纳米茶多酚的制备及其抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶叶是我国具有悠久历史和深刻文化底蕴的特色经济作物,也是当前世界三大饮料中最具有生命力,最受消费者欢迎的文明健康饮料。茶叶中含有丰富的化学成分,包括多酚类、咖啡因、茶色素、茶多糖、茶皂素和茶氨酸等多种对人体健康有益的天然产物,具有抗氧化、抗突变和防癌抗癌等广泛的生物学活性,其开发应用前景也十分广阔。
     本文基于绿茶中的主要功效成分茶多酚所具有的防癌与抗癌作用,采用现代生物活性物质提取与分离技术,获得纯度较高的茶多酚,并以两种水溶性壳聚糖为载体,通过离子凝胶法制备纳米茶多酚,优化纳米茶多酚的制备工艺,筛选纳米茶多酚的最佳粒度和包封率,并分析纳米粒的粒径分布和体外表征。采用生物学前沿技术和手段,建立人肝癌HepG2肿瘤细胞培养模型以及肿瘤动物模型,研究纳米茶多酚的抗肿瘤作用,通过显微镜和透射电镜的形态学观察、酶标仪以及流式细胞术等方法,探讨纳米茶多酚的抗肿瘤作用机理。
     主要研究结果如下:
     1.绿茶采用超微加工技术可以显著提高茶多酚的有效溶出。本研究结果显示,绿茶原料经超微碎粉后茶多酚的溶出量由原来的156.34±4.22 g/kg提高到272.67±9.56 g/kg。茶多酚的分离纯化主要采用有机溶剂法与大孔树脂法相结合进行,获得的茶多酚纯度为93.75%,产品得率达到6.14%。高效液相色谱分析表明,纯化的茶多酚与有机溶剂提取的粗多酚相比,儿茶素的含量较高,且咖啡因的含量有所降低。
     2.以羧甲基壳聚糖和壳聚糖盐酸盐为载体,利用分子自组装技术在溶液中制备纳米茶多酚,通过Box Behnken试验设计和响应曲面法优化纳米茶多酚制备工艺,获得粒径较小且包封率较高的纳米茶多酚。动态光散色仪检测结合透射电镜观测显示,纳米粒形态不规则,但分布较为均匀,其粒径大多在200 nm-400 nm范围内,Zeta电位值为30 mV左右,在溶液中呈现相对稳定的胶体状态。以壳聚糖制备的纳米粒是一种优良的缓释载体,纳米茶多酚在溶液的显示了较强的缓释性能,在PBS为7.4的缓冲溶液中纳米茶多酚的体外缓释时间可达48 h。纳米茶多酚经冷冻干燥后室温下保存,稳定性良好。
     3.主要通过溶血性试验、细胞毒性试验和急性毒性试验研究纳米茶多酚的体内外安全性。结果显示,纳米茶多酚无溶血和凝集现象;对L929细胞的相对增殖度为(100.03±0.06)%,毒性分级结果显示为无毒性。急性毒性试验显示,最大灌服剂量为3 g/kg BW纳米茶多酚以及2.55 g/kg BW勺空载纳米粒均对小鼠无明显影响。由此表明,纳米茶多酚以及壳聚糖纳米粒载体在此剂量范围内均为安全的,对机体无毒性。
     4.体外抗肿瘤作用结果表明,纳米茶多酚(0.5 mg/mL-1.0 mg/mL)对人肝癌细胞HepG2有明显的生长抑制作用,并呈剂量与时效关系。透射及扫描电镜结果表明,纳米茶多酚作用于人肝癌HepG2细胞后,细胞变小,胞膜皱缩,细胞核固缩,致密浓染并伴有核型的不规则变化,出现核碎裂等凋亡的典型特征,表明纳米茶多酚可明显诱导人肝癌细胞HepG2细胞凋亡。
     5.流式细胞术检测纳米茶多酚对HepG2细胞周期与细胞凋亡影响,结果表明,浓度为1.0 mg/mL勺纳米茶多酚处理HepG2细胞24 h后,早期凋亡及晚期凋亡的细胞分别占总检测数的23.83%及3.30%,明显高于未给药对照组2.44%和2.89%,相同浓度的纳米茶多酚可使HepG2细胞的细胞周期阻滞在G0/G1期(对照组为0.62%,给药组为5.54%),阻断细胞周期向S期进行,阻止细胞增殖,诱导细胞凋亡。
     6.通过建立小鼠H22肝癌移植瘤模型,并结合体内抗氧化实验及病理技术,测定小鼠移植瘤体积、抑瘤率以及瘤块组织形态学变化,研究纳米茶多酚的体内抗肿瘤功效及初步探讨其作用机制。试验结果显示,纳米茶多酚对小鼠H22肝癌移植瘤具有显著的体内抗肿瘤作用,6.0、12.0 mg/kg剂量纳米茶多酚处理后抑瘤率分别达到51.50%和58.17%;体内抗氧化实验结果表明,纳米茶多酚可显著提高荷瘤小鼠血清T-AOC活性,同时降低肝脏H202含量以及SOD活性;病理检测结果表明,纳米茶多酚使肿瘤组织周边结缔组织增多,呈现细胞凋亡特征。
Tea has a long history and a deep cultural heritage as a kind of characteristic economic crops in China. At the same time, it also is the most civilized and healthy beverages in current three welcome drinks by consumers in the world.Tea is rich in a lot of chemical components, including polyphenols, caffeine, tea pigment, tea polysaccharide, tea saponin, theanine and other natural products beneficial to human health, such as antioxidant, anti-mutation and anti-cancer biological activity, and its development prospects are also very bright.
     As the major effective ingredients green tea polyphenols possessed the antitumor activities. Tea polyphenols with high purity was prepared from green tea using the advanced extraction and separation technology of bioactive substances. Then, chtosan loaded tea polyphenols nanoparticles (CS-TP NPs) were prepared by ionic gelation method using two water-soluble chitosans as carriers of tea polyphenols. The preparation conditions were optimized and selected to obtain best size and encapsulation efficiency, and analyzed the size distribution of nanoparticles and in vitro characterization.
     The models of human hepatocarcinoma cell HepG2 and tumor animal were established by advanced biological technology and means to study antitumor activity of the CS-TP NPs. The methods of morphological observation by microscopy and transmission electron microscopy, microplate reader and flow cytometry were used to analysis the antitumor mechanism of CS-TP NPs.
     The main research results were as follows:
     1. Extraction in advance using superfine comminuted processing technology can significantly improve the effective dissolution of tea polyphenols. The results of this paper showed that comparison with raw materials, the dissolution volume of tea polyphenols in superfine comminuted green tea from the original of 156.34±4.22 g/kg increased to 272.67±9.56 g/kg. Separation and purification of tea polyphenols using organic solvent combined with macroporous resin to obtain a purity of 93.75% polyphenols, the product yield was 6.14%. HPLC analysis showed that compared to crude polyphenols, the purified polyphenols has a high content of catechins and low caffeine.
     2. Based on carboxymethyl chitosan and chitosan hydrochloride as a carrier, CS-TP NPs was preparated in solution by molecular self-assembly techniques, and optimized through the Box-Behnken experimental design and response surface methodology to obtain tea polyphenols nanoparticles with smaller particle size and high encapsulation efficiency. Detection with dynamic light scattering and observation by transmission electron microscopy (TEM) showed that the nanoparticles had an irregular shape, however, the distribution was more uniform, and the range of particle size was mostly in the 200 nm~400 nm. Zeta potential value was about 30 mV, and it present relatively stable colloidal state in solution. Nanoparticles prepared with chitosan was an excellent delivery carrier, and CS-TP NPs showed a strong sustained release in solution, the release time of polyphenols in nanoparticles was up to 48 h in PBS 7.4 buffer solution in vitro. CS-TP NPs were stable in room temperature when they were freeze-dried.
     3. The safety of CS-TP NPs was systematically evaluated by haemolyticus test, cytotoxicity test and acute toxicity experiment in vitro and in vivo. The results showed nanoparticles didn't emerge haemolysis and conglomeration. The relative growth rate of L929 cells in CS-TP NPs was (100.03±0.06)%, and the toxicity grading results showed the non-toxic. Acute toxicity test showed that the maximum dose 3 g/kg BW of CS-TP NPs and 2.55 g/kg BW of the empty nanoparticles all have no effect on mice. It is suggested that CS-TP NPs and chitosan blank nanoparticles were safe and non-toxic to organism in this dose range.
     4. The results of anti-tumor effect in vitro showed that CS-TP NPs (0.5 mg/mL~1.0 mg/mL) significantly inhibited the growth of human hepatoma cell HepG2 with a dose and time dependent relationships. TEM and scanning electron microscope (SEM) results showed that HepG2 cell performed the typical apoptosis character of cell lessening, cytomembrane collapse, karyopyknosis, inregular changes of caryotype and nuclear fragmentation after addition of CS-TP NPs, which indicated CS-TP NPs could induce the apoptosis of human hepatocarcinoma cell lines HepG2.
     5. The effect of CS-TP NPs on cell cycle and cell apoptosis of HepG2 was measured with flow cytometry. After the treatment for 24 h at 1.0 mg mL-1, the apoptotic cells at the early and late stage accounted for 23.83% and 3.30% of the total counted cells, significantly higher than the control of 2.44% and 2.89%, respectively. Under the same concentration, CS-TP NPs could keep the cell cycle of HepG2 cells to G0/G1 stage (control 0.62%, treatment 5.54%), block cell cycle to S phase, inhibit the proliferation and induce the apoptosis of the cancer cells.
     6. Mice transplanted with H22 liver tumor were established to research the antitumor effect of CS-TP NPs. The tumor volume, inhibition rate and morphological changes in the block in mice were detected and the antioxidant activity and pathological technology were utilized to detect the antitumor mechanism in vivo. The results showed that CS-TP NPs had significant antitumor effect on mice transplanted with H22 liver tumor in vivo. Mice were treated with 6.0 mg/kg and 12.0 mg/kg CS-TP NPs respectively, the tumor growth inhibition rate were 51.50% and 58.17%. Antioxidant results in vivo show that CS-TP NPs could significantly increase the activities of GSH-Px and T-AOC in mice serum, and decrese the content of H2O2 and SOD in liver. Results of tumor pathological section indicated that the connective tissues in the surrounding of tumor were increased after treatment with CS-TP NPs, and presented cell apoptosis state.
引文
[1]秧志强.关于我国茶叶发展的思考[J].茶世界,2009,(5):56-63
    [2]王丽丽.茶多酚及其单体EGCG的分离纯化研究[D].济南:山东大学,2008
    [3]宛晓春.茶叶生物化学[M].2003
    [4]余芳.富硒绿茶功能成分的抗氧化和抗肿瘤作用及其机理研究[D].南京:南京农业大学,2007
    [5]杨柳.茶叶中多酚的分析测定研究[D].太原:山西大学,2005
    [6]薛山,赵国华.茶多酚生物学功效的研究现状及前景展望[J].漳州师范学院学报,2009,(3):173-175
    [7]陈建新.茶多酚工业提纯方法的比较研究[J].四川化工,2005,8(2):41-44
    [8]李学鸣,孟宪军,彭杰.茶多酚生物学功能及应用的研究进展[J].中国酿造,2008,(24):13-15
    [9]胡秀芳.茶多酚与其他抗氧化剂的协同作用[J].茶叶,2000,26(2):66-69
    [10]杨贤强,王岳飞,陈留记.茶多酚化学[M].2003
    [11]Sang S., Cheng X., Stark R.E., et al. Chemical studies on antioxidant mechanism of tea catechins: analysis of radical reaction products of catechin and epicatechin with 2,2-Diphenyl-l-picrylhydrazyl [J]. Bioorganic & Medicinal Chemistry,2002,10 (7):2233-2237
    [12]王景梓,王岗,徐贵发,等.以改性淀粉为壁材制备微胶囊化薄荷油[J].食品与药品,2006,8(3):23-26
    [13]郭炳莹,程启坤.茶汤组分与金属离子的络合性能[J].茶叶科学,1991,11(2):139-144
    [14]Lambert J.D., Yang C.S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003,523-524:201-208
    [15]崔云甫,石林,秦虹.茶多酚没食子儿茶素没食子酸酯抗肿瘤机制研究进展[J].世界华人消化杂志,2009,(3):229-235
    [16]屠幼英,陈暄.茶叶多酚类物质抗癌分子机理研究进展[J].中国茶叶,2001,(1):12-13
    [17]谢冰芬,刘宗潮,都东磊.茶多酚细胞毒作用和抗瘤作用的研究[J].癌症,1998,17(6):419
    [18]黎丹戎,唐东平,张丽生.茶多酚对肝癌细胞生长及端粒酶活性抑制的研究[J].肿瘤防治研究,2001,28(5):367
    [19]Agarwal R., Katiyar S.K., Zaidi S.I., et al. Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives [J]. Cancer research,1992,52 (13):3582-3588
    [20]Naasani I., Seimiya H., Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins [J]. Biochemical and biophysical research communications,1998, 249 (2):391-396
    [21]吴勤,付体权,冯传前.茶多酚诱导肝细胞凋亡[J].解放军医学杂志,2001,26(2):110
    [22]赵燕,曹进,祝和成.茶多酚诱导人胃癌细胞凋亡[J].湖南医科大学学报,1997,22(5):384
    [23]Kuroda Y. Bio-antimutagenic activity of green tea catechins in cultured Chinese hamster V79 cells [J]. Mutation research,1996,361 (2-3):179-186
    [24]张俊黎,王晓平.茶多酚生物学活性的研究进展[J].预防医学论坛,2007,13(12):1113-1116
    [25]Sazuka M I.H., Shoji Y, et al. Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins [J]. Biosci Biotechnol Biochem,1997, (61):1504
    [26]罗非君.茶多盼抑制种瘩细胞份殖的分子机制研究断进展[J].国外医学·生理病理与临床分,2001,21(4)
    [27]张海涛,祝其锋,莫丽儿.茶多酚对H202诱导HL-60细胞癌基因表达的影响.[J].中国老年医学杂志,2001,21(4):294
    [28]胡贵舟,韩驰,陈君石.茶对促癌物(TPA)诱发小鼠皮肤癌基因表达的影响[J].卫生研究,1995,24(4):80
    [29]Cao Y., Cao R. Angiogenesis inhibited by drinking tea [J]. Nature,1999,398 (6726):381
    [30]王志玲,孙连云.饮茶抑制血管生成[J].国外医学·卫生学分册,2000,27(3):190
    [31]朱哗涵,徐春明,胡华成.表没食子儿茶素没食子酸酯对人肺腺癌移植瘤模型作用的实脸研究[J].苏州大学学报(医学版),2005,25(6)
    [32]朱爱芝,王祥云,金山.茶多酚对肿瘤细胞多药耐药性逆转作用的研究[J].北京大学学报(自然科学版),2001,37(4):496
    [33]An B.-J., Kwak J.-H., Son J.-H., et al. Biological and anti-microbial activity of irradiated green tea polyphenols [J]. Food Chemistry,2004,88 (4):549-555
    [34]Si W., Gong J., Tsao R., et al. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract [J]. Journal of chromatography,2006,1125 (2):204-210
    [35]朴宰日.茶多酚的辐射防护机理及对肿瘤放射治疗的效应[D].杭州:浙江大学,2003
    [36]Pajonk F., Riedisser A., Henke M., et al. The effects of tea extracts on proinflammatory signaling [J]. BMC medicine,2006,4:28
    [37]Chen P.C., Wheeler D.S., Malhotra V., et al. A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium [J]. Inflammation,2002,26 (5):233-241
    [38]Kuriyama S., Shimazu T., Ohmori K., et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan:the Ohsaki study [J]. Jama,2006,296 (10): 1255-1265
    [39]王玉春.茶多酚的提取方法及应用研究进展[J].甘肃联合大学学报(自然科学版),2008,22(3):51-54
    [40]束鲁燕,汤一.茶多酚提取和纯化技术研究进展[J].茶叶,2009,35(2):74-79
    [41]尧渝,江和源,袁新跃.茶多酚的提取制备技术[J].中国茶叶,2009,(2):11-12
    [42]李会,宋伟.茶多酚提取和分离研究进展[J].粮食与油脂,2007,(11):39-42
    [43]陈素艳,邓清莲,巫晶晶,等.超声波法从茶叶中提取苯多酚[J].渤海大学学报:自然科学版,2005,26(4):316-319
    [44]孙庆磊,梁月荣,陆建良.超声波在茶叶提取中的应用[J].茶叶,2006,32(2):79-82
    [45]覃勇军,黄道战,石灵高,等.微波萃取茶叶中茶多酚的工艺改进[J].广西民族学院学报(自然科学版),2002,8(4):36-38
    [46]林俊岳.微波辐射对茶多酚结构的影响[J].中国食品添加剂,2003,(4):61-63
    [47]袁华,吴莉,吴元欣,等.硅胶柱层析法提纯茶多酚的研究[J].华中师范大学学报(自然科学版),2007,41(1):553-556
    [48]王传金,魏运洋,朱广军,等.聚酰胺色谱法分离制备高纯度表没食子儿茶素没食子酸酯[J].应用化学,2007,24(4):443-447
    [49]潘仲巍,朱锦富,李惠芬,等.超滤膜分离技术提取茶多酚的研究[J].泉州师范学院学报(自然科学),2008,26(4):52-58
    [50]张春静,钟世安.乙酸纤维-EGCG分子印迹复合膜分离纯化茶多酚中的EGCG [J].膜科学与技术,2008,28(5):100-102
    [51]李南薇,詹金广,陈少航.茶多酚分离提取和应用研究进展[J].天津农业科学,2010,16(4):8-10
    [52]王朝瑾,马红青,陈温娴.超临界萃取茶叶中茶多酚的提取与应用[J].分析科学学报,2009,25(3):281-284
    [53]钟世安,周春山,杨娟玉.高效液相色谱法分离纯化酯型儿茶素的研究[J].化学世界,2003,(5):237-239
    [54]曹学丽,王尉,裴海闰.逆流色谱技术及其在食品领域的应用进展[J].北京工商大学学报(自然科学版),2010,28(3):6-10
    [55]杜琪珍,李名君,程启坤.高速逆流色谱法分离茶叶中的儿茶素[J].中国茶叶,1996,(2):20-21
    [56]陈荣义.茶多酚的提取纯化及其改性的研究[D].成都:四川大学,2005
    [57]王佩华,赵大伟.茶多酚在食品工业中的应用[J].安徽农业科学,2010,38(33):19075-19076
    [58]梁文红.茶多酚抗菌作用的研究概况[J].国外医学.口腔医学分册,2004,31:26-27
    [59]姜红波,赵卫星,温普红.天然抗氧化剂—茶多酚的应用[J].应用化工,2010,39(10):1578-1581
    [60]Azarmi S., Roa W.H., Lenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases [J]. Advanced Drug Delivery Reviews,2008,60 (8):863-875
    [61]刘玉梅.长春碱纳米粒的制备及其抗肿瘤作用的实验研究[D].杨凌:西北农林科技大学,2009
    [62]孟祥,李保国,齐正,等.茶多酚及其微胶囊化研究进展[J].食品科技,2006:37-38
    [63]赵桂.金属和聚合物纳米粒子的合成、应用及光谱研究[D].苏州:苏州大学,2007
    [64]汤海波.纳米脂质体化羟基喜树碱抗癌作用研究[D].中山:中山大学,2007
    [65]Chan V.S.W. Nanomedicine:An unresolved regulatory issue [J]. Regulatory Toxicology and Pharmacology,2006,46 (3):218-224
    [66]Champion J.A., Katare Y.K., Mitragotri S. Particle shape:A new design parameter for micro-and nanoscale drug delivery carriers [J].Journal of Controlled Release,2007,121 (1-2):3-9
    [67]Hans M.L., Lowman A.M. Biodegradable nanoparticles for drug delivery and targeting [J]. Current Opinion in Solid State and Materials Science,2002,6 (4):319-327
    [68]Davis S.S. Biomical applications of nanotechnology--implications for drug targeting and gene therapy [J]. Trends in Biotechnology,1997,15 (6):217-224
    [69]Soppimath K.S., Aminabhavi T.M., Kulkarni A.R., et al. Biodegradable polymeric nanoparticles as drug delivery devices [J]. Journal of Controlled Release,2001,70 (1-2):1-20
    [70]赵瑞建,孟凡君,徐英超.乳液聚合法制备纳米级羧基聚合物微球[J].化工新型材料,2010,38(1):95-97
    [71]刘鹏,田军,刘维民,等.空心聚合物纳米球研究进展[J].化学进展,2004,16(1):15-19
    [72]张萍,冯年平,武培怡.聚合物空心纳米球及其在药学领域的应用[J]-药学进展,2006,30(8):350-353
    [73]李杰,汪树军,刘红研,等.聚合物空心纳米球的制备和表征的研究进展[J].化学进展,2010,24(6):67-72
    [74]Soma C.E., Dubernet C., Barratt G., et al. Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages [J]. Pharmaceutical research,1999,16 (11):1710-1716
    [75]Yoo H.S., Lee K.H., Oh J.E., et al. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates [J]. Journal of Controlled Release,2000,68 (3):419-431
    [76]杨时成,朱家壁,梁秉文.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2):146-150
    [77]仝新勇,黄春玉,姚静.尼莫地平微乳在小鼠体内的分布及靶向性评价[J].中国药科大学学报,2002,33(4):292-296
    [78]高洁,李博华.靶向抗肿瘤纳米药物研究进展[J].中国医药生物技术,2008,3(2):143-145
    [79]Semo E., Kesselman E., Danino D., et al. Casein micelle as a natural nano-capsular vehicle for nutraceuticals [J]. Food Hydrocolloids,21 (5-6):936-942
    [80]何强,吕远平.纳米技术与纳米食品[J].食品工业科技,2008,(4):296-298
    [81]朱卫红,许时婴.以改性淀粉为壁材制备微胶囊化薄荷油[J].食品与微生物技术学报,2006,(2):60-65
    [82]殷小梅,许时婴.EPA> DHA的微胶囊化[J].食品与发酵工业,2000,26(1):33-36
    [83]张连富,李明.亚油酸的微胶囊化研究[J].中国油脂,2006,31(7):57-60
    [84]孙莹.番茄红素纳米分散体的制备及稳定性研究[D].无锡:江南大学,2008
    [85]崔清波.微胶囊化酸味剂及其在食品中的应用研究[D].无锡:江南大学,2008
    [86]陈艳.壳聚糖/5-氟尿嘧啶纳米粒子的制备及性能评价[D].上海:上海师范大学,2007
    [87]张木炎,赵松林,陈飞,等.壳聚糖及其衍生物在食品工业中的应用[J].保鲜与加工,2008,(3):9-11
    [88]刘璠娜.新型季铵盐壳聚糖纳米载药体系的研究[D].广州:暨南大学,2008
    [89]卢军芳,冯小强,李小芳,等.壳聚糖纳米材料在生物医用中的应用进展[J].天水师范学院学报,2010,30(5):65-69
    [90]罗华丽,鲁在君.壳聚糖作为药物缓释载体的研究进展[J].高分子通报,2006,(7):25-29
    [91]孙立苹,杜予民,陈凌云,等.羧甲基壳聚糖水凝胶制备及其在药物控释中的应用[J].高分子学报,2004,(2):191-194
    [92]Janes K.A., Fresneau M.P., Marazuela A., et al. Chitosan nanoparticles as delivery systems for doxorubicin [J]. Journal of Controlled Release,2001,73 (2-3):255-267
    [93]Calvo P., Remunan-Lopez C., Vila-Jato J.L., et al. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines [J]. Pharmaceutical research,1997,14(10):1431-1436
    [94]Fernandez-Urrusuno R., Calvo P., Remunan-Lopez C., et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles [J]. Pharmaceutical research,1999,16(10):1576-1581
    [95]Mooren F.C., Berthold A., Domschke W., et al. Influence of chitosan microspheres on the transport of prednisolone sodium phosphate across HT-29 cell monolayers [J]. Pharmaceutical research,1998,15(1):58-65
    [96]赵晓威.肝靶向性壳聚糖基纳米载药体系的研究与应用[J].中国组织工程研究与临床康复,2010,14(38):7193-7196
    [97]张海燕,陈晓燕,万娜,等.壳聚糖修饰栀子苷聚乳酸—羟基乙酸纳米粒的制备及经鼻入脑的靶向性[J].中国新药与临床杂志,2010,29(6):448-453
    [98]龚金兰,汪森明,胡喜钢,等.肿瘤靶向性药物载体叶酸-壳聚糖微球的制备及特性研究[J].南方医科大学学报,2010,28(12):2183-2186
    [99]Jameela S.R., Latha P.G., Subramoniam A., et al. Antitumour activity of mitoxantrone-loaded chitosan microspheres against Ehrlich ascites carcinoma [J]. The Journal of pharmacy and pharmacology,1996,48 (7):685-688
    [100]Zaveri N.T. Green tea and its polyphenolic catechins:medicinal uses in cancer and noncancer applications [J]. Life sciences,2006,78 (18):2073-2080
    [101]孟祥,李保国.茶多酚微胶囊化的试验研究[J].茶叶科学,2006,26(4):275-279
    [102]Chen Y.A., Hsu K.Y. Pharmacokinetics of (-)-epicatechin in rabbits [J]. Archives of pharmacal research,2009,32 (1):149-154
    [103]Nakagawa K., Ninomiya M., Okubo T., et al. Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans [J]. Journal of agricultural and food chemistry,1999,47 (10):3967-3973
    [104]Henning S.M., Niu Y., Liu Y., et al. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals [J]. The Journal of nutritional biochemistry,2005,16(10):610-616
    [105]El-Shabouri M.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A [J]. International Journal of Pharmaceutics,2002,249 (1-2):101-108
    [106]Chen F., Zhang Z.R., Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers [J]. International Journal of Pharmaceutics,2007,336(1): 166-173
    [107]Hu B., Pan C., Sun Y., et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins [J]. Journal of agricultural and food chemistry,2008,56 (16):7451-7458
    [108]Sayin B., Somavarapu S., Li X.W., et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery [J]. International Journal of Pharmaceutics,2008,363 (1-2):139-148
    [1]李仕剑,黄瀚.茶多酚生物学效应的作用机制[J].预防医学论坛,2007,13(12):1113-1116
    [2]李学鸣,孟宪军,彭杰.茶多酚生物学功能及应用的研究进展[J].中国酿造,2008,(24):13-15
    [3]张俊黎,王晓平.茶多酚生物学活性的研究进展[J].预防医学论坛,2007,13(12):1113-1116
    [4]李跃伟,孙慕芳.不同粉碎度茶粉主要化学成分研究[J].信阳农业高等专科学校学报,2005,15(1):30-32
    [5]黄亚辉,陈晓阳,郑红发,等.两类绿茶及其超微茶粉主要生化成分的研究[J].茶叶通讯,2002,(4):27-28
    [6]李南薇,詹金广,陈少航.茶多酚分离提取和应用研究进展[J].天津农业科学,2010,16(4):8-10
    [7]王丽丽.茶多酚及其单体EGCG的分离纯化研究[D].济南:山东大学,2008:2-3
    [8]龚恕.普洱茶多酚提取分离研究[D].武汉:华中农业大学,2006
    [9]Li F., Wang F., Yu F., et al. In vitro antioxidant and anticancer activities of ethanolic extract of selenium-enriched green tea [J]. Food Chemistry,2008,111(1):165-170
    [10]郑海燕.陕南绿茶中茶多酚的提取分离与抗氧化性研究[D].杨凌:西北农林科技大学,2009
    [11]吕远平,姚开,何强,等.树脂法纯化茶多酚的研究[J].中国油脂,2003,28(10):64-66
    [12]高彦华,刘晓娜,乔喜芹.树脂法纯化茶多酚工艺的研究[J].黑龙江医药,2006,19(2):108-110
    [13]GB/T8313-2002.中华人民共和国国家标准-茶多酚测定[S]
    [14]张正竹.超微绿茶粉加工技术[J].茶业通报,2006,28(1):19
    [15]黄亚辉,陈晓阳,郑红发,等.超微绿茶粉主要生化成分的变化研究[J].福建茶叶,2003,(4):9-11
    [16]李华佳.不同粒径富硒绿茶的特性及其活性研究[D].南京:南京农业大学,2008
    [17]胥佰涛,徐平,沈生荣.茶多酚提取方法研究进展[J].茶叶,2007,33(3):143-146
    [18]杨贤强,王岳飞,陈留记.茶多酚化学[M].2003
    [19]王镇.超微绿茶粉及在食品工业中的应用[J].食品科技,2007:73-74
    [20]高飞虎,袁林颖,李中林,等.绿茶超微粉碎后和贮藏过程中主要内含成分变化研究[J].西南农业学报,2010,23(4):1082-1085
    [1]Pan X., Niu G., Liu H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves [J]. Chemical Engineering and Processing,2003,42(2):129-133
    [2]Yang C.S., Lambert J.D., Sang S. Antioxidative and anti-carcinogenic activities of tea polyphenols [J]. Archives of toxicology,2009,83 (1):11-21
    [3]Khan N., Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols [J]. Cancer letters, 2008,269 (2):269-280
    [4]Chen Y.A., Hsu K.Y. Pharmacokinetics of (-)-epicatechin in rabbits [J]. Archives of pharmacal research,2009,32 (1):149-154
    [5]烟利亚,乔小瑞,王萍,等.茶多酚微胶囊化包埋工艺研究[J].食品工业科技,2010,31(7):251-254
    [6]Higdon J.V., Frei B. Tea catechins and polyphenols:health effects, metabolism, and antioxidant functions [J]. Critical reviews in food science and nutrition,2003,43(1):89-143
    [7]Nakagawa K., Ninomiya M., Okubo T., et al. Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans [J]. Journal of agricultural and food chemistry,1999,47 (10):3967-3973
    [8]Henning S.M., Niu Y., Liu Y., et al. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals [J]. The Journal of nutritional biochemistry,2005,16 (10):610-616
    [9]Woitiski C.B., Veiga F., Ribeiro A., et al. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin [J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,73 (1):25-33
    [10]陈庆华,张强.药物微胶囊化新技术及应用[M].2008
    [11]Qi L., Xu Z. [J]. Bioorganic & Medicinal Chemistry Letters,2006,16(16):4243-4245
    [12]Bowman K., Leong K.W. Chitosan nanoparticles for oral drug and gene delivery [J]. International journal of nanomedicine,2006,1 (2):117-128
    [13]El-Shabouri M.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A [J]. International Journal of Pharmaceutics,2002,249 (1-2):101-108
    [14]Chen F., Zhang Z.R., Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers [J]. International Journal of Pharmaceutics,2007,336 (1): 166-173
    [15]Hu B., Pan C., Sun Y., et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins [J]. Journal of Agricultural and Food Chemistry,2008,56 (16):7451-7458
    [16]Sayin B., Somavarapu S., Li X.W., et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery [J]. International Journal of Pharmaceutics,2008,363 (1-2):139-148
    [17]Huang J., Huang K., Liu S., et al. Adsorption properties of tea polyphenols onto three polymeric adsorbents with amide group [J]. Journal of Colloid and Interface Science,2007,315 (2):407-414
    [18]陈艳.壳聚糖/5-氟尿嘧啶纳米粒子的制备及性能评价[D].上海:上海师范大学,2007
    [19]Dudhani A.R., Kosaraju S.L. Bioadhesive chitosan nanoparticles:Preparation and characterization [J]. Carbohydrate Polymers,2010,81 (2):243-251
    [20]Sarmento B., Ribeiro A.J., Veiga F., et al. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation [J]. Journal of nanoscience and nanotechnology,2007,7 (8):2833-2841
    [21]王鸿,邓泽元,刘蓉,等.响应曲面法优化山蕗菜根多糖的提取工艺[J].食品科学,2010,31(2):46-50
    [22]Gazori T., Khoshayand M.R., Azizi E., et al. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector:Formulation, optimization and in vitro characterization [J]. Carbohydrate Polymers,2009,77 (3):599-606
    [23]de Moura M.R., Aouada F.A., Mattoso L.H.C. Preparation of chitosan nanoparticles using methacrylic acid [J]. Journal of Colloid and Interface Science,2008,321 (2):477-483
    [24]Ajun W., Yan S., Li G., et al. Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study [J]. Carbohydrate Polymers,2009,75 (4):566-574
    [25]Kosaraju S.L., D'Ath L., Lawrence A. Preparation and characterisation of chitosan microspheres for antioxidant delivery [J]. Carbohydrate Polymers,2006,64 (2):163-167
    [26]Sun L., Du Y., Fan L., et al. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap [J]. Polymer,2006,47 (6):1796-1804
    [27]Anitha A., Divya Rani V.V., Krishna R., et al. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles [J]. Carbohydrate Polymers,2009,78 (4):672-677
    [28]de Moura M.R., Aouada F.A., Avena-Bustillos R.J., et al. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles [J]. Journal of Food Engineering,2009,92 (4):448-453
    [29]Hu Y., Jiang X., Ding Y., et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles [J]. Biomaterials,2002,23 (15):3193-3201
    [30]Tan Y.L., Liu C.G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan:Synthesis, characterization and application in vitro [J]. Colloids and surfaces,2009,69 (2):178-182
    [31]Zhu L., Ma J., Jia N., et al. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies [J]. Colloids and surfaces,2009,68 (1):1-6
    [1]汪冰,丰伟悦,赵宇亮,等.纳米材料生物效应及其毒理学研究进展[J].中国科学B辑化学,2005,35(1):1-10
    [2]史一杰,程刚.纳米制剂生物安全性评价研究进展[J].沈阳药科大学学报,2010,27(12):987-992
    [3]韦东远,鲍志敏,董晓玲.关于世界纳米材料生物效应与安全性研究的思考[J].中国科技论坛,2005,(7):112-117
    [4]孟幻,陈真,赵宇亮.部分纳米材料的纳米生物学效应研究[J].基础医学与临床,2006,26(7):699-703
    [5]赵琢,王利兵,张园,等.纳米物质生物安全性研究进展[J].纳米科技,2008,(2):61-65
    [6]Zhou Y.M., Zhong C.Y., Kennedy I.M., et al. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats [J]. Environmental toxicology,2003,18 (4):227-235
    [7]赵宇亮,赵峰,叶昶.纳米尺度物质的生物环境效应与纳米安全性[J].中国基础科学,2005,2:19-23
    [8]陈庆华,张强.药物微胶囊化新技术及应用[M].2008
    [9]杜益群AS2O3/Fe3O4复合纳米粒的制备与生物相容性评价及其热化疗治疗宫颈癌的研究[D].南京:东南大学,2006
    [10]刘玉梅.长春碱纳米粒的制备及其抗肿瘤作用的实验研究[D].杨林:西北农林科技大学,2009
    [11]黄哲玮,孙皎,孟爱英.两种体外细胞毒性检测方法的比较研究[J].上海生物医学工程,2005,26(4):205-207
    [12]张智星,毛靖,冯祥礼.具有控释性能的可注射牙槽骨修复材料中p-磷酸三钙的体外细胞毒性研究[J].华中科技大学学报(医学版),2008,37(4):544-545
    [13]SC(范玉明译)G.药物安全性评价[M].2006
    [1]Hail Jr N., Cortes M., Drake E.N., et al. Cancer chemoprevention:A radical perspective [J]. Free Radical Biology and Medicine,2008,45 (2):97-110
    [2]Kuzuhara T., Suganuma M., Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention [J]. Cancer letters,2008,261 (1):12-20
    [3]Khan N., Mukhtar H. Tea polyphenols for health promotion [J]. Life Sciences,2007,81 (7): 519-533
    [4]亓立峰.多聚糖纳米微粒吸附杀菌和抗肿瘤活性及其机理研究[D].杭州:浙江大学,2005
    [5]吴立明.灯盏花素壳聚糖纳米粒的研究[D].济南:山东大学,2008
    [6]曲秋莲.4种纳米颗粒对人胃癌BGC-823细胞的生物学效应[D].北京:中国人民解放军军事医学科学院,2009
    [7]崔英.茶多酚抗癌分子机制及其预防人类肝癌的基础实验研究[D].南宁:广西医科大学,2005
    [8]Luo H., Li J., Chen X. Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells [J]. Biomedicine & pharmacotherapy=Biomedecine & pharmacotherapie,64 (8):521-526
    [9]Qi L., Xu Z. In vivo antitumor activity of chitosan nanoparticles [J]. Bioorganic & medicinal chemistry letters,2006,16 (16):4243-4245
    [10]Kerr J.F., Winterford C.M., Harmon B.V. Apoptosis. Its significance in cancer and cancer therapy [J]. Cancer,1994,73 (8):2013-2026
    [11]徐力,李冬云,张燕明,等.茶多酚抗肿瘤效应机制研究进展[J].癌症进展杂志,2006,4(1):61-64
    [12]Sadava D., Whitlock E., Kane S.E. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells [J]. Biochemical and biophysical research communications,2007,360 (1):233-237
    [13]Thangapazham R.L., Passi N., Maheshwari R.K. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells [J]. Cancer biology & therapy,2007,6(12):1938-1943
    [14]Li L., Proskuryakov Y.Y., Savchenko A.K., et al. Magnetoresistance of a 2D electron gas caused by electron interactions in the transition from the diffusive to the ballistic regime [J]. Physical review letters,2003,90(7):076802
    [15]王明芳,赵园园,张碧媛,等.As203对人子宫内膜癌细胞HEC-1-B皮下移植瘤抗肿瘤作用[J].齐鲁医学杂志,2010,25(4):297-299