胰岛素样生长因子-I对大鼠力竭运动致骨骼肌细胞凋亡的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨IGF-Ⅰ对反复力竭运动致大鼠骨骼肌细胞凋亡的作用及其机制。
     方法:建立大鼠反复力竭动物模型及IGF-Ⅰ药物模型,雄性SD大鼠40只,随机分为4组,即安静对照组(A)、正常训练组(C)、力竭对照组(S)、力竭+IGF-Ⅰ组(Y),S和Y组进行一周的反复力竭跑台训练,C组进行一周的正常训练。检测各组大鼠运动距离,各组大鼠骨骼肌细胞膜、肌浆网和线粒体Ca~(2+)—ATPase活性,肌浆网和线粒体游离Ca~(2+)浓度,电镜观察骨骼肌及线粒体超微结构,流式细胞仪和TUNEL染色检测腓肠肌凋亡细胞,RT-PCR检测凋亡相关基因表达的变化及葡萄糖转运蛋白-4(GULT4)的mRNA表达变化,探讨IGF-Ⅰ对力竭运动后骨骼肌细胞凋亡的抑制作用,及其促进骨骼肌细胞的存活、提高运动能力的可能机制。
     结果:力竭+IGF-Ⅰ组(Y)大鼠运动能力显著强于力竭对照组(S),力竭+IGF-Ⅰ组(Y)大鼠的总运动距离显著大于力竭对照组(S),P<0.05;力竭+IGF-Ⅰ组(Y)和正常训练组(C)的细胞膜、肌浆网体Ca~(2+)—ATPase活性显著高于力竭对照组(S)和安静对照组(A),P<0.05;力竭+IGF-Ⅰ组(Y)和正常训练组(C)的线粒体Ca~(2+)—ATPase活性显著低于力竭对照组(S),P<0.05;力竭+IGF-Ⅰ组(Y)和正常训练组(C)肌浆网游离Ca~(2+)浓度显著高于力竭对照组(S)和安静对照组(A),P<0.05;力竭+IGF-Ⅰ组(Y)和正常训练组(C)的线粒体游离Ca~(2+)浓度显著低于力竭对照组(S),P<0.05。透射电镜观察示力竭对照组(S)大鼠骨骼肌肌丝排列紊乱等坏死表现,核固缩等凋亡表现,线粒体肿胀和空泡变性等异常表现;正常训练组(C)和力竭+IGF-Ⅰ组(Y)线粒体数量增多、糖元颗粒增多。流式细胞仪和TUNEL染色检测示力竭对照组(S)大鼠腓肠肌细胞凋亡增多,显著高于力竭+IGF-Ⅰ组(Y)和正常训练组(C),
    
    P<0.05;力竭+I GF一I组(Y)和正常训练组(C)GULT4的mRNA表达
    增多,高于力竭对照组(s)和安静对照组(A)。力竭+I GF一I组(Y)和
    正常训练组(C)大鼠胖肠肌bel一2的mRNA表达强于力竭对照组(S),
    Bax的表达则呈现与bel一2相反的趋势。
     结论:一周反复力竭离心收缩后,骨骼肌细胞膜、肌浆网C扩+--
    ATpase活性减低,而线粒体c扩+一灯Pase活性出现应激性异常增高,导
    致胞浆和线粒体游离C扩+浓度异常增高,引起线粒体功能障碍,可能是
    介导骨骼肌凋亡的重要原因。IGF一I可促进骨骼肌细胞GULT4的mRNA
    表达,促进线粒体的能量代谢,提高细胞膜和肌浆网c矛+一华汀Pase活性,
    使胞浆c扩+“外流”和进入细胞内“钙库”,避免线粒体C扩+一灯Pase
    活性出现应激性异常增高引起线粒体c扩十超载,保护线粒体,促进细胞
    存活;并促进抗凋亡基因表达,抑制促凋亡基因表达,最终减少骨骼肌
    细胞凋亡,提高运动能力。
Objective To investigate the phenomenon of apoptosis in rats' muscle and the effect of IGF-1 (Insulin-like growth factor-1) on skeletal muscles in rats which taking repeated exhausting run on the treadmill.
    Methods Using SD rat repeat exhausting and IGF-1 effect model. 40 SD male rats were divided randomly into four groups: queit control group(A),normal train group(C), exhausting exercising control group(S), exhausting exercising and IGF-1 effect group(Y). The exercising groups(S and Y group) took repeating exhausting run on the treadmill for 1 weeks. The C group took normal training for 1 week.Inspect the exercise length ,and the content of free calcium of sarcoplasmic reticulum and mitochondria, the activity of Ca2+-ATPase in rats' musculi skeleti cell membrane,sarcoplasmic reticulum and mitochondria. Observe the changes of the skeletal muscle cells and mitochondria ultrastructure through the electron microscope(TEM). Apoptotic cells of gastrocnemius muscle cells of rats were measured by TUNEL dyeing and Flow cytometer(FCM). The express of the mRNA of GULT4 and apoptosis-correlating genes were detected by means of polymerase chain reaction(PCR).Investigated the possible mechanism of IGF-I inhibiting cell apop
    tosis,promoting cell survival and enhance locomotivity.
    Results The locomotivity and total exercise treadmill length of Y group is significant higher than S group after having 1-week exhausting exercise on treadmill, P<0.05. Y and C groups' Ca2+-ATPase activity and free calcium content of mitochondria were less than the S and A group, P< 0.05. Y and C groups' activity of Ca2+-ATPase of cellular mimbrane and free calcium content of sarcoplasmic were more than the S and A group, P< 0.05. Skeletal muscle myofilament disord, the contraction of nucleus and the
    
    
    
    vacuolar degeneration and engorge of mitochondria could be seen under electron microscope(TEM) in S group, the number of mitochondria and glycogenosome is higher in C and Y group. The number of apoptosis cell in C group is more than Y and C group by TUNEL dyeingand FCM , P< 0.05 .The expresses of mRNA of GULT4 were powerful in the Y and C group. In the Y and C groups, the expresses of bcl-2 increased more than in S group, the expresses of Bax is crosscurrent.
    Conclusions A low level of Ca2+-ATPase activity was observed in the working skeletal muscle cellular menbrane and sarcoplasmic reticulum which have taken 1 weeks repeated centrifugal contraction.but it was anomaly higher in mitochondria.that lead to the functional disturbance of mitochondria. The malfunction of the mitochondria maybe the main reason of induce the apoptosis of muscle cells. The IGF-I can promote the express of the mRNA of GULT4 and the energy metabolism of mitochondrial.enhance the activity of Ca2+-ATPase in cell membrane and sarcoplasmic reticulum,that made Ca2+ in endochylema outflow and enter calcium library. Avoided the abnomal higher of Ca2+-ATPase in mitochondria ,lead to Ca2+ overload, protect the mitochondria of muscle cells, also promote the express of the anti-apoptosis genes and reduce the express of the auxo-apoptosis genes in muscle cells, protect the mitochondria in skeletal muscle and improve the sports ability of the exhausting exercising rats on treadmill.
引文
1. Lehto MU, Jarvinen MJ. Muscle injuries, their healing process and treatment. Ann Chir Gynaecol 1991; 80: 102-8.
    2. Sandri M, Carraro U, Podhorska Okolov M, et al. Apoptsis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. FEBS-Lett. 1995; 373(3): 291-295.
    3. Sandri M, Podhorska Okolov M, Geromel V, et al. Exercise induces my onuclear ubquitination and apoptosis in dystrophin-deficient muscle of mice. J. Neuropathol. Exp. Neurol. 1997; 56(1): 45-57.
    4. DanielA, Raj, Timothy S, Booker Angelo N, Belcastro. Striated muscle calcium-stimulated cysteine protease (calpain-like) activity promotes myeloperoxidase activity with exercise. P flügers Arch-Eur J Physiol (1998)435: 804-809
    5. Daughaday WH, Rotwein P. Insulin-like growth factorsland2: Peptide, messenger ibonucleic acid and gene structure, serum and tissue concentration. Endo Rev 1989, 10(1): 68-91h
    6. Stewart CE, James PL, Fant ME, Rotwein P. Overexpression of insulin-like growth factor-Ⅱ induces accelerated myoblast differentiation. J Cell Physiol. 1996 Oct; 169(1): 23-32.
    7. Kulik G, Weber MJ. Akt-dependent and independent survival signaling pathways utilized by insulin-like growth factor 1. Mol cell Biol, 1998, 18(11): 6711-6718.
    8. Grounds MD. Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 2002; 3(1-2): 19-24.
    9. Marco Sandri, et al. zl. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficietnt muscle of mice. J. Neu. Exp.Neurology, 1997; 56(1): 45-57
    10. Le Roith D, Kim H, Fernandez AM, et al. Inactivation of muscle insulin and IGF-1 receptors and insulin responsiveness. Curr Opin Clin Nutr Metab Care 2002 Jul; 5(4): 371-5.
    11.林文驶主编.运动生物化学.北京:人民体育出版社,1999:100-101
    12.林文驶主编.运动生物化学.北京:人民体育出版社,1999:137
    13.彭黎明主编.细胞凋亡的基础与临床.北京:人民卫生出版社,2000:65—66
    14.丁树哲.长时间运动中线粒体钙运输的作用[J].现代康复,2000,4 (3):394-395.
    
    
    Ding SZ.Effect of mitochondda calcium transportation during long-time exercise[J].Modem Rehabilitation, 2000, 4(3): 394-395(Chinese, English Abstract).
    15. Duehen M R. Contributions of mitoehondria to animal physiology: from homeostatic sensor to calcium signaling and cell death[J].J Physiol, 1999, 516(1): 1-17.
    16. Zhuan Z, Matlib A, Bers DM.Cytosolic and mitoehondria Ca signals inmammalian ventricular myocytes[J].J Physiol(London), 1998, 507 (Pt2): 379-403.
    17. Lamont C, etal.Lntercellular Ca2+ waves in rat heart muscle[J].J Appl Physiol, 1998, 5(12): 669-676.
    18.田野,李明华,张孙曦.急性运动后大鼠骨骼肌线粒体Ca2+摄取的动力学观察[J].中国运动医学杂志,2001,20(2):132—133.
    Tian Y, Li MH, Zhang SX.Kinetic Observations on the Mitochondrial Calcium Up-take of the Skeletal Muscle in Rats after Acute Exercise[J].Chin J Sports Med, 2001, 20(2): 132-133(Chinese, English Abstract).
    19.韩春华,王起恩,王生,等.急性运动所致线粒体某些功能的改变及胆红素的保护作用[J].中国应用生理学杂志,2001,17(1):72-75.
    Han CH, Wang QN, Wang S, etal.Changes of the Certain Functions of Mitochondria Induced by Acute Exercise and the Protective Effect of Bilirubin[J].Chi J Appl Physiol, 2001, 17(1): 72-75 (Chinese, English Abstract).
    20.王和平,丰丙芝.急性游泳运动对大鼠肾功能的损伤与运动性疲劳产生的相关性[J] 现代康复,2001,5(5):116.
    Wang HP, Feng BZ.The relativity between the injury to the nephridial function of rat due to acute natatorial exercise and sportive fatigue[J]. Modern Rehabilitation, 2001 5(5): 116(Chinese).
    21.何丽华,王生,郑强,等.静态负荷致骨骼肌损伤中线粒体功能的变化[J].中国职业医学,2001,28(2):2—4.
    HeL H, Wang S, Zheng Q, etal.The effects of static load on mitochondria functions in rabbit muscle[J].Chin Occup Med, 2001, 28(2): 2-4 (Chinese, English Abstract).
    22. Duan C, Delp MD, Hayes DA, etal.Rat skeletal muscle mitochondrial Ca2+ and ingury from downhill walking[J].J Appl Physiol, 1990, 68(3): 1241-1251.
    23. Halestrap AP.Mitochondria calcium handling and oxidative stress[J]. Biochem. Soc.Trans, 1993, 21 (2): 353-358.
    24. Green DR, Reed JC.Mirochondria and apoptosis[J].Science, 1998,
    
    281: 1309-1312.
    25. Kroeme G, Dallaporta B, Resche-Rigon M.The mitochomdrial death/life regulator in apoptosis and necrosis[J].Anu Rev Physiol, 1998, 60: 619-642.
    26. Lemasters JJ, Nieminen AL Qian T, et al.The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy[J].Biochim Biophys Acta, 1998, 1366: 177-196.
    27.赵卫红,等.细胞凋亡.郑州:河南医科大学出版社,1997
    28. Reuter H.Nature, 1991; 349: 567-568
    29. Sower JR.Diabetes, 1996; 45: 47-51
    30. Tirupattur PR etal.Am J Hypertens, 1993; 6: 626-629
    31. Clausen T, Everts ME.Kidney Int, 1989; 35: 1-13
    32. Hundal HS etal.J Biol Chem, 1992; 267: 5040-5043
    33. Standley PR, Rose KA.Am J Hypertens, 1994; 7: 357
    34. Giuseppe I.Mechanism of Calcium transport.Ann Rev Physiol, 1985, (47): 573~601.
    35. Carafoli E.Membrane transport in the cellular homeostasis of calcium.Cardiovasc Pharmacol, 1986, (8): 53~55.
    36. Tate CA, et al.Calcium uptake in skeletal muscle mitochondria.Eur J Appl Physiol. 1978, 39: 111.
    37. Pierce GN, et al.Biochemical alteration in heart after exhaustive swimming in rats.J Appl Physiol. 1984, 57: 326
    38. Lamomy C, et al.Intercellular Ca2+ waves in rat heart muscle.J Physiol. 1998, 512: 669-676
    39. Yue DT, et al.Intracellular[Ca2+] related to rat of force development in twitch contractions of heart.Am J Phvsiol. 1987.253: H760-H770
    40.韩启德,文允镒,主编.血管生物学.第1版.北京:北京医科大学、中国协和医科大学联合出版社,1997.213-233.
    41. Mueckler M.Facilitative glucose transporters.Eur J Biochem, 1994, 219: 713
    42. Baldwin SA.Mammalian passive glucose transporters members of a ubiquitous family of active and passive transport proteins.Biochim Biophys Acta, 1993, 1154: 17
    43. Rosse T, Olivier R, Monney L, et al.Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c.Nature, 1998, 391 (6666): 496-499
    44. Kulik G; Weber MJ.Akt-dependent and independent survival signaling pathways utilixed by insulin-like growth factor Ⅰ.Mol Cell Biol, 1998, 18(11): 6711-6718
    45. Parrizas M, LeRoith D.Insulin-like growth factor-1 inhibition of
    
    apoptcsis is associated with increased expression of the Bcl-xL gene prodect.Endo-crinology, 1997, 138(3): 1355-1358
    46. Pugazhenthi S, Boras T, O'Connor D, et al. Insulin-like growth factor Imediated activation of the transcription factor cAMP response element-binding protein in PC 12 cells. Inwolvement of P38 mitogen-activated protein kinase-mediated pathway.J Biol Chem, 1999, 274(5): 2829-2837
    47. Pugazhenthi S, Miller E, Sable C, etal.Insulin-like growth factor-Ⅰ induces Bcl-2 promoter through the transcription factor cAMP-response element-binding protein.J Biol Chem, 1999, 274(39): 27529-27535