几类风险模型的首次通过时间及分红问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在保险数学中,破产理论是保险风险理论研究的重要问题之一,它可以为保险公司决策者提供一个非常有用的早期风险预警手段.因此对其进行研究具有非常重要的理论和现实意义.
     本文从跳扩散过程出发,一方面利用随机过程以及随机微分方程的相关知识和理论,考虑了首次通过时间问题.首次通过时间,即第一次通过(向下或者向上)某个边界的时间.对于单边跳和双边跳的扩散过程来说,首次通过时间关系到其破产问题, Gerber-Shiu函数,以及破产前期望折现分红,期权定价等问题.
     另一方面,分红策略也是风险理论中重要的研究问题.“分红,是指将公司的(部分)盈余作为红利分发给公司所有者或股份参与者.”其现实意义使得分红策略的研究备受关注.对于这些受益人而言,他们不仅关心公司目前的经济状态,更关心的是采取何种分红策略才能使自己的收益以一定的折现率折现后尽可能的大,即所谓的最优分红问题.根据不同的客户要求,或者说在不同的分红要求下,最优的分红策略自然是不同的.现在常用的策略有两种,一种是障碍分红策略,另外一种是阈值分红策略,他们己经被证明在相应的限制下是最优的.这两种分红策略在第二章、第三章和第五章都有讨论.
     第一章主要介绍了本论文的研究背景,包括基本的风险模型,分红策略,以及L′evy过程的基本知识.
     第二章研究了超指数跳跃(扩散)过程对水平边界的首次通过时间问题,获得了首次通过时间、首次通过时间与undershoot (overshoot)、过程与最大值(最小值)等量的分布或联合分布的Laplace变换的明确解.这一过程覆盖了复合Poisson风险模型、扩散干扰的复合Poisson风险模型及其它们的对偶模型.并且给出了在障碍分红策略及阈值分红策略下的分红公式的精确表达式.(本章研究结果已经发表在Journal of Computational andApplied Mathematics.)
     第三章考察了当保险公司的非控制的盈余过程是一个谱负的L′evy过程时的最优分红问题.假设分红按照常数比例分给客户,当L′evy测度有一个完全单调的密度时,证明了阈值策略是最优分红策略.(本章研究结果已经发表在Acta Mathematicae Applicatae Sinica,English Series.)
     第四章研究了混合指数跳扩散过程下的常数界的首次通过时间问题.得到了首次通过时间、首次通过时间与undershoot (overshoot)分布或联合分布的Laplace变换的明确解.并且得到了双边跳盈余过程的Gerber-Shiu函数的明确表达式,给出了路径依赖的期权的解析解,回望和障碍期权的Laplace变换,带跳的结构性信贷风险模型的零息贷款的闭合表达式.(已投稿.)
     第五章研究了广义复合泊松模型(其计数过程是一个广义泊松过程)的最优分红问题,并以经典风险模型和Po′lya-Aeppli风险模型为例讨论其性质.本章的目标是找到一种分红策略,实现最大限度地给股东分红,直至公司破产.最后证明了在一定条件下的最优分红策略是阈值策略.(本章研究结果已经发表在the Applied Mathematics.)
In insurance mathematics, ruin theory is one of the mainly contents in insurance risktheory, and it can supply a very useful early-warning measure for the risk of the insur-ance company. So it has important theoretical and practical significance for the insurancecompany.
     In this thesis, we pay attention to the jump difusion process: for one hand, with theknowledge of stochastic process and stochastic diferential equation, we research on the firstpassage time which is the first time pass (downward or upward) a flat boundary. Thefirst passage time relate to the classical ruin problem and the expected discounted penaltyfunction or the Gerber-Shiu function, the expected total discounted dividends up to ruin aswell as the pricing options.
     On the other hand, dividend strategies become an important branch of risk theory.Dividends are payments made to stockholders from a firm’s surplus (or part). Due to itspractical importance, people pay more attentions to it. It is desirable to find a fixed rulewhich produces the largest possible expected sum of discounted dividend, and that is theoptimal dividend problem. There are two common strategies, the barrier dividend strategyand the threshold dividend strategy, and they were proved to be the “optimal” under theircorresponding constraints in their risk models. Therefore, we consider risk models with thepresence of these dividend strategies in Chapter2, Chapter3and Chapter5.
     In Chapter1, we mainly introduce the basis background, include some basic risk models,dividend strategies, and the basic knowledge of L′evy processes.
     In Chapter2, we investigate the first passage time to flat boundaries for hyper-exponentialjump (difusion) processes. Explicit solutions of the Laplace transforms of the distribution ofthe first passage time, the joint distribution of the first passage time and undershoot (over-shoot), the joint distribution of the process and running supreme (infima) are obtained. Theprocesses recover many models appearing in the literature such as the compound Poissonrisk models, the difusion perturbed compound Poisson risk models, and their dual models.As applications, we present explicit expressions of the dividend formulae for barrier strategyand threshold strategy.(Published on Journal of Computational and Applied Mathematics.)
     In Chapter3, we consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative L′evy process. We assume thatdividends are paid to the shareholders according to admissible strategies whose dividend rateis bounded by a constant. We shown that a threshold strategy forms an optimal strategyunder the condition that the L′evy meansure has a completely monotone density.(Publishedon Acta Mathematicae Applicatae Sinica, English Series.)
     In Chapter4, we consider the first passage time to constant boundaries for mixed-exponential jump difusion processes. Explicit solutions of the Laplace transforms of thedistribution of the first passage time, the joint distribution of the first passage time andundershoot (overshoot) are obtained. As applications, we present explicit expression ofthe Gerber-Shiu functions for surplus processes with two-sided jumps,present the analyticalsolutions for popular path-dependent options such as lookback and barrier options in termsof Laplace transforms and give a closed-form expression on the price of the zero-coupon bondunder a structural credit risk model with jumps.(Submitted.)
     In Chapter5, we study the optimal dividend problem for a company whose surplusprocess, in the absence of dividend payments, evolves as a generalized compound Poissonmodel in which the counting process is a generalized Poisson process. This model includingthe classical risk model and the P′olya-Aeppli risk model as special cases. The objectiveis to find a dividend policy so as to maximize the expected discounted value of dividendswhich are paid to the shareholders until the company is ruined. We show that under someconditions the optimal dividend strategy is formed by a barrier strategy.(Published on theApplied Mathematics.)
引文
[1] Lundberg F.I. Approximerad Framstallning av Sannolikhetsfunktionen. II.A¨tersforsa¨kringav Kollek-tivrisker [D]. Uppsala: Almqvist&Wiksell,1903.
    [2] Gerber H.U., Shiu E.S.W. On the time value of ruin [J]. North American ActuarialJournal,1998,2(1):48-72.
    [3] Asmussen S., Albrecher H. Ruin Probabilities [M]. World Scientific Publishing Co.Pte.Inc.,Singapor,2000.
    [4] Grandell J. Aspects of Risk Theory [M]. Springer-Verlag, New York,1991.
    [5] Gerber H.U., Landry B. On the discounted penalty at ruin in a jump-difusion andthe perpetual put option [J]. Insurance: Mathematics and Economics,1998,22(3):263-276.
    [6] Tsai C.C.L. On the discounted distribution functions of the surplus process perturbedby difusion [J]. Insurance: Mathematics and Economics,2001,28(3):401-419.
    [7] Tsai C.C.L. On the expectations of the present values of the time of ruin perturbedby difusion [J]. Insurance: Mathematics and Economics,2003,32(3):413-429.
    [8] Tsai C.C.L., Willmot G.E. A generalized defective renewal equation for the surplus pro-cess perturbed by difusion [J]. Insurance: Mathematics and Economics,2002,30(1):51-66.
    [9] Kou S.G. A jump-difusion model for option pricing [J]. Management Science,2002,48(8):1086-1101.
    [10] Cai J., Yang H.L. Ruin in the perturbed compound poission risk process under interestforce [J]. Advances in Applied Probability,2005,37(3):819-835.
    [11] Albrecher H., Boxma O.J. A ruin model with dependence between claim sizes andclaim intervals [J]. Insurance: Mathematics and Economics,2004,35(2):245-254.
    [12] Boudreault M., Cossette H., Landriault D., Marceau E. On a risk model with depen-dence between interclaim arrivals and claim sizes [J]. Scandinavian Actuarial Journal,2006,5:265-285.
    [13] Albrecher H., Teugels J. Exponential behavior in the presence of dependence in risktheory [J]. Journal of Applied Probability,2006,43(1):257-273.
    [14] Cossette H., Marceau E., Marri F. On the compound Poisson risk model with de-pendence based on a generalized Farlie-Gumbel-Morgenstern copula [J]. Insurance:Mathematics and Economics,2008,43(3):444-455.
    [15] Cossette H., Marceau E., Marri F. Analysis of ruin measures for the classical compoundPoisson risk model with dependence [J]. Scandinavian Actuarial Journal,2010,3:221-245.
    [16] Zhou M., Cai J. A perturbed risk model with dependence between premium rates andclaim sizes [J]. Insurance: Mathematics and Economics,2009,45(3):382-392.
    [17] Zhang Z., Yang H. Gerber-Shiu analysis in a perturbed risk model with dependencebetween claim sizes and interclaim times [J]. Journal of Computational and AppliedMathematics,2011,235(5):1189-1204.
    [18] Zhang Z., Yang H., Yang H. On a Sparre Andersen risk model with time-dependentclaim sizes and jump-difusion perturbation [J]. Methodology and Computing in Ap-plied Probability,2012,14(4):973-995.
    [19] De Finetti B. Su un’impostazione alternative dell teoria eollettiva del ris-ehio [A].Transactions of the XVth International Congress of Actuaries [C],1957,2:433一443.
    [20] Buhlmann H. Mathematical Methods in Risk Theory [M]. Springer,1970.
    [21] Gerber H.U. An Introduction to Mathematical Risk Theory [M]. Heubner FoundationMonograph Series8. Philadelphia,1979.
    [22] Lin X.S., Willmot G.E., Drekic S. The classical risk model with a constant dividendbarrier: Analysis of the Gerber-Shiu discounted penalty function [J]. Insurance: Math-ematics and Economics,2003,33(3):551-566.
    [23] Li S., Garrido J. On a class of renewal risk models with a constant dividend barrier[J]. Insurance: Mathematics and Economics,2004,35(3):691-701.
    [24] Albrecher H., Claramunt M.M., Mormol M. On the distribution of dividend paymentsin a Sparre Andersen model with generalized Erlang(n) interclaim times [J]. Insurance:Mathematics and Economics,2005,37(2):324-334.
    [25] Tan J., Yang X. The compound binomial model with randomized decisions on payingdividends [J]. Insurance: Mathematics and Economics,2006,39(1):1-18.
    [26] Bao Z. A note on the compound binomial model and randomized dividend strategy[J]. Applied Mathematics and Computation,2007,194(1):276-286.
    [27] Jeanblanc-Picqu′e M., Shiryaev A.N. Optimization of the flow of dividends [J]. RussianMathematical Surveys,1995,50(2):257-277.
    [28] Asumussen S., Taksar M. Controlled difusion models for optimal dividend pay-out [J].Insurance: Mathematics and Economics,1997,20(1):1-15.
    [29] Gerber H.U., Shiu E.S.W. On optimal dividend strategies in the compound Poissonmodel [J]. North American Actuarial Journal,2006,10(2):76-93.
    [30] Lin X.S., Pavlova K.P. The compound Poisson risk model with a threshold dividendstrategy [J]. Insurance: Mathematics and Economics,2006,38(1):57-80.
    [31] Wan N. Dividend payments with a threshold strategy in the compound Poisson riskmodel perturbed by difusion [J]. Insurance: Mathematics and Economics,2007,40(3):509-523.
    [32] Dong Y., Wang G., Yuen K.C. On the renewal risk model under a threshold strategy[J]. Journal of Computational and Applied Mathematics,2009,230(1):22-33.
    [33] Gao S., Liu Z. The perturbed compound Poisson risk model with constant interest anda threshold dividend strategy [J]. Journal of Computational and Applied Mathematics,2010,233(9):2181-2188.
    [34] Gerber H.U. The dilemma between dividends and safety and a generalization of theLundberg-Cram′er formulas [J]. Scandinavian Actuarial Journal,1974,1:46–57.
    [35] Gerber H.U. On the probability of ruin in presence of a linear dividend barrier [J].Scandinavian Actuarial Journal,1981,2:105-115.
    [36] Siegl T., Tichy R.F. A process with stochastic claim frequency and a linear dividendbarrier [J]. Insurance: Mathematics and Economics,1999,24(1-2):51-65.
    [37] Liu D., Liu Z. The perturbed compound Poisson risk model with linear dividend barrier[J]. Journal of Computational and Applied Mathematics,2011,235(8):2357-2363.
    [38] Albrecher H., Kainhofer R. Risk theory with a nonlinear dividend barrier [J]. Comput-ing,2002,68(4):289-311.
    [39] Yang W., Hu Y. Upper bounds for ultimate ruin probabilities in the Sparre Andersenrisk model with interest and a nonlinear dividend barrier [J]. Statistics&ProbabilityLetters,2009,79(1):63-69.
    [40] Albrecher H., Hartinger J. A risk model with multilayer dividend strategy [J]. NorthAmerican Actuarial Journal,2007,11(2):43-64.
    [41] Lin X.S., Sendova K.P. The compound Poisson risk model with multiple thresholds[J]. Insurance: Mathematics and Economics,2008,42(2):617-627.
    [42] Yang H., Zhang Z. The perturbed compound Poisson risk model with multi-layer div-idend strategy [J]. Statistics&Probability Letters,2009,79(1):70-78.
    [43] Yang H., Zhang Z. On a perturbed Sparre Andersen risk model with multi-layer divi-dend strategy [J]. Journal of Computational and Applied Mathematics,2009,232(2):612-624.
    [44] Zhang Z., Yang H. The compound Poisson risk model with dependence under a multi-layer dividend strategy [J]. Applied Mathematics-A Journal of Chinese Universities,2011,26(1):1-13.
    [45] Bertoin J. L′evy Processes [M]. Cambridge University Press,1996.
    [46] Merton R.C. Option pricing when underlying stock returns are discontinuous [J]. Jour-nal of Financial Economics,1976,3(1-2):125-144.
    [47] Goldman M.B., Sosin H.B., Shepp L.A. On contingent claims that insure ex-postoptimal stock market timing [J]. The Journal of Finance,1979,34(2):401-413.
    [48] Schoutens W. Exotic options under L′evy models: An overview [J]. Journal of Compu-tational and Applied Mathematics,2006,189(1-2):526-538.
    [49] Alili L., Kyprianou A.E. Some remarks on first passage of L′evy processes, the Americanput and pasting principles [J]. The Annals of Applied Probability,2005,15(3):2062-2080.
    [50] Asmussen S., Avram F., Pistorius M.R. Russian and American put options underexponential phase-type L′evy models [J]. Stochastic Processes and their Applications,2004,109(1):79-111.
    [51] Avram F., Palmowski Z., Pistorius M.R. On the optimal dividend problem for a spec-trally negative L′evy process [J]. The Annals of Applied Probability,2007,17(1):156-180.
    [52] Klu¨ppelberg C., Kyprianou A.E., Maller R.A. Ruin probabilities and overshoots forgeneral L′evy insurance risk processes [J]. The Annals of Applied Probability,2004,14(4):1766-1801.
    [53] Mordecki E. Ruin probabilities for L′evy processes with mixed-exponential negativejumps [J]. Theory of Probability&Its Applications,2004,48(1):170-176.
    [54] Xing X., Zhang W., Jiang Y. On the time to ruin and the deficit at ruin in a risk modelwith double-sided jumps [J]. Statistics&Probability Letters,2008,78(16):2692-2699.
    [55] Cai N., Chen N., Wan X. Pricing double-barrier options under a flexible jump difusionmodel [J]. Operations Research Letters,2009,37(3):163-167.
    [56] Zhang Z., Yang H., Li S. The perturbed compound Poisson risk model with two-sidedjumps [J]. Journal of Computational and Applied Mathematics,2010,233(3):1773-1784.
    [57] Chi Y. Analysis of the expected discounted penalty function for a general jump-difusion risk model and applications in finance [J]. Insurance: Mathematics and Eco-nomics,2010,46(2):385-396.
    [58] Chi Y., Lin X.S. On the threshold dividend strategy for a generalized jump-difusionrisk model [J]. Insurance: Mathematics and Economics,2011,48(3):326-337.
    [59] Kou S.G., Wang H. First passage times of a jump difusion process [J]. Advances inApplied Probability,2003,35(2):504-531.
    [60] Kou S.G., Wang H. Option pricing under a double exponential jump difusion model[J]. Management Science,2004,50(9):1178-1192.
    [61] Cai J., Feng R., Willmot, G.E. On the expectation of total discounted operating costsup to default and its applications [J]. Advances in Applied Probability,2009,41(2):495-522.
    [62] Cai N., Kou S.G. Option pricing under a mixed-exponential jump difusion model [J].Management Science,2011,57(11):2067-2081.
    [63] Hilberink B., Rogers L.C.G. Optimal capital structure and endogenous default [J].Finance and Stochastics,2002,6(2):237-263.
    [64] Le Courtois O.L., Quittard-Pinon F. Risk-neutral and actual default probabilities withan endogenous bankruptcy jump-difusion model [J]. Asia-Pacific Financial Markets,2006,13(1):11-39.
    [65] Dong Y.H., Wang G.J., Wu R. Pricing the zero-coupon bond and its fair premiumunder a structural credit risk model with jumps [J]. Journal of Applied Probability,2011,48(2):404-419.
    [66] Mordecki E. Optimal stopping and perpetual options for L′evy processes [J]. Financeand Stochastics,2002,6(4):473-493.
    [67] Perry D., Stadje W., Zacks S. First-exit times for compound Poisson processes for sometypes of positive and negative jumps [J]. Stochastic models,2002,18(1):139-157.
    [68] Kyprianou A.E. Introductory Lectures on Fluctuations of L′evy Processes with Appli-cations [M]. Springer-Verlag, Berlin,2006.
    [69] Doney R.A. Fluctuation Theory for L′evy Processes[M]. Lecture Notes in Mathematica1897. Springer, Berlin,2007.
    [70] Kadankova T., Veraverbeke N. On several two-boundary problems for a particular classof L′evy processes [J]. Journal of Theoretical Probability,2007,20(4):1073-1085.
    [71] Gerber H.U., Shiu E.S.W. The time value of ruin in Sparre Andersen model [J]. NorthAmerican Actuarial Journal,2005,9(2):49-69.
    [72] Paulsen J., Gjessing H.K. Optimal choice of dividend barriers for a risk process withstochastic return on investments [J]. Insurance: Mathematics and Economics,1997,20(3):215-223.
    [73] Gerber H.U., Shiu E.S.W. On optimal dividend strategies in the compound Poissonmodel [J]. North American Actuarial Journal,2006,10(3):76-93.
    [74] Wan N. Dividend payments with a threshold strategy in the compound Poisson riskmodel perturbed by difusion [J]. Insurance: Mathematics and Economics,2007,40(4):509-523.
    [75] Ng C.W. On a dual model with a dividend threshold [J]. Insurance: Mathematics andEconomics,2009,44(2):315-324.
    [76] Gerber, H.U. Entscheidungskriterien fu¨r den zusammengesetzten Poisson-Prozess [J].Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker,1969,69:185-227.
    [77] Azcue P., Muler, N. Optimal reinsurance and dividend distribution policies in theCram′er-Lundberg model [J]. Mathematical Finance,2005,15(2):261-308.
    [78] Albrecher H., Thonhauser S. Optimal dividend strategies for a risk process under forceof interest [J]. Insurance: Mathematics and Economics,2008,43(1):134-149.
    [79] Loefen R.L. On optimality of the barrier strategy in de Finetti’s dividend problem forspectrally negative L′evy processes [J]. The Annals of Applied Probability,2008,18(5):1669-1680.
    [80] Kyprianou A.E., Rivero, V., Song R. Convexity and smoothness of scale functions withapplications to de Finetti’s control problem [J]. Journal of Theoretical Probability,2010,23(2):547-564.
    [81] Azcue P., Muler N. Optimal investment policy and dividend payment strategy in aninsurance company [J]. The Annals of Applied Probability,2010,20(4):1253-1302.
    [82] Shreve S.E., Lehoczky J.P., Gaver D.P. Optimal consumption for general difusionswith absorbing and reflecting barriers [J]. SIAM Journal on Control and Optimization,1984,22(1):55-75.
    [83] Asmussen S., Taksar M. Controlled difusion models for optimal dividend pay-out [J].Insurance: Mathematics and Economics,1997,20(1):1-15.
    [84] Gerber, H.U., Shiu, E.S.W. Optimal dividends: Analysis with Brownian motion [J].North American Actuarial Journal,2004,8(1):1-20.
    [85] Fang Y., Wu R. Optimal dividend strategy in the compound Poisson model withconstant interest [J]. Stochastic Models,2007,23(1):149-166.
    [86] Fang Y., Wu R. Optimal dividends in the Brownian motion risk model with interest[J]. Journal of Computational and Applied Mathematics,2009,229(1):145-151.
    [87] Kyprianou A.E., Loefen R., P′erez J.L. Optimal control with absolutely continuousstrategies for spectrally negative L′evy processes [J]. Journal of Applied Probability,2012,49(1):1-302.
    [88] Albrecher H., Thonhauser S. Optimality results for dividend problems in insurance[J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A.Matematicas (RACSAM),2009,103(2):295-320.
    [89] Avanzi B. Strategies for dividend distribution: A review [J]. North American ActuarialJournal,2009,13(2):217-249.
    [90] Schmidli H. Stochastic Control in Insurance [M]. Springer,2008.
    [91] Chan T., Kyprianou A.E., Savov M. Smoothness of scale functions for spectrally nega-tive L′evy processes [J]. Probability Theory and Related Fields,2011,150(3-4):691-708.
    [92] Doney A.D., Kyprianou A.E. Overshoots and undershoots of L′evy processes [J]. TheAnnals of Applied Probability,2006,16(1):91-106.
    [93] Garrido J., Morales M. On the expected discounted penalty function for L′evy riskprocesses [J]. North American Actuarial Journal,2006,10(4):196-216.
    [94] Huzak M., Perman M.,Sˇiki′c H., Vondracˇek Z. Ruin probabilities and decompositionsfor general perturbed risk processes [J]. The Annals of Applied Probability,2004,14(3):1378-1397.
    [95] Kyprianou A.E., Palmowski Z. Distributional study of de Finetti’s dividend problemfor a general L′evy insurance risk process [J]. Journal of Applied Probability,2007,44(2):428-443.
    [96] Yang H.L., Zhang L.Z. Spectrally negative L′evy processes with applications in risktheory [J]. Advances in Applied Probability,2001,33(1):281-291.
    [97] Kyprianou A.E., Loefen R.L. Refracted L′evy processes [J]. Annales de l’Institut HenriPoincar′e-Probabilit′es et Statistiques,2010,46(1):24-44.
    [98] An M.Y. Logconcavity versus logconvexity: A complete characterization [J]. Journalof Economic Theory,1998,80(2):350-369.
    [99] Bagnoli M., Bergstrom T. Log-concave probability and its applications [J]. EconomicTheory,2005,26:445-469.
    [100] Hubalek F., Kyprianou A.E. Old and new examples of scale functions for spectrallynegative L′evy processes [J]. Seminar on Stochastic Analysis, Random Fields and Ap-plications VI, Progress in Probability,2010,63:119-145.
    [101] Jeannin, M., Pistorius, M. A transform approach to compute prices and Greeks ofbarrier options driven by a class of L′evy processes [J]. Quantitative Finance,2010,10(6):629-644.
    [102] Loefen R., Renaud J. De Finetti’s optimal dividends problem with an afne penaltyfunction at ruin [J]. Insurance: Mathematics and Economics,2010,46(1):98-108.
    [103] Yin C.C., Wang C.W. Optimality of the barrier strategy in de Finetti’s dividendproblem for spectrally negative L′evy processes: An alternative approach [J]. Journalof Computational and Applied Mathematics,2009,233(2):482-491.
    [104] Yin C.C., Yuen K.C. Optimality of the threshold dividend strategy for the compoundPoisson model [J]. Statistics&Probability Letters,2011,81(12):1841-1846.
    [105] Calvetti D., Reichel L. On the solution of Cauchy systems of equations [J]. ElectronicTransactions on Numerical Analysis,1996,4:125-137.
    [106] Zhang F.Z. The Schur Complement and Its Applications [M]. Springer,2005.
    [107] Gerber H.U. An extension of the renewal equation and its application in the collectivetheory of risk [J]. Skandinavisk Aktuarietidskrift,1970,(3-4):205-210.
    [108] Albrecher H., Gerber H.U., Yang, H.L. A direct approach to the discounted penaltyfunction [J]. North American Actuarial Journal,2010,14(4):420-434.
    [109] Chiu S.N., Yin C.C. The time of ruin the surplus prior to ruin and the deficit at ruinfor the classical risk process perturbed by difusion [J]. Insurance: Mathematics andEconomics,2003,33(1):59-66.
    [110] Chiu S.N., Yin C.C. On the complete monotonicity of the compound geometric con-volution with applications to risk theory [J]. Scandinavian Actuarial Journal,2014,2014(2):116-124.
    [111] Esary J.D., Marshall A.W. Shock models and wear processes [J]. The Annals of Prob-ability,1973,1(4):627-649.
    [112] Harn van K. Classifying Infinitely Divisible Distributions by Functional Equations [M].CWI, Amsterdam,1978.
    [113] Hansen B.G., Willekens E. The generalized logarithmic series distribution [J]. Statistics&Probability Letters,1990,9(4):311-316.
    [114] Mao Z.C., Liu J.E. A risk model and ruin probability with compound Poisson-geometricprocess (in Chinese)[J]. Acta Mathematicae Applicatae Sinica,2005,28(3):419-428.
    [115] Minkova L.D. The Po′lya-Aeppli process and ruin problems [J]. Journal of AppliedMathematics and Stochastic Analysis,2004,3:221-234.
    [116] Quenouille M.H. A relation between the logarithmic, Poisson, and negative binomialseries [J]. Biometrics,1949,5(2):162-164.
    [117] Shanthikumar J.G. DFR property of first passage times and its preservation undergeometric compounding [J]. The Annals of Probability,1988,16(1):397-406.
    [118] Willmot G.E., Lin X.S. Lundberg Approximations for Compound Distributions withInsurance Applications [M]. Springer-Verlag, New York,2001.