaccan acid metabolism [J]. Functional Plant Biology,2005,32:409-419.
    94. Nishikubo N, Awano T, Banasiak A, et al. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees [J]. Plant & Cell Physiology,2007,48:843-855.
    95. Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stalbrand H, Mellerowicz EJ. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen [J]. Plant Physiology,2011,155:399-413.
    96. Nishitani K, Masuda Y. Auxin-induced changes in the cell wall structure:Changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall of Vigna angularis [J]. Physiologia Plantarum.1981.52:482-494.
    97. Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule [J]. The Journal of Biological Chemistry,1992,267:21058-21064.
    98. Nishitani K. A genome-based approach to study the mechanisms by which cell-wall type is defined and constructed by the collaborative actions of cell-wall-related enzymes [J]. Journal of Plant Research,2002,115:303-307.
    99. Nishitani K. The role of endoxyloglucan transferase in the organization of plant cell walls [J]. International Review of Cytology,1997,173:157-206.
    100. Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant and Soil,1987,101:15-20.
    101. Oh MH, Romanow WG, Smith RC, Zamski E, Sasse J, Clouse SD. Soybean BRU1 encodes a functional xyloglucan endotransglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation [J]. Plant & Cell Physiology,1998,39:124-130.
    102. Okazawa K, Sato Y, Nakagawa T, Asada K, Kato I, Tomita E, Nishitani, K. Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls [J]. The Journal of Biological Chemistry,1993,268:25364-25368.
    103. Ookawara R, Satoh S, Yoshioka T, Ishizawa K. Expression of a-expansin and xyloglucan endo-transglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers [J]. Annals of Botany,2005,96: 693-702.
    104. Osato Y, Yokoyama R, Nishitani K. A principal role for AtXTH18 in Arabidopsis thaliana root growth:a functional analysis using RNAi plants [J]. Journal of Plant Research,2006,119: 153-162.
    105. Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosche M, Kangasjarvi J, Jiang X, Polle A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress [J]. Plant Physiology,2005a,139:1762-1772.
    106. Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T. Molecular characterization of PeNhaDl:the first member of the NhaD Na+/H+antiporter family of plant origin [J]. Plant Molecular Biology,2005b,58:75-88.
    107. Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A. Accumulation and detoxification of lead ions in legumes [J]. Phytochemistry,2002,60:153-162.
    108. Polle A, Klein T, Kettner C. Impact of cadmium on young plants of Populus euphratica and P.× canescens, two poplar species that differ in stress tolerance [J]. New Forests,2013,44:13-22.
    109. Pomponi M, Censi V, Girolamo VD, Paolis AD, di Toppi LS, Aromolo Rita, Costantino P, Cardarelli M. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot [J]. Planta,2006,223:180-190.
    110. Purugganan MM, Braam J, Fry SC. The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum and cold tolerance [J]. Plant Physiology,1997,115:181-190.
    111. Rauser WE. Structure and function of metal chelators produced by plants [J]. Cell Biochemistry and Biophysics,1999,31:19-48.
    112. Reidy B, Nosberger J, Fleming A. Differential expression of XET-related genes in the leaf elongation zone of F. pratensi.s [J]. Journal of Experimental Botany,2001,52:1847-1856.
    113. Rose JKC, Braam J, Fry SC, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis:current perspectives and a new unifying nomenclature [J]. Plant & Cell Physiology,2002,43:1421-1435.
    114. Rose JKC, O'Neill MA, Albersheim P, Darvill AG. Functions of the plant primary cell wall. In: Ernst B, Hart GW, Sinay P, eds. Oligosaccharides in Chemistry and Biology, Vol Ⅱ, Biology of Saccharide [M]. Weinheim:Wiley/VCH,2000,783-806.
    115. Saab IN, Sachs MM. Complete cDNA and genomic sequence encoding a flooding-responsive gene from maize (Zea mays L.) homologous to xyloglucan endotransglycosylase [J]. Plant Physiology, 1995,108:439-440.
    116. Saladie M, Rose JKC, Cosgrove DJ, Catala C. Characterization of a new xyloglucan cndotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action [J]. The Plant Journal.2006.47:282-295.
    117. Sasidharan R, Chinnappa CC, Staal M, Elzenga TM, Yokoyama R, Nishitani K, Voesenek LACJ, Pierik R. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan cndotransglucosylase/hydrolases [J]. Plant Physiology,2010,154:978-990.
    118. Schmohl N, Horst WJ. Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture [J]. Plant, Cell & Environment,2000,23:735-742.
    119. Schunmann PHD, Smith RC, Lang V, Matthews PR, Chandler PM. Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.) [J]. Plant, Cell & Environment,1997,20:1439-1450.
    120. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA. Extracellular Ca:" ameliorates NaCl-induced K loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels [J]. Plant Physiology,2006,141:1653-1665.
    121.Shen Z, Ding M, Sun J, et al. Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions [J]. Plant Cell. Tissue and Organ Culture.2013. DOI 10.1007/s 11240-013-0362-7.
    122. Shin YK, Yum H, Kim ES, Cho H, Gothandam KM, Hyun J, Chung YY. BcXTH1, a Brassica campestris homologue of Arabidopsis XTH9, is associated with cell expansion [J]. Planta,2006, 224:32-41.
    123. Short DC, Colmer TD. Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata [J]. Annals of Botany,1999,83:207-213.
    124. Silva P, Facanha AR, Tavares RM, Geros H. Role of tonoplast proton pumps and Na+/H+antiport system in salt tolerance of Populus euphratica Oliv. [J]. Journal of Plant Growth Regulation,2010, 29:23-34.
    125. Singh AP, Tripathi SK, Nath P, Sane AP. Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTHl and RbXTH2 [J]. Journal of Experimental Botany,2011,62:5091-5103.
    126. Smith JAC, Ingram J, Tsiantis MS, Barkla BJ, Bartholomew DM, Bettey M, Pantoja O, Pennington AJ. Transport across the vacuolar membrane in CAM plants. In:Winter K, Smith JAC, eds. Crassulacean acid metabolism:biochemistry, ecophysiology and evolution [M]. Berlin:Springer-Verlag,1996,53-71.
    127. Smith JAC, Winter K. Taxonomic distribution of crassulacean acid metabolism. In:Winter K, Smith JAC, eds. Crassulacean acid metabolism:biochemistry, ecophysiology and evolution [M]. Berlin:Springer-Verlag,1996,427-436.
    128. Soga K, Wakabayashi K, Hoson T, Kamisaka S. Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls [J]. Plant & Cell Physiology,1999,40:581-585.
    129. Soga K, Wakabayashi K, Kamisaka S, Hoson T. Effects of hypergravity on expression of XTH genes in azuki bean epicotyls [J]. Physiologia Plantarum,2007,131:332-340.
    130. Song J, Ding X, Feng G, Zhang F. Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions [J]. New Phytologist,2006,171:357-366.
    131. Steele NM, Fry SC. Differences in catalytic properties between native isoenzymes of xyloglucan endotransglycosylase (XET) [J]. Phytochemistry,2000,54:667-680.
    132. Sulova Z, Lednicka M, Farkas V. A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds [J]. Analytical Biochemistry,1995,229:80-85.
    133. Sun J, Chen S, Dai S, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species [J]. Plant Physiology,2009a,149:1141-1153.
    134. Sun J, Dai S, Wang R, et al. Calcium mediates root K+/Na+homeostasis in poplar species differing in salt tolerance [J]. Tree Physiology,2009b,29:1175-1186.
    135. Sun J, Li L, Liu M, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars [J]. Plant Cell, Tissue and Organ Culture,2010a,103:205-215.
    136. Sun J, Wang MJ, Ding MQ, et al. H2O2and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na homeostasis in NaCl-stressed Populus euphratica cells [J]. Plant, Cell & Environment,2010b,33:943-958.
    137. Sun J, Zhang X, Deng S, et al. Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca" in the salt response of Populus euphratica cells [J]. PLOS ONE,2012,7:1-15.
    138. Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, Chen S. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells [J]. Plant Physiology and Biochemistry,2013a,65:67-74.
    139. Sun J, Wang R, Liu Z, Ding Y, Li T. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii [J]. Journal of Plant Physiology,2013b,170: 355-359.
    140. Tabuchi A, Mori H, Kamisaka S, Hoson T. A new type of endo-xyloglucan transferase devoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls [J]. Plant & Cell Physiology,2001, 42:154-161.
    141. Thompson JE, Fry SC. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells [J]. The Plant Journal,2001,26:23-34.
    142. Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K. Matsuoka M. Characterization of XET-related genes of rice [J]. Plant Physiology.2000,122:853-860.
    143. Uraguchi S, Kiyono M, Sakamoto T, Watanabe 1, Kuno K. Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.) [J]. Planta,2009,230: 267-276.
    144. Van Sandt VST, Guisez Y, Verbelen JP, Vissenberg K. Analysis of a xyloglucan endotrans-glycosylase/hydrolase (XTH) from the lycopodiophyte Selaginella kraussiana suggests that XTH sequence characteristics and function are highly conserved during the evolution of vascular plants [J]. Journal of Experimental Botany,2006,57:2909-2922.
    145. Vatamaniuk OK, Mari S, Lu YP, Rca PA. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96:7110-7115.
    146. Vatamaniuk OK, Mari S, Lu YP, Rea PA. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase [J]. The Journal of Biological Chemistry,2000,275:31451-31459.
    147. Vissenberg K. Oyama M. Osato Y. Yokoyama R. Verbelen JP. Nishitani K. Differential expression of AtXTHJ7, AtXTHlH, AtXTH19 and AtXTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction [J]. Plant& Cell Physiology,2005a,46:192-200.
    148. Vissenberg K, Fry SC, Pauly M, Verbelen JP. XTH acts at the microfibril-matrix interface during cell elongation [J]. Journal of Experimental Botany,2005b,412:673-683.
    149. Wang D, Wang H, Han B et al. Sodium instead of potassium and chloride is an important macro-nutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum [J]. Plant Physiology and Biochemistry,2012,51:53-62.
    150. Wang M, Wang Y, Sun J et al. Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis [J]. Plant Physiology and Biochemistry,2013,71:37-48.
    151. Wang R, Chen S, Deng L, Fritz E, Huttermann A, Polle A. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars [J]. Trees-Structure and Function,2007,21:581-591.
    152. Wang R, Chen S, Zhou X et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress [J]. Tree Physiology,2008,28:947-957.
    153. Winter K, Aranda J, Holtum JAM. Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism [J]. Functional Plant Biology,2005,32:381-388.
    154. Wu Y, Jeong BR, Fry SC, Boyer JS. Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential [J]. Planta,2005,220:593-601.
    155. Xiong J, An L, Lu H, Zhu C. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall [J], Planta,2009,230:755-765.
    156. Xu W, Campbell P, Vargheese AK, Braam J. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression [J]. The Plant Journal,1996,9:879-889.
    157. Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endo-transglycosylase [J]. The Plant Cell,1995,7:1555-1567.
    158. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex [J]. Plant Physiology, 2008,146:602-611.
    159. Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis [J]. Plant Physiology,2011,155:1885-1892.
    160. Yokoyama R, Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis [J]. Plant & Cell Physiology,2001a,42:1025-1033.
    161. Yokoyama R, Nishitani K. Endoxyloglucan transferase is localized both in cell plate and in the secretory pathways destined for the apoplast in tobacco cells [J]. Plant & Cell Physiology,2001b, 42:292-300.
    162. Yokoyama R, Rose JKC, Nishitani K. A surprising diversity and abundance of xyloglucan endo- transglucosylase/hydrolases in rice. Classification and expression analysis [J]. Plant Physiology, 2004,134:1088-1099.
    163. Yokoyama R, Uwagaki Y, Sasaki H, Harada T, Hiwatashi Y, Hasebe M, Nishitani K. Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/ hydrolase) family of proteins in the bryophyte Physcomitrella patens [J]. The Plant Journal,2010, 64:658-669.
    164. Yun HS, Kwon C, Kang BG, Lee JS, Han TJ, Chang SC, Kim SK. A xyloglucan endotrans-glycosylase/hydrolasel, VrXTH1, is associated with cell elongation in mungbean hypocotyls [J]. Physiologia Plantarum,2005,125:106-113.
    165. Zeng F, Yan H, Arndt SK. Leaf and whole tree adaptations to mild salinity in field grown Popuhts euphratica [J]. Tree physiology,2009,29:1237-1246.
    166. Zhang JL, Flowers TJ, Wang SM. Mechanisms of sodium uptake by roots of higher plants [J]. Plant Soil,2010,326:45-60.
    167. Zheng SJ, Lin X, Yang J, Liu Q, Tang C. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar [J]. Plant and Soil, 2004,261:85-90.
    168. Zhu JK. Plant salt tolerance [J]. Trends in Plant Science.2001.6:66-71.
    169. Zhu JK. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology. 2003,6:441-445.
    170. Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ. Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana [J]. Planta,2012a,236:989-997.
    171. Zhu XF, Shi YZ, Lei GJ et al. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis [J]. The Plant Cell,2012b,24:4731-4747.
    172.Zotz G, Winter K. A one-year study on carbon, water and nutrient relationships in a tropical C3-CAM hemi-epiphyte, Clusia uvitana Pittier [J]. New Phytologist,1994,127:45-60.
    173. Zurek DM, Clouse SD. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls [J]. Plant Physiology,1994,104:161-170.